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1. INTRODUCTION 

1.1. Statement of the Problem 

The library plays an important role in the academic community and 

the community at large. With advancement in electronic technology, it 

is desirable to use this technology in order to make the library more 

accessible to its users. It is desirable to have a library system where 

the user can dial up the library and access its information. The data 

sent should be a complete duplicate of the data in the library and not 

part of it. This research tries to look at one aspect of this system, 

namely, at the methods of compressing these data for storage and trans

mission. 

1.2. Features and Assumptions of the Solution 

The receiver in this electronic library system is assumed to 

originate his connection from a microcomputer. The microcomputer was 

chosen, instead of a dump terminal, because it provides the following 

necessary services to the system: 

a) The receiver has a processing power which is needed 
to decompress the received data. 

b) The receiver has storage facility. This allows the 
sender to send more than one page to a receiver. The 
receiver will work on the received data till he needs 
more data. This decreases the load that the sender has 
to manage and allows the system to service more receivers 
than if the receiver has to ask for the data page by 
page. 

c) The display is of electronic form and not mechanical. 
Hence, the display time will be very fast. In addition 
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to that, it will be negligible compared to the decom
pression time. Other forms such as facsimile are great
ly affected by the mechanical requirements of the re
ceiver . 

In addition to the above services, the microcomputer is widely 

available. Hence, it is the best choice as the receiver in the electronic 

library system. 

The microcomputer chosen for this research is the IBM PC, and its 

compatibles. Chapter 3 contains a description of some features of this 

class of microcomputers related to this thesis. The investigation carried 

out with this class of computers can be extended to other computers. 

Since the sender is a big library system, we can assume that it is 

more powerful than the receiver. Hence, the compression time, that we 

get by simulating the compression algorithms in the microcomputer, will 

not be a decision factor in choosing the algorithm, unless, of course, 

all other factors are the same. 

1.3. Thesis Organization 

Chapter 2 is a review of some compression algorithms used in fac

simile transmission and "Lempel and Ziv" compression algorithm. From 

the methods we reviewed for facsimile transmission, we chose two 

methods that will be investigated in Chapter 4. Chapter 3 has a de

scription of some features of the computer this research was carried 

on, some implementation considerations or difficulties, and some char

acteristics of the data the system needs to store and/or transmit. 

Chapters 4, 5, 6, 7, and 8 investigate the use of some compression al
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gorithms to compress the computer screen. These algorithms are: 

a) Two methods used for compressing documents in facsimile 
transmission. These methods are investigated in Chapter 
4. This investigation showed the need for another class 
of algorithms. The new algorithms should be able to 
detect more redundancy in the data than the two algorithms 
we investigated. The next chapters contain an investi
gation of these new algorithms. 

b) Lempel, Ziv, and Welch compression algorithms is inves
tigated in Chapter 5. 

c) Variations of the Lempel and Ziv algorithm are investi
gated in Chapters 5, 6, and 7. These variations try to 
improve both the algorithm itself and the form of using 
it, and match these improvements to the data to be com
pressed. 

Chapter 8 presents a general analysis of the previous methods. 

Finally, Chapter 9 presents the conclusion of these investigations. 
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2. LITERATURE REVIEW 

2.1. Review of Facsimile Transmission 

An investigation of the type of data that the library possesses 

showed that text and graphics represent most of the data (refer to Chap

ter 3). Facsimile transmission is used to transmit such data; hence, 

it is desirable to look at the research in this field and benefit from 

it in solving the problem proposed in Chapter 1. 

Facsimile transmission has been used since 1843 [1]. Facsimile 

machines consisted of electrical and mechanical systems and did not use 

any data compression techniques. Only in the beginning of the 1970s did 

some machines use a form of compression. In this review of a modern 

facsimile machine, we are interested only in the compression techniques 

it used and not in its actual structure. For an excellent source of 

facsimile history, development, and detailed implementation refer to 

[1]. 

The following is a review of the research in facsimile transmission. 

As is customary in the field, the name will be shortened to facsimile. 

Sometimes, it will be abbreviated to FAX in this thesis. In this re

view, we look at the literature in a chronological order. We will not 

look at all of the available literature, but we will present what we 

think is a representation of the available literature from the points 

of view of the content of the literature and the directions of the re

search in facsimile. 

As an example of second generation facsimile machines, we look at 
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the system described in reference [2]. The points in this paper related 

to this review are the following: 

1) Although there were studies made on redundancy techniques, 
none of them was widely accepted. The reason was the un
availability, at that time, of economical methods to imple
ment them. Advances in digital techniques and development 
of integrated circuits made implementing these techniques 
economically feasible. 

2) The coding method used was to send the code of the run-
length of white picture elements (pels) and send the black 
pels pel by pel. 

3) For the high rate it was transmitting at, 50 Kbits/s, it 
took 20 microseconds to transmit a bit of information. 
This time was long enough for the recorder to guarantee 
sufficient exposure time for each black pel. Sending run-
length of the black pels would not give enough time for 
the recorder to expose the black pels it should record. 
So, the advantage of fast transmission rate was compensated 
by the time increase due to sending each black pel alone. 
This also decreased the compression factor. 

4) The paper reported a compression factor equal to 5. It also 
reported that other methods, that did not use this high 
transmission rate but used a Huffman code, had a compres
sion factor equal to 5.7. 

5) It took an average of 7 s to transmit an A4 size (8.5 x 
11 in) page. 

6) The paper used a variable scan rate that depended on the 
content of the scan line. This means when the scanner 
reached a black pel, it would remain 19 microseconds so 
the next scan would be 20 microseconds from the beginning 
of this scan. When it reached a white pel, it would scan 
normally till it reached a black pel, then it would send 
the run-length of the white pels. 

Reference [3] gave some techniques for using the correlation be

tween pels from line to line. It did this by ordering, in a buffer, 

pels or error prediction of current line based on information from cur

rent line and/or previous line. After all current line is processed. 
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the content of the buffer is run-length coded. 

The buffer filling was tried using the following methods: 

1) Each pel in line i+1 is put to the left (right) of the 
buffer if the same pel in the previous line is white 
(black). 

2) Each pel in line i+1 is predicted to be the same as the 
pel in line i. The error in prediction is ordered as in 
method 1, i.e., if the same pel in line i is white (black), 
the error prediction is put to the left (right) of the 
buffer. 

3) Each pel in line i+1 is predicted depending on its state. 
The state of a pel was defined as the three pels in line 
i nearest to the pel plus the pel to its left in line i+1. 
The prediction error is put to the left (right) if the pre
diction is good (bad). The ordered buffer is then sent 
as run-length codes. A prediction is classified as a good 
one if its probability is bigger than a threshold (0.8); 
otherwise, it is a bad one (note that a probability is 
defined to be at least 0.5). 

These methods gave a compression factor that is 30-50% better than 

the one of a one dimensional run-length coding. It was also shown to be 

10-18% better than the compression factor of another ordering technique 

suggested by Preuss (refer to discussion of reference [4]). 

Reference [5] is a continuation of the work in [3] done by the 

same authors. It used the ordering technique that depends on the state 

of the pel as described in the discussion of [3]. It had the follow

ing enhancements; 

1) It used 7 previous pels instead of 4. 

2) The threshold of a good prediction was raised from 0.8 
to 0.9. 

3) The statistics of the prediction were averaged from the 
8 standard documents suggested by the International 
Telegraph and Telephone Consultative Committee, known as 
CCITT. 
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4) The first sequence of 00...01 in the buffer would not 
be sent. 

5) Each line was ordered from either left-to-right (forward) 
or right-to-left (reverse) depending on which direction 
gave better result, i.e., needed less bits. 

The method was tried on all the 8 CCITT documents and an average of 

41% decrease in the transmission time compared to the transmission time 

obtained using the modified Huffman code was reported. 

Reference [G] is an invited paper by Huang which reviewed some of 

the coding methods available at its time. The paper gave three heuristic 

concepts used in facsimile coding. They are the following: 

1) Skipping white: Only the black elements will be sent and 
the rest of the document is assumed to be white. 

2) Transmitting only boundary points: It is perhaps fair to 
say that the majority of the current efficient coding 
schemes are based directly or indirectly on this concept. 
Examples of how this is done are sending the address of 
the boundary points, counter tracking these points, and 
approximating boundaries by piecewise linear or polynomial 
curves. Later, the paper gave more practical examples. 

3) Pattern recognition. 

Some mathematical models were given, corresponding entropies were 

derived, and numerical examples of their values were given. The white 

block skipping scheme was shown in one and two dimensions. It was also 

shown how to make it adaptive. Run-length coding was discussed and a 

mathematical model and experimental results were given. Two forms of 

predictive differential quantization were also given. Preuss code was 

presented as another form of an extension of run-length coding. Besides, 

the paper noted the following general trends: 
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1) For low resolution, 100 pels per inch (ppi), one dimen
sional coding techniques were usually preferred because 
of the ease of implementation and because they gave com
pression factor comparable to the one of the two. dimen
sional coding. 

2) For high resolution, greater than 200 ppi, two dimensional 
coding techniques may give considerably higher compres
sion factor and be preferred in spite of their implementa
tion complexity. 

Reference [4] was an attempt to compare some of the codes submitted 

to CCITT for standardization of group 3 facsimile machines. It looked 

at some one and two dimensional coding techniques. 

The one dimensional techniques were all run-length coding tech

niques. They differed according to the code assigned for the runs. One 

of these techniques that used the Modified Huffman (MH) code would be 

the one dimensional standard recommended by CCITT. 

The two dimensional codes were: 

1) The Kalle-Infotec code: It works on a pair of consecutive 
lines that are segmented into black and white runs. The 
runs for both lines together are coded with an adaptive 
run-length code which changes its word length between 2 
and 8 bits according to the local statistics of the docu
ment. 

2) The Kokusai Denshin Denwa code: It is similar in principal 
to the EDIC code that we will discuss later. 

3) Preuss code: Sometimes, it is referred to as the TUH 
(Technical University of Hannover). In this code, each 
pel is predicted from the nearest 3 pels in the previous 
line and the pel to its left in the current line. These 
4 pels form a state for that pel. For each pel, the code 
uses its state to predict its value. Â value of 0 or 1 
is inserted in its place in the current line depending on 
the prediction error. For each state (16 states) the run 
length between its prediction errors is coded using a 
truncated Huffman table. Each state has its own table 
which is constructed from statistics of type written text. 
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Among the two dimensional techniques, the TUH had the. biggest 

compression factor specially for documents filled with a lot of text. 

The three one dimensional methods had almost the same compression fac

tor, but MH had the biggest one. 

Two dimensional techniques yielded a considerable gain (average = 

16%) over one dimensional techniques only for high resolution. For low 

resolution, the difference between one dimensional and two dimensional 

techniques was minimal specially for text documents. 

Reference [7] discussed the features and design of a display proc

essor that can output both text and graphics to a display at the same 

time. The processor consisted of two data paths that operated in paral

lel. The data from both paths were logically ORed together and output 

to the display. 

The first path was the character generator that changed the text 

information from code (ASCII code and/or control code) to a bit map 

representation of the characters. The text format was variable so dif

ferent sizes could be output. This meant that text could have sub

script, superscript, invert, and other formats. The second path was 

the FAX generator that took compressed data of an image, decompressed 

it, and then sent it to the display so it could be superimposed on the 

output of character generator. 

The display resolution was 120 pels/in horizontally and 96 lines/in 

vertically. The images to be superimposed were assumed to have large 

empty areas (i.e., white color) and tended to have large numbers of 
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horizontal and vertical lines. The resolution of the scanner was the 

same as the one of the screen. The main goals were to have a fast 

method of decompression that could decode the compressed data without 

using any image buffer to store the complete picture, and the decoding 

method should be simple to be implemented. This was done by decoding 

the screen part by part from top to bottom then restarting this proc

ess again. The compression/decompression method used was a combination 

of block coding (refer to discussion of [8J below), simple run-length 

coding, and very simple prediction. Since this method was not designed 

to give an optimum compression factor, this review will not discuss it 

furthermore. 

Reference [9] described the Edge Difference Coding (EDIC) tech

nique. This technique looks at the current and previous line from left 

to right looking for the next two color changing pels, and then defines 

a state out of the following three states: 

1) State SI: One transition pel is in the current line 
and the other one is in the previous line. 

2) State S2: Both transition pels occur in the preceding 
line. 

3) State S3: Both transition pels occur in the current 
line. 

The states are then coded as follows: 

1) State 81: A code for the distance between the two pels 
would be sent. 

2) State S2: A code to signal that this state had happened 
would be sent. 

3) State S3: For each of the two transition pels, a code 
of the run length that ended before it would be sent. 
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Reference [10] is a short review of facsimile development and its 

current state from the point of view of speed, technologies used, and 

specific machines. It covers both analog and digital facsimile. One 

example of analog facsimile decreased transmission time by bandwidth 

reduction. Another analog facsimile decreased transmission time by 

scanning faster, on the sender and receiver, over white areas. No re

dundancy reduction algorithm was presented. 

Reference [11] discusses a system that uses a method called Combined 

Symbol Matching (CSM) for facsimile compression. The system works in the 

following two stages: 

1) Symbol Matching: In this stage, the system tries to find 
the basic symbols, e.g., alphanumeric characters, of the 
document. It scans for symbols till it finds one. Then, 
it will compare the found symbol with the library of sym
bols the system encountered before. The comparison uses 
some symbol features as a preliminary screening before it 
performs the bit map comparison. If a match is found, the 
symbol number in the library will be sent with its rela
tive location from the previous symbol. If no match is 
found, the symbol with its features and bit map will be 
added to the library and its bit map, width, height, and 
location will be sent to the receiver. Any symbol that is 
sent is replaced by white space. After all symbols are 
processed, the next step starts. 

2) Residue Coding: By residue, it is meant the document 
without the symbols sent in stage 1. This residue is 
coded by a two dimensional run-length coding and sent to 
the receiver. 

The compression factor found by this method for compressing the 

CCITT documents (resolution was 200 x 200 lines/in =8x8 pels/mm) 

is a 2 to 3 times READ's (Relative Element Address Designate) compression 

factor for document 5 and about the same for document 2. A pattern recog-
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nition was tried and resulted in compression factor greater than 250 

for compressing a business letter. 

We would like to make note of the following points: 

1) There were some overhead bits sent whether symbols 
were matched or not. No matching has higher overhead. 

2) The paper allowed for small error in matching the symbols. 
When it tried exact matching, a decrease of 50% in the 
compression factor was reported. 

3) The code was asynchronous. For each matched symbol, some 
overhead (e.g., shift up or down, distance to previous 
block) was needed to be sent, whereas for each non-matched 
symbol its size and its distance to the previous symbol 
were sent. For each line, the location of the first pel 
on the line and a flag to indicate if there was a symbol 
or not would be sent. These overheads complicate the cod
ing and decrease the compression factor. 

Reference [12] is an invited paper that gives an overview of digital 

facsimile coding techniques in Japan. The author classified the two 

dimensional information preserving codes into line by line coding and 

simultaneous coding of n lines. For simultaneous coding, he gave the 

following three examples: 

1) Mode Run Length Coding: It examines n lines at the same 
time. For each horizontal pel location, a state is defined 
depending upon the corresponding pels in the n lines. 
The code sent is the run-length code of the state with a 
variable length code for state to state transition. 

2) Coding by Zig-Zag Scanning: The pels are read in a zig-zag 
way (i.e., we jump from reading a pel in line i to reading 
another pel in line i+1, then we go back and read a new 
pel in line i, and so forth). A simple run length coding 
of the encountered bits does not work well. One technique 
to solve this problem is to predict the pel based on the 
three pels read before it. Then, the runs of correct and 
erroneous predictions are run length coded by a suitable 
code for each of them. 
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3) Cascade Division Coding: This is almost similar to the 
block coding in [8J. 

The author mentioned that recent trend had recognized line by line 

coding as the most favorable approach for two dimensional coding. He 

then gave the following examples of line by line coding: 

1) Two Dimensional Prediction Coding: It is one of the 
earliest proposals. Other coding methods 'such as Preuss' 
or the one in [4] had this method as a step within many 
steps. So, we will not discuss it. 

2) Relative Address Coding (RAC): It has the same general 
principals of PDQ and EDIC. The author suggested that 
although PDQ was known first, RAC was one of the landmarks 
in the history of facsimile. He attributed this to the 
fact that PDQ was not described as a practical coding 
scheme and no comparison with simultaneous coding scheme 
was available. But RAC was the first method to present 
the fact that line-by-line coding could, indeed, give 
better compression factor than simultaneous coding. It 
works by sending the code that specifies the positions 
of the changing elements in each line. The position of 
each changing element is sent by sending the code of the 
shortest following two distances: the distance between 
the current changing element and the previous one in the 
same line, or the distance between the current element 
and the nearest one in the line before it. 

3) Edge Difference Coding (EDIC): It was explained in our 
discussion of [9]. 

4) Coding by Rearranging Picture Elements ; This is divided 
into microscopic and macroscopic rearrangements. The method 
by Mounts et al. [5] is similar to but more advanced than 
the microscopic method the author reviewed. The macro
scopic rearrangement is done by finding the size of the 
characters and then arranging the characters of each line 
at its left. The arranged image is then coded by micro
scopic coding. 

5) Coding by Classified Pel (CP) Station: The basic idea is 
similar to Preuss' method; hence, we will not discuss it. 

6) Relative Element Address Designate (READ) Coding: It 
combines features of RAC and EDIC. A modification of it, 
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called Modified READ (MREAD), was accepted by CCITT as the 
standard code for two dimensional coding (refer to dis
cussion of [13]). 

Reference [13] describes the CCITT standard for one and two dimen

sional coding of documents for facsimile transmission. This standard 

has been drafted by Study Group XIV of CCITT as recommendation T.4 for 

what is called Group 3 facsimile machines. The elements of this stand

ard that are important to us are the following: 

1) Resolution: Each scan line on an A4 size document is 
divided into 1728 pels. The normal vertical resolution 
is 3.85 lines/mm. A higher vertical resolution of 7.7 
lines/mm is available as an option. 

2) Timing: Due to mechanical limitation of some machines 
(specially in the recorder part), a minimum transmission 
time is assured for each line so that the sender and the 
receiver can be synchronized together. 

3) The one dimensional code: It was decided to use a run-
length coding technique. Huffman coding was chosen because 
of its good compression factor. The paper reported that 
an experiment showed that the error recovery of Huffman 
code was comparable to other codes. Instead of coding 
the length from 0 to 1728, it was decided to limit the 
size of the table by using make-up words. Hence, this 
table was named the modified Huffman table. 

4) The two dimensional code: Several proposals were submitted. 
The committee chose READ (suggested by Japan) and added 
some modifications to it. Hence, the code is called the 
modified READ (MREAD). The committee found the compres
sion factor of READ to be the same as the one of other 
proposals. But READ was chosen because it has been imple
mented in a large number of commercial machines (Japan 
depends a lot on facsimile, refer to [12]). 

Then the paper also discussed the error recovery of both the one 

and two dimensional standards. This error recovery will not be discussed 

in this review. It also gave some simulation results of one and two 
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dimensional standards applied to the CCITT documents. 

Reference [14] derived the entropy of RAC method, a scheme based 

on non-Markovian grammar. It gave numerical examples to prove the cor

rectness of this derivation and the wrongfulness of another method, 

presented by other authors, which used 2nd order Markovian model. The 

error in the numerical values was an order of magnitude. 

Reference [15] is a modification of Preuss' method. In this method, 

after predicting the new line from the old one and finding the predic

tion errors for each state, the length to be coded is the length from 

the state first correct prediction, in a sequence consisting of the 

same states, to the current state error in this sequence. 

Reference [8] has many good points besides its coding method. So, 

we will present its steps in the following: 

1) It used a set of masks to remove notches and pinholes 
from the scanner output. The notches are mostly caused 
by the presence of imperfections in the scanning process. 
Removing these nothces improves the coding efficiency 
and, to a certain extent, improves image quality. 

2) For every single black pel between two or more whites, 
another one is inserted before it. Th.is is necessary 
so that no loss of information will occur after the next 
step. 

3) The image is subsampled in horizontal and vertical direc
tions by taking every other pel in these two directions. 
Hence, resolution is reduced by a factor of 4. 

4) The picture is divided into blocks of certain size called 
Initial Picture Block (IPS). If the IPB is not either 
all white or all black it is divided into 4 subpictures 
blocks (SPB) and a code of the division is sent. Each SPB 
is tested to check if it is all white or.all black, if no 
further division is made. When an all white or an all black 
SPB is found, a code for it is sent. The division con



www.manaraa.com

16 

tinues (if no all white or all black is found) till an 
SPB of size 4, called basic picture block (BPS), is 
reached. The BPBs are Huffman coded according to the 
position of the black pels among its 4 pels. 

5) The received data are used to construct the subsampled 
data which are interpolated to get the original data. 
Three methods of interpolation were used, namely, bi
linear, replication, and B-spline. Subjective tests were 
made and led to the conclusion that bilinear was almost 
the best of the three methods. An average of 20% de
crease in quality was noticed in these tests. 

6) Due to the interpolation, some extra points might be 
generated. Some restoration matrices were used with two 
of the interpolation methods to get rid of these points. 

The CCITT documents were scanned and compressed. The compression 

factors were compared with the ones of the MH (in original and sub-

sampled form) code and found to be better. But, if we compare the ra

tio of its compression factor to the one of the MH subsampled, it is 

found to be almost the same as between MREAD and MH (neither MREAD nor 

MH in this case is subsampled). So, no big gain in compression factor 

was due to the coding method itself, except maybe for document 2. The 

following three IPB sizes were used: 8x8, 16 x 16, and 32 x 32 pels. 

Bigger sizes were not used and the paper suggested that no further 

substantial increase in compression factor could be achieved in this 

way. The compression factor generally increased with the size increase 

of IPB. This is maybe due to the extra overhead bits needed in cod

ing smaller IPB sizes. 

Reference [16] is an example of progressive image transmission 

technique. It transmits defined pieces of the image till the whole image 

is transmitted. The benefit is that most of the details can be seen 
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faster and we may stop at a stage before sending the whole data and 

still get a good image. It transmits in 7 stages as follows: 

1) Every line numbered a multiple of 16 is transmitted 
with l/4th of the horizontal resolution. 

2) Another line out of 16 is transmitted at the same hori
zontal resolution. Each of these lines will be in the 
middle of two previously transmitted lines (i.e., in 
stage 1 we transmitted lines 1, 16, 32,... and in stage 
2 we transmitted lines 8, 24, 40,...). 

3) One of 8 lines is transmitted. These lines (numbered 
4, 12, 20,...) are in the middle of lines transmitted 
in stage 1 and stage 2. So, after stage 3, every fourth 
line is received at l/4th of the horizontal resolution. 

4) The horizontal resolution of transmitted lines is 
doubled. So, every fourth line is received at half reso
lution. 

5) One out of 4 lines (e.g., lines 2, 6, 10, 14,...) is 
transmitted at half resolution. 

6) The horizontal resolution for previously transmitted 
lines is doubled. So, at the end of this stage, all 
lines are with full resolution. These lines are the 
even lines. 

7) The odd numbered lines are transmitted at full horizontal 
resolution. 

The lines sent at each stage are coded using CCITT code (both one 

dimensional and two dimensional). Note, that for half horizontal reso

lution, each element is replaced by two pels on the screen. 

The paper suggested that stage 5 could be considered as the last 

stage for screen display since it requires 864 pels/line and 1188 

lines/page which is the resolution limit of high resolution monitors. 

Reference [17] is another progressive transmission technique. It 

has four stages. The image is sampled at l/4th of both the horizontal 
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and vertical resolutions. These samples are coded by one dimensional 

code and the codes are sent to the receiver that interpolates the miss

ing pels. In the next three stages, run length codes of the prediction 

errors of the remaining pels are transmitted. The prediction used pre

viously transmitted pels as the reference for prediction. 

Reference [18] presented an experimental system of facsimile 

communication using packet switched data network (PDSN). Facsimile 

is usually sent by telephone over public switched telephone network 

(PSTN). The paper gave the communication protocols and the needed 

processors for the experimental system. It also used the facsimile 

standard of group 3 machines. 

Reference [19] described features of an apparatus for fast docu

ments transmission over a 1.536 Mbits/s satellite link without re-

dundacy reduction. It presented new techniques for recording a sys

tem and its control procedure. 

Reference [20] presented error sensitivity of both the one and 

two dimensional facsimile coding standards. As expected, it was found 

that two dimensional coding was more affected by errors than the one 

dimensional coding. The paper discussed ways to stop the error effect 

from spreading throughout the page. 

Reference [21] described a facsimile compression system that uses 

a symbol matching technique. It used the same principal as in [11] with 

some modifications and presented more details of both the symbol match

ing and the features extraction. It had two more features to be ex-
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tractad than the features In [11]. It reported that these two features 

offered higher degree of symbol identification. The paper also showed 

that some signal modification techniques, applied before the two dimen

sional coding, resulted in a typical 14% improvement over regular two 

dimensional coding. 

Reference [22] used a symbol matching technique similar to the one 

in [11] and [21]. It was more enhanced, more optimized, and did not have 

residue coding. The main advantages of this new technique are the fol

lowing ; 

1) It matches not only symbols but also nonsymbol patterns. 
A nonsymbol pattern was defined as a pattern of certain 
size and window, and that has a black pel in it which is 
connected to other black pels outside the pattern. An 
example of this is parts of vertical and horizontal lines, 
the symbol is defined as a pattern that has connected 
black pels, is totally surrounded by white pels, and fits 
inside a window. This allows the method to efficiently 
code graphics. So, all black data are coded and no resi
due is left. This, of course. Implies a white back
ground. 

2) The symbols in a line are stored and arranged in a buf
fer before sending them to the receiver. This resulted 
in efficient coding. Example of this efficiency is that 
it arranges the same symbols after each other and does 
the following: the code of a repeated symbol (i.e., its 
library number) is sent first for its first occurrence. 
Then, for the coming consecutive occurrences of this 
symbol, we send a shorter code (3 bits) that signals the 
receiver that the library number is the same as before. 

3) It used a better criterion for symbol matching. 

4) The bit map was compressed by the CCITT two dimensional 
code before sending it. 

5) The coding of the data was more optimized and used vari
able length code for control information. 
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6) The library management was better and the library size 
was bigger. 

7) The compression factor ratio to the one of CCITT two 
dimensional code was often doubled and it reached 4.5. 
Compared to CSM, it was 20-80% bigger. 

8) For CSM and this method, the compression factor doubled 
between two versions of the same document that differed 
in resolution. 

9) By using mixed custom and programmed logic, it was able 
to send a document in one to two seconds at a 64 kbits/s 
rate. 

Note that the paper reported wrong matches (e.g., between 0 and 0, 

i and 1). 

Reference [23] describes algorithms used in the design of Image 

View Facility (IVF), a system/370 based software that permits the 

display and fast manipulation of binary images. This software allows 

images to be rotated, scaled (so it can be displayed at different reso

lutions), and compressed. The compression algorithm is a slight modifica

tion to MREAD. It modifies MREAD by dropping the end of the line se

quence, not inserting any fill bits, and using an end of the document 

sequence. The paper reported an increase of the compression factor by 

15 to 35% when these modifications were added to the case of not using 

them. The images to be compressed had the same horizontal resolution 

as CCITT standard, but the vertical resolution was slightly different 

(1100 and 2200 lines/page for low and high resolution, respectively). 

The decompression time was found to be 3 to 10 times faster than the 

authors anticipated. 
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From the above review, we come to the following conclusions: 

1) Line-by-line techniques are the best among the tech
niques that do not have any. symbol matching capability. 
Practically, there is no difference between the line-by
line techniques, so MREAD can be chosen because it is the 
standard. 

2) Line-by-line techniques, even though called two dimen
sional coding, are a limited form of two dimensional 
coding because first, these methods use no memory to 
remember the content of more than one reference line. 
Second, the coding line uses only a small part of the 
information available in the reference line. 

2.2. Review of the Lempel and Ziv Algorithm 

The investigation in Chapter 4 will show that the compression 

methods used in facsimile, except those that use pattern recognition 

or symbol matching techniques have two problems. First, they do not 

give the same compression factor they give in facsimile machines. 

Second, they are limited in the amount of redundancy they can recog

nize. Therefore, a new type of algorithms should be investigated. 

The universal coding algorithms are such algorithms. From these uni

versal coding algorithms, we chose the Lempel and Ziv algorithm which 

we Will review in the rest of this chapter. For a review of universal 

coding, refer to [24j-[31]. 

The Lempel and Ziv method for data compression looks at the data 

as a string of symbols. This string is a collection of smaller strings 

(substrings) of symbols (substrings may overlap). These substrings 

are generated from previously encountered substrings and some symbols. 

While this method scans the string, it builds a table of these sub
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strings and sends a code of the current substring. By finding the best 

substrings to represent the original string, we get a total size of the 

sent codes that is smaller than the size of the original string; hence, 

the data are compressed. 

In the following review, we will look at papers that dealt with 

the Lempel and Ziv method, including papers by the authors themselves. 

For the sake of following the method development, we look at the papers 

in their chronological order. 

The following abbreviations will be used: 

LZ = Lempel and Ziv 

LZ method (or theorem) = The Lempel and Ziv method (or 
theorem). 

LZW method (or theorem) = The Lempel, Ziv, and Welch method 
(or theorem). It is a modification 
and clearer representation of Lempel 
and Ziv's method done by Welch. 
This method is the one we will be 
using later. 

[_ X _j = The smallest integer bigger than x. 

In [32], Ziv proposed two forms of the probability of the block 

coding error. He then proved the existence of a universal constant code 

for which the error probability (using both forms) goes to zero as the 

code length goes to infinity. 

An algorithm for coding was given in [32]. It works as follows: 

- The message is divided into blocks of n letters each. 

-Each block is divided into n/k vectors (k-grams). 
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- Each vector (gram) is translated into a code which is a 
(k |_ log.L J ) vector, where L is the size of the source 
alphabet. 

- The code word of a block consists of nR binary letters 
(bits), where R is the coding rate. 

- The code is divided into two parts: 

a) a list of the distinct vectors in the n letters. 

b) a sequence of codes for the (n/k) vectors where each 
code is an address for a word in the list of distinct 
words in part a above. 

It was shown that the probability of an encoding error can be 

made small for output rates which are not larger than those of the op

timal codes that do depend on the statistics of the source. 

In [33], Lempel and Ziv looked at the complexity of finite se

quences. They proposed linking the complexity of sequences to a 

gradual build up of new patterns along each sequence from a finite 

alphabet. Works before this tried to define the complexity of the 

sequence by linking it to an algorithm by which the sequence is sup

posed to be generated. This definition of the complexity is not of

fered as a new absolute measure of complexity, which the authors be

lieve nonexistent. Rather, it evaluates the complexity from the point 

of view of a simple learning machine which, as it scans an n-digit se

quence (S = Sĵ  ŝ  . ...ŝ ) from the left to the right, adds a new 

word to its memory every time it discovers a substring of consecutive 

digits not previously encountered. The size of the vocabulary and 

the rate at which new words are encountered along S serve as basic 
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ingredients in the proposed complexity evaluation. 

The proposed measure is defined and put to test against a well-

established test case, namely, the de Bruijn sequences. Under this 

measure, it was shown that most sequences are complex. However, it was 

also shown that this measure was not very weak, by showing that it dis

carded ergodic sources with normalized entropy less than one. 

The paper laid down some definitions of sequences build up and 

sequences parsing. The "reproduction" and the "production" of a se

quence from its parts were defined. 

The complexity of S was defined as follows. Any nonnull sequence S 

can be parsed into its history as in H(S) = S(l, ĥ ) S(ĥ  + 1, hg)... 

S(h T + 1, h ). These m strings are called the components of H(S). 
m—1 m 

A component Ĥ (S) and the corresponding production step, S(l, ĥ  => 

S(l, ĥ ) are called exhaustive if S(l, ĥ _̂ ) -/-> S(l, ĥ ), where ==>, 

—>, and -/-> mean produce, reproduce, and do not reproduce, respective

ly. A history is called exhaustive if all of its components except the 

last one, are exhaustive. Every nonnull sequence has an exhaustive his

tory. 

Let's now define the following terms: 

c (S) = The number of components in a history H(S) of S. 
H 

c(S) = The proposed measure of complexity of the sequence S 

= min {ĉ (S)}. 

c (S) = The number of components in the exhaustive history 
 ̂ of S. 
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It was proved that c(S) = ĉ CS). An upper bound for c(S) was 

given in terms of n and a, where n is the code length and a the size 

of the input alphabet. It was shown that for almost all strings S, c(S) 

was close to this upper bound. 

The main idea from this paper that will be used in the following 

papers is the way strings can be built and their proposed complexity 

measure. 

Using the concept of string copying procedures introduced in [33] 

for building sequences from the parsing of its individual substrings 

with minimum number of steps, [34] introduced an algorithm for com

pressing the sequence without prior knowledge of its statistics. The 

effect of source statistics on the code manifests in building the 

string from previously encountered strings. 

The encoding algorithm proposed by [34] can be explained as fol

lows; 

- Let A be a finite alphabet of a symbols and S a sequence 

of letters from the alphabet (A S = ŝ  ŝ  ®l(s)' 

where l(s) = length of S). 

- S(i, j) = ŝ  Sj . 

- For each j, such that 0 ̂  j ̂  &(s), S(l, j) is called a 

prefix of S; S(l, j) is a proper prefix of x if j £ i(s). 

- For S(l, j) and i, where i ̂  j, let L(i) denote the largest 

nonnegative Z, where 2 ̂  &(s) -j, such that S(i, i+2-1) = 

S(j+1, j+&). p is the position within S(l, j) for which 
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L(p) = max {&(!)}; maximization is over i, where i is in 

the range [1, j]. 

- The substring S(j+1, S,+L(p)) of S is called the repro

ducible extension of S(l, j) into S and the integer p is 

called the pointer of the reproduction. So, although 

S(l, j) may reproduce, i.e., by copying, different exten

sions bigger than S(l, j), we choose the longest exten

sion to be the reproducible one. 

- The encoding is done by parsing S into S = ŝ  ŝ  ŝ ..., 

where ŝ  is the reproducible extension of ŝ  into S and 

the reproducible extension of ŝ  ŝ  into S, and so on. 

Each ŝ  is assigned a code ĉ  (ĉ  has a fixed length). 

- To get a bounded delay encoding, a buffer of finite length 

n is used to hold the last encountered symbols. The pars

ing is modified by limiting &(ŝ ) to a maximum value of L̂ . 

The parsing is done now by finding the reproducible exten

sion of B(n-Lg) into B, where B is the buffer content. 

The encoding proceeds as follows: 

1) Initialize the buffer to (n-L̂ ) zeros (the left side of 

the buffer) followed by the first symbols of the input 

string S (reading S from left to right). This content 

of B is Bĵ . 

2) Having determined B̂ , look for the reproducible extension 

E of B̂ (l, n-Lg) into B̂ (l, n-1). From E, get ŝ  = E.s 
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where s is the symbol next to E in For let = 

&(E) + 1. 

3) Let be the reproduction pointer used to determine ŝ , 

then the code word ĉ  for ŝ  is given by ĉ  = ĉ  ̂ĉ  ̂̂ j_3 

where : 

= Cp̂  - 1), so &(ĉ )̂ =|_ logg (n-L) J . 

=12 ° ̂ î - 1)' &(ĉ 2) = l_ log2 I-g J • 

ĉ  ̂and ĉ 2 are in radix a representation. 

ĉ 2 last symbol of ŝ  (i.e., ĉ  ̂~ B̂ Cn-Lg + . 

Send out the code ĉ . 

4) Shift (to the left) out of the buffer the symbols occupy

ing the first left positions while feeding in the next 

symbols from the source. 

5) Go to step 2 and continue till all the string S is encoded. 

Decoding is done by reversing the encoding process, it works as 

follows: 

1) Use a buffer of length (n-L̂ ), initializing it to zeros. 

This is B̂ . 

2) From ĉ ,̂  and determine p̂  and 

3) Store the content of B̂ (p̂ ). 

4) Shift to the left B̂  one time. Put the stored B̂ (p̂ ) 

in B (n-L ). 
i s 

5) Continue the storing, the shifting, and the filling 

for - 1 times. 
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6) Shift to the left one more time and then fill B̂ Cn-L̂ ) 

with the symbol s which comes from ĉ g. 

7) is now in B̂ (n-L̂ -il̂ , n-L̂ ) which is the far right 

positions of B̂ . 

8) Go to step 2 and continue till all the ĉ 's are decoded. 

Reference [34] derived bounds for block-to-variable and variable-

to-block coding designed to match a specific source. Then, it derived 

the bound for this universal coding and showed that it uniformly ap

proached the lower bounds for the two coding methods. 

Reference [35] defined the finite state encoder and decoder and 

restricted the discussion to this class of machines. This machine has a 

memory and encoder (or decoder) delay time. Two examples of this class 

were given, one of them was a block encoder. The block encoder was the 

one that was used in the rest of the paper. 

For faithful coding, under constant coding and decoding rate, the 

paper defined the quantity h(u) and showed that it played a role analo

gous to that of the entropy, although no statistical information was used 

to get h(u). The analogy came from finding that, using the coding method 

introduced in [32], the coder input did not equal the decoder output if 

h(u) > logg B, where S is the size of the output alphabet. h(u) is de

fined as a measure of the complexity of the sequence ; 

h(u) = lim hjCu), where hgCu) is given by 
5,-x»  ̂  ̂

logg Sh (u) = number of distinct I vectors in an in
finitive sequence u. 
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From h(u), the source complexity H(u) was derived. It was also 

shown that the entropy of a source equaled its complexity, H(u), for an 

ergodic source, and the expected value of the complexity for a station

ary source. 

It was also shown that a normalized version of the Lempel-Ziv 

complexity, defined in [33], was a lower bound on H(u). 

Reference [36] took the concept of universal coding introduced in 

[34] and applied it to variable rate coding. The way it parses a string 

is the same, but the way it codes individual parameters is different. 

The paper also defined the compression ratio of a finite state encoder 

in terms of the block length, the code length, and the size of the 

source symbols. From the compression ratio, the minimax p(X) is defined 

as the finite state compressibility of a sequence x (as block length 

goes to infinity and number of states goes to infinity). 

Reference [36] also showed that p(x) had a lower bound in terms of 

the normalized Lempel-Ziv complexity (defined in [33]). p(x) also has 

a role analogous to that of the entropy (as did the quantity HC.) defined 

in [35]). 

Reference [37] showed that there existed an asymptotically optimal 

universal coding scheme (the encoder is assumed to be an information 

lossless finite state encoder, whcih is defined in the paper) under 

which the compression ratio of a string x tended in the limit to the 

compressibility p(x) for every string x. 

A direct application of LZ method, as presented in [33], needs 
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2 
calculations of 0(n ), where n is the string length. To overcome this 

problem, [37] used an algorithm of tree construction due to McCreight. 

The parsing of the string is done by building a compact tree which is 

linear in n. Then, McCreight algorithm makes it possible to construct 

this tree in a time linear in n, i.e. 0(n). 

Using this method and a universal presentation of integers yielded 

a universal linear variable-to-variable encoding scheme. The compres

sion ratio of this scheme was shown to be optimal for ergodic sources 

as the length of the input string goes to infinity. 

Reference [38] looked at the LZ algorithm as an example of data 

compression via textual substitutions or macro coding. It classified 

macro coding into two classes, namely, external and internal macro 

schemes. Each class is divided into subclasses. LZ method falls under 

the subclass called original pointer macro coding in the internal macro 

scheme class (an original pointer is defined as a pointer that points to 

a substring of the original string). 

Reference [38] then related the performance of the LZ method to 

other classes showing that the worst case performance of LZ did not com

pare favorably with other schemes. It also mentioned that LZ was asymp

totically optimal for ergodic sources as the source length tended to 

infinity, but for individual finite strings it could be far from optimal. 

Reference [39] showed that for parsing strings, the greedy dis

sectors, such as LZ, were optimal for some classes of strings but not 

for others. 
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Reference [40] showed that LZ method could be represented by an 

incomplete parsing tree. It then showed that the working of LZ could 

be explained by an equivalent symbolwise model. This representation 

gave more insight on the work of LZ and why it compresses the strings. 

In [41], Welch gave a modification of LZ method and showed more 

clearly how to use it. We delay discussing it to a later chapter to 

avoid repetition. 

Reference [42] looked at three compression schemes, namely, LZ 

method, arithmetic coding, and Huffman coding. It gave some bounds 

for each of them and did some simulation to compare them. The simula

tion gave better results than the bounds did. It also gave the follow

ing interesting results: 

1) For the data that occupy a small size memory (less than 
1KB), it is recommended to use the arithmetic coding. 
For the data that occupy a medium size memory (few KB), 
the Huffman code is the best. For the data that occupy 
a big size memory (tens of KB), the LZ coding (which it 
called universal coding) is better than the other two. 

2) The cross point between the algorithms, as memory varies, 
depends on the source entropy. For instance, if memory 
equals 1KB the cross point between the arithmetic and the 
Huffman coding is at entropy equal to 0.19. This means 
that for a data of size 1KB, Huffman coding is better 
for entropies bigger than 0.19. 

Reference [43] gave a modified LZ coding which finds out the basic 

building blocks (words or sentences) of the language and synchronizes 

itself on these blocks. It achieves this by searching for a new string 

match then letting this match be the extension of the string method in 

the last previous search. The memory requirement is the same as in 
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the LZW algorithm but it requires complex programming to solve some 

special cases. 

A simulation result showed that this algorithm compression factor 

was slightly less than the one of LZW for an English text and a Fortran 

source code and bigger for a pseudo random sequence. An interesting 

note, which [43] did not mention, is that this algorithm gave better 

results as the entropy increases (the best result was for the pseudo 

random sequence). Using a variable coding for the output improved the 

compression slightly (6%). 

Reference [43] showed that for the basic LZ the binary representa

tion is better than the one byte representation because the new symbol 

is smaller in the first case (one bit vs. 8 bits). This problem can 

be solved by including the new symbol as first symbol of new string 

(as in LZW). 

It also showed that choosing the basic building blocks (i.e., 4, 8, 

16 bits) as the symbols was better than the others (e.g., 3 bit symbols). 

In [44], Lempel and Ziv tried to extend their universal code to 

picture compression. They did this by using one of the color filling 

algorithms to scan within subblocks of the picture. The intuition about 

this is that this way of scanning the picture will produce for each block 

a string that is more suitable to the compression than the string of a 

normal scan. The order of moving from a subblock to another also tries 

to exploit this more by avoiding the move to a subblock that is far in 

the picture but next in order in a normal scan. It does this by moving 
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forward then backward (or upward then downward) instead of moving for

ward from one end to another then retracing to a lower block to start 

a new block. 

Our intuition is that this method may not be suitable to our 

specific goal because of the following reasons: 

1) It works on square pictures; but our way of dividing 
the picture into blocks according to their class of 
content, will mostly produce rectangular blocks instead 
of squares. 

2) It is suitable for blocks of colors, but for graphics 
or complex colors we think it will not work much better 
than normal scanning will. 

Due to time limitations, this method will not be checked. 
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3. CREATION OF THE IMAGE DATA BASE 

3.1. Classification of the Library 

Informational Material 

A survey was done to get an idea about the type of information 

contained in typical library materials. The subject of this survey was 

selected magazines that are thought to be representative of the other 

magazines in the library. The magazines were chosen because they will 

be more used in the electronic library than other materials like books. 

Besides that, magazines contain more colors and photos. Hence, they oc

cupy more memory in storage and take longer transmission time. 

The results of the survey are shown in Table 3.1. Under each class 

of data in this table, column "b" represents the percentage of the size 

of this class to the size of the whole document. For all classes ex

cept "text" and "space" classes, column "a" is the percentage of pages 

containing that class to the total pages of the whole document. Column 

"a" in "text" is the percentage of pages containing text only to the pages 

of the whole document. It is meaningless to have a column "a" in the 

class "space" because all pages contain some amount of space. 

The average of each column in Table 3.1 was calculated. It showed 

that text represented 57% of the data and space represented 13.5% of 

the data. Black and white photos, colored photos, and graphs classes 

represented no more than 10% each. The percentage of pages containing 

only textual data represented an average of 33% of the total pages in 

each document. 
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Table 3.1. Results of the library data survey 

Periodical 
% text % space % b/w photos 

Periodical a b b a b 

Polymer Science 30.00 57.00 20.00 1.20 0.30 
Bios 62.00 66.00 9.20 18.80 11.30 
The American Biology 
Teacher 29.00 62.00 11.00 30.80 7.50 

Mechanical Engineering 14.30 44.30 10.70 30.00 9.80 
Business Review 19.60 63.80 17.30 27.00 7.60 
Welding Journal 3.70 40.40 9.70 38.20 11.30 
Ergonomics 55.80 70.70 16.20 0.96 0.50 
Aerospace 0.00 40.70 13.50 15.00 0.70 
Sight and Sound 1.30 57.20 5.70 80.00 24.90 
Nebraska Farmer 0.00 28.50 13.70 57.30 17.80 
Political 
Methodology 79.00 64.00 26.00 0.00 0.00 

National Journal 29.00 68.00 14.00 54.00 14.00 
Higher Education 79.00 77.00 8.90 0.00 0.00 
International 
Journal of Computer 
And Information 
Science 59.00 65.00 14.00 0 .00  0.00 

AVERAGE 32.98 57.47 13.56 25.23 7.55 
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% color photos % graphs % tables Sum 
a b a b a b b 

2.50 2.50 61.00 16.60 5.80 0.66 97.06 
5.00 5.00 12.50 6.70 3.80 1.00 99.20 

11.80 7.90 57.00 10.00 1.50 0.30 98.70 
41.40 26.00 35.00 8.50 0.00 0.00 99.30 
2.20 2.20 43.00 6.00 3.30 0.70 97.60 
39.70 23.80 69.90 12.30 6.60 1.60 99.10 
1.90 1.60 31.70 6.40 13.50 3.40 98.80 

100.00 45.00 20.00 0.70 0.00 0.00 100.60 
1.30 1.20 73.80 11.10 0.00 0.00 100.10 
41.20 23.00 90.00 16.90 0.00 0.00 99.90 

0.00 0.00 6.00 5.00 15.00 9.00 104.00 
2.00 0.40 0.00 0.00 6.00 • 1.00 97.40 
0.00 0.00 7.00 4.00 9.70 6.00 95.90 

0.00 0.00 25.00 12.00 11.00 5.00 96.00 

17.79 9.90 37.99 8.30 5.44 2.05 98.83 
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Ifhat is meant by the class "space" is the space that separates 

different types of blocks in each page of each magazine. For example, 

the space between lines and the space in graphs are not counted as space 

in our classification. 

3.2. Device Description 

The IBM PC class of computers has many resolutions that depend on 

the graphics board used. The most common boards are: 

a) The Color Graphics Adapter (CGA). 

b) The Enhanced Graphics Adapter (EGA). 

The CGA has many modes of resolution. Some of these modes are for 

text only and some are for graphics and text. Since we need to display 

graphics, we chose the graphics modes. From these graphics modes, the 

mode with the highest number of displayed pels is mode 6 which can dis

play 640 pels/line x 200 lines/screen x 2 colors/pel, where the two 

colors are black and white. 

The EGA has the same modes of the CGA and more. The highest resolu

tion it can display is 640 pels/line x 350 lines/screen x 16 colors/pel. 

At the time this research started, the CGA was widely available 

while the EGA was at its second year and starting to be popular. This 

fact plus the fact that the investigation we did in section 3.1 showed 

that most of the library documents consisted of text and graphics, led 

us to choose the CGA at the start. The goal was to investigate applying 

the compression algorithms in the CGA with the text and graphics 
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screens. Then, based on the result we get from this investigation, we 

will investigate the modification of the algorithms in the EGA. Due to 

time limitations, this research will not investigate the algorithms in 

the EGA; furthermore, in a library system we envision that the data will 

be sent in CGA mode 6 unless colors or photos are needed. This is due 

to the following reasons: 

1. The CGA resolution is adequate and the size of the screen 
data is l/7th of the size of the EGA screen. 

2. If more than two colors are needed, the system can send 
these data in EGA mode after signaling the receiver of 
the change in resolution. 

3. Although the EGA can display more text lines per page 
than the CGA, the quality of the text is good only if it 
displayed the same number of lines (25 text lines/page). 

In the following part of the thesis, the resolution of the IBM PC 

is assumed to be CGA mode 6 unless otherwise specified. The compression 

and decompression times were measured on an IBM PC AT (6 MHz). Note that 

the maximum resolution of the new class of IBM machines (PS/2) is 640 x 

480 X 256. 

3.3. Procedures of the Research 

The aim of this research is to experiment with the compression 

algorithms presented in the next chapters at the resolution described in 

the previous section. The following points will be examined in the 

research: 

1. The compression factors calculated at this resolution 
using the different algorithms. 
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2. The class of images for which each algorithm works the 
best among the other algorithms. 

3. The effect on the compression factor of dividing the 
screen into small blocks then compressing each block 
alone. 

4. For the low resolution of the PC display, the effect on 
the compression factor in case of changing the method, 
its code, or both. 

A very important point that should be kept in mind is the fact 

that, in the regular screen format, the background of the computer 

screen is black and the foreground is white. In regular papers, the 

reverse is true. Throughout this thesis, we will use the regular 

screen format unless otherwise specified. 

3.4. Creation of the Image Data Base 

The resolution of the IBM PC is a lot smaller than the CCITT low 

resolution (1728 x 1128). There are no standard images generated in 

this resolution available. To overcome this unavailability, we had to 

build our own image data base that represents the type of data we usual

ly find in a library and that needs to be transmitted. The following 

guidelines were used in designing the data base: 

a. We tried to match the screen size to the actual size of 
the data to be transmitted by letting each screen take what 
is equivalent to 25 lines in an A4 size paper. So, a paper 
with graphics that are equal in height to 50 lines will re
quire two screens to represent it. Note that the text we 
generate will also differ from the text in a regular paper 
due to the fact that the spacing between lines is zero in 
CGA mode 6. In fact, in the graphics screen, each charac
ter takes 8x8 pels block and these blocks have no spacing 
between them. However, this does not mean that the charac
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ters will be connected to each other because in each 
character block the bottom or the upper line is empty. 

b) For the horizontal resolution, we limited the part we 
took from the documents to the equivalent of 80 charac
ters/line of text because this is the limit of the PC 
screen. 

c) The CCITT standard documents do not represent very well 
the data we want to transmit. So, we created many other 
samples to be tested. 

Appendix A contains a copy of this image data base. 

3.5. Classification of the Image Data Base 

To help us investigate the compression algorithms applicability in 

the screen and the best way to use them, images for the following classes 

of screens were generated: 

1. Screens that imitate CCITT documents 1, 2, 4, 5, 6, and 
8 .  

2. Screens that are full of graphics data. 

3. Screens that are full of text. 

4. Screens that are mixed of both text and graphics and 
sent as whole screens. 

5. Screens that have one or more blocks of graphics. 

6. Screens that can be considered as blocks of text and 
graphics and sent as blocks. 

7. Screens that are not typical. 

8. Screens to test power or limitations of the methods. 

By having this extensive data base, we hope it will be a good test 

for the compression algorithms. From now on, each class will be as

signed a group number according to its order above. 
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3.6. Results to be Analyzed 

The images in the data bases were compressed then decompressed. 

The results of compressing each screen are: 

a. Compression factor = original size/compressed size. 

b. Compression time. 

c. Decompression time. 

The results of compressing the imitations of the CCITT documents 

were compared to published results of compressing these documents using 

CCITT standard techniques at facsimile resolution. To make the com

parison more meaningful, the compression factor of compressing each 

document and not its parts was used in the comparison. This compression 

factor was normalized by dividing it by the compression factor of docu

ment no. 1. 

3.7. Implementation Considerations 

The following points are some general remarks about the code we 

wrote to simulate the algorithms: 

1. The byte switching that the 8088 family uses makes ac
cessing the screen buffer confusing if we want to access 
it as words. The reason of accessing words instead of 
bytes is to speed up the program execution. 

2. An earlier version of the program for the one dimensional 
facsimile techniques translated the bits of the current 
line into a string where each pel is represented by a byte 
and the program was written to use this feature. Then 
the program was changed to its current form where the pels 
are accessed as bits in a word. Although the words and 
bits form is more complex, it gave about 40% decrease in 
compression time. This is due to the fact that the time 
spent in converting bits to string was a waste in the 
string version. 
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Writing the code in an optimized manner makes a big dif
ference in both the size and speed of the final executable 
code. An optimization of the code resulted in 45% increase 
in speed of compression. 

At early stages of the development, a big consideration 
was given to code optimization. Starting from the coding 
of the two dimensional technique, the big emphasis in op
timizing was relaxed because it needed a lot of trials in 
order to find the most optimum form. This does not mean 
that the code was not optimized from that point on. It 
only means that we no longer try different formats of the 
code. 

Most of the code was written in C language, but part of it 
was written in assembly language under the following con
ditions : 

a) This part of the code is executed a lot of times or 
it has a lot of looping. So, writing it in assembly 
language increases the speed of execution. 

b) The assembly language provides some commands that en
hances the program, and no corresponding powerful com
mands are available in C language. Examples of these 
commands are the string instructions of the assembly 
language which provide a speed that cannot be reached 
in C because these string instructions are implemented 
by the hardware. 
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4. FACSIMILE CODING 

4.1. Introduction 

In this chapter, we will look at the use of the CCITT standard 

one- and two-dimensional facsimile compression techniques for compress

ing images in the data base described in section 3.4. The two standards 

were chosen because of the following reasons : 

1. They are from the best (each in its dimension) techniques 
discussed in the literature. 

2. By using them, we may provide the ability to connect the 
computer to facsimile machines. 

3. A chip that has these two standards built in it was intro
duced. So, building a hardware system that uses these 
two standards is feasible. 

4. To the best of our knowledge, no report of using these 
two coding techniques has been done for the same resolu
tion we are working at. 

The CCITT coding techniques have some features that are unnecessary 

to us, so we decided to drop these extra features. This resulted in our 

code not being exactly the CCITT code. In the following sections, we 

will describe the actual implementation of the codes and then give the 

corresponding results. 

4.2. One Dimensional Compression Technique 

For each line, this technique reads the runs of black and white, 

looks up the code of each run from the modified Huffman table, and then 

sends the code to the receiver or puts it in the compression buffer. 

This process is then repeated for each line till all lines are coded. 
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The steps of the compression algorithm are the following: 

1. Initialize lines counter. 

Start on the first line. 

2. Read first pel (pel̂ ) in the line. 

If (pelg is white) 

{insert the code of a black run of length zero in 
the compression buffer}. 

Set color to the color of pel̂ . 

pels counter = 1. 

3. While (the color does not change and end of line is not 
reached) 

{increment the pels counter}. 

4. Put the code of the run of the current color in the com
pressed buffer. 

5. If (the line ended) 

{if there are more lines} 

{"start on next line" GO TO 2} 

else 

{"the screen ended" GO TO 6} 

else 

{"the color changed within a line" GO TO 3}. 

6. END. 

The steps of decompression algorithms are the following: 

1. Initialize lines counter. 

Start on the first line. 
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2. Initialize indexes of the compression and decompression 
buffers. 

3. Read the compression buffer from left to right starting 
at its index and find the first bits to match a code for 
a black run. 

4. Put the run corresponding to the matched code in the 
decompression buffer and adjust its index. 

Increment the index of the compression buffer by the length 
of the matched code. 

5. If (decompressed data filled a line) 

GO TO ENDLINE. 

6. Read the compression buffer from left to right starting 
at its index and find the first bits to match a code for 
a white run. 

7. Put the run corresponding to the matched code in the de
compression buffer and adjust its index. 

Increment the index of the compression buffer by the length 
of the matched code. 

8. If (decompressed data filled a line) 

GO TO ENDLINE. 

9. GO TO 3. 

10. "ENDLINE": Decrement lines counter. 

If there are more lines GO TO 2. 

11. END. 

For more details of the code, refer to Appendix B. This implemen

tation of the code has the following differences with the CCITT standard 

for one-dimensional coding: 

1. No minimum scan line time is assumed. Hence, no fill bits 
are used. 
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2. End of line code is not used. The compressor sends the 
size of the block at the beginning of the data, then the 
decompressor uses these data to step from line to line. 

3. The screen has horizontal resolution of 640 pels. Hence, 
the run of 640 pels was used as a terminating word not as 
a make-up one. Without this, it will be necessary to send 
the code of a run equal to zero pels after the code for a 
run equal to 640 pels is sent. 

The differences 1 and 2 above arose because the CCITT version of 

these points allows the compressor and the decompressor to synchronize 

and/or allows for mechanical limitations. These limitations are not 

present in the electronic library system. Hence, they will be disre

garded. The end of line code is used in the two CCITT standards to 

correct the data if necessary. We assume that the communication soft

ware performs the error correction or that the communication channel is 

error free. Hence, no code for error correction is inserted. 

The results of applying the one dimensional coding technique to the 

image data base are presented in Tables 4.1-4.8. 

4.3. Two Dimensional Compression Technique 

The CCITT two dimensional coding technique, titled MREAD, was used. 

The general concept of MREAD is that the changing elements in the coding 

line and the reference line take one out of three states. The code sent 

is optimized for these states. MREAD has the same concept we described 

in our review of [9]. For a complete description of MREAD, refer to 

[13]. In the following discussion, we will use terms and notations de

fined in [13]. 
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Table 4.1. Results of compressing images in Group 1 using the CCITT 
one dimensional compression technique 

Theort. Comprs. Dcmprs. 
Comprs. comprs. C.F. time time 

Image xl yl x2 y2 factor factor T.C.F. (1/lOOth s) (1/lOOth s) 

docla 0 0 639 199 8.03 9.27 0.87 214 99 
doclb 0 0 639 199 3.47 4.49 0.77 280 242 
doclc 0 0 639 199 15.15 20.62 0.73 192 50 
doc2a 0 0 639 199 9.00 12.74 0.71 203 77 
doc2b 0 0 639 199 8.12 10.91 0.74 209 83 
doc2c 0 0 639 199 12.67 16.34 0.78 198 61 
doc4a 0 0 639 199 1.96 2.56 0.77 368 428 
doc4b 0 0 639 199 1.67 2.15 0.78 395 500 
doc4c 0 0 639 87 1.74 2.24 0.78 170 214 
docSla 3 0 514 199 3.80 4.45 0.85 209 165 
doc51b 0 0 511 199 5.52 6.61 0.84 187 110 
doc51c 0 0 511 114 9.49 16.72 0.57 93 33 
docSra 0 0 479 199 2.46 2.93 0.84 237 247 
docSrb 0 0 479 199 6.19 8.13 0.76 165 88 
docSrc 0 0 479 114 2.86 3.53 0.81 126 121 
doc6a 0 0 639 199 4.77 7.01 0.68 231 149 
doc6b 0 0 639 199 6.83 13.15 0.52 214 104 
doc8 0 0 639 199 5.61 9.64 0.58 203 93 

AVERAGE 6.07 8.53 0.74 216 159 

Ĉ.F. = Comprs. factor. 
T.C.F. = Theort. comprs. factor. 
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Table 4.2. Results of compressing images in Group 2 using the CCITT 
one dimensional compression technique 

Theort. Comprs. Dcmprs. 
Comprs. comprs. C.F. time time 

Image xl yl x2 y2 factor factor T.C.F. (1/lOOth s) (1/lOOth s) 

frnchSa 0 0 639 199 5.23 7.34 0.71 220 127 
flowchrt 0 0 639 199 4.18 5.39 0.78 247 176 
electrc 0 0 639 199 2.05 3.44 0.60 318 352 
ordrfrm 0 0 639 199 4.13 5.37 0.77 258 192 
frnchla 0 0 639 199 5.90 7.92 0.74 231 132 
doc2a 0 0 639 199 9.00 20.74 0.43 204 77 
doc2b 0 0 639 199 8.12 10.91 0.74 208 88 

AVERAGE 5.52 8.73 0.68 241 163 

Table 4.3. Results of compressing images in Group 3 using the CCITT 
one dimensional compression technique 

Theort. Comprs. Dcomprs. 
Comprs. comprs. C.F. time time 

Image xl yl x2 y2 factor factor T.C.F. (1/lOOth s) (1/lOOth s) 

romtxt 0 0 639 199 1.46 1.91 0.76 434 582 
frnch2a 0 0 639 199 2.07 2.66 0.78 351 401 
pagel 0 0 639 199 3.19 4.04 0.79 291 258 
docl-2 0 0 639 199 3.38 4.43 0.76 280 248 
cprog 0 0 639 199 5.56 7.22 0.77 236 149 
doclb 0 0 639 199 3.47 4.49 0.77 280 242 
doc4a 0 0 639 199 1.96 2.56 0.77 362 428 
doc4b 0 0 639 199 1.67 2.15 0.78 396 500 

AVERAGE 2.84 3.68 0.77 329 351 
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Table 4.4. Results of compressing images in Group 4 using the CCITT 
one dimensional compression technique 

Theort. Comprs. Dcmprs. 
Comprs. comprs. C.F. time time 

Image xl yl x2 y2 factor factor T.C.F. (1/lOOth s) (1/lOOth s) 

pdraw3 0 0 639 199 4.09 4.84 0.85 253 192 
sciencel 0 0 639 199 3.58 4.12 0.87 263 214 
science2 0 0 639 199 2.69 3.21 0.84 308 297 
docSla 0 0 514 199 3.80 4.45 0.85 209 165 

AVERAGE 3.54 4.16 0.85 258 217 
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Table 4.5. Results of compressing images in Group 5 using the CCITT 
one dimensional compression technique 

Theort. Comprs. Dcmprs. 
Comprs. comprs. C.F. time time 

Image xl yl x2 y2 factor factor T.C.F. (1/lOOth s) (1/lOOth s) 

opampl 160 0 6S9 158 5.80 7.31 0.79 231 71 
opamp2 0 0 6S9 190 5.35 6.47 0.83 225 137 
ecll 72 7 551 166 8.88 12.51 0.71 121 44 
ecl2 0 7 607 190 8.09 10.84 0.75 181 77 
netwrk 16 9 62S 187 5.10 7.58 0.67 192 121 
tablel 0 IS 639 147 3.17 3.80 0.83 181 159 
usai 56 24 519 164 10.43 17.24 0.60 99 33 
doc51a S6 48 483 115 5.79 9.06 0.64 55 27 
doc5rb 28 4S 475 169 5.31 7.19 0.74 105 61 
lotssin 88 22 631 165 3.00 5.08 0.59 171 160 
frnch3b 0 0 639 71 5.40 7.96 0.68 77 44 
barchrt SO 10 SSS 145 4.50 6.77 0.66 71 44 
barchrt SO 10 237 60 2.45 5.48 0.45 22 22 
barchrt S2 68 335 145 5.57 9.70 0.57 38 27 
test2 120 15 455 120 5.08 6.79 0.75 60 38 
tests 120 15 455 120 4.54 5.33 0.85 66 43 
test4 120 15 455 120 4.05 4.72 0.86 66 49 
tests 120 15 487 120 3.95 4.41 0.90 77 60 
diagl 70 26 453 120 5.83 7.92 0.74 66 33 
diag2 42 42 393 108 7.03 9.20 0.76 38 17 
diagS 210 18 449 131 1.07 4.02 0.27 99 138 
diag4 108 14 443 88 5.03 6.13 0.82 44 28 
diagS 68 5 467 102 7.44 16.89 0.44 60 28 
diagSs 208 28 479 98 5.46 11.85 0.46 33 17 
diagô 40 9 279 76 5.03 10.84 0.46 33 22 
diagô 22 109 405 141 6.35 15.21 0.42 22 11 
diagô 22 9 405 141 8.29 19.13 0.43 82 33 
netwrk2 1S6 62 391 136 2.88 5.30 0.54 38 33 
pdrawl 0 70 287 150 4.09 4.91 0.83 44 33 
usa2 202 26 329 61 3.27 3.94 0.83 11 11 
usa2 164 92 403 162 5.38 7.46 0.72 33 16 
doc51b 24 19 471 51 7.62 17.35 0.44 22 11 
sciences 0 80 127 196 2.94 3.46 0.85 32 33 
sciences 456 12 535 66 2.29 2.90 0.79 11 11 

AVERAGE 5.19 8.38 0.67 80 50 
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Table 4.6. Results of compressing images in Group 6 using the CCITT 
one dimensional compression technique 

Cmprs. Dcmprs. 
Comprs. time time 

Image xl yl x2 y2 factor (1/lOOth s) (1/lOOth s) 

pdrawl.pic 0 0 559 150 3.96 170 132 
pdraw2.pic 0 0 575 152 3.36 186 159 
pdraw3.pic 0 0 575 191 3.56 230 192 
pdraw3.pic 16 0 559 39 1.48 72 99 
pdraw3.pic 0 70 287 150 4.09 50 33 
pdraw3.pic 380 77 571 152 2.66 33 33 
pdraw3.pic 48 160 575 191 3.65 33 33 
pdraw3.pic 0 0 639 199 4.09 258 192 

Compression factor using 4 blocks 3.36 

Table 4.7. Results of compressing images in Group 7 using the CCITT 
one dimensional compression technique 

Theort. Comprs. Dcmprs. 
Comprs. comprs. C.F. time time 

Image xl yl x2 y2 factor factor T.C.F. (1/lOOth s) (1/lOOth s) 

bignames 0 0 639 199 1.38 2.10 0.66 429 566 
sun 0 0 639 199 2.62 3.68 0.71 297 291 
hazard 0 0 639 199 2.38 3.44 0.69 307 324 
manscl 0 0 639 199 1.96 2.62 0.75 340 390 
mansc2 0 0 639 199 2.74 3.48 0.79 285 275 
fig2 0 0 639 199 1.41 6.31 0.22 346 439 
fig4 0 0 639 199 2.86 6.76 0.42 275 247 
fig6 0 0 639 199 3.43 4.85 0.71 263 214 
fig7 0 0 639 199 5.04 7.71 0.65 231 143 
fig8 0 0 639 199 3.10 4.50 0.69 275 242 

AVERAGE 2.69 4.55 0.63 305 313 
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Table 4.8. Results of compressing images in Group 8 using the CCITT 
one dimensional compression technique 

Theort. Comprs. Dcmprs, 
Comprs. comprs. C.F. time time 

Image xl yi x2 y2 factor factor T.C.F, . (l/lOOth s) (l/lOOth s) 

blok3 0 0 639 199 27.22 134.12 0.20 176 22 
blok6 0 0 639 199 4.63 16.11 0.29 225 143 
boxes 0 0 639 199 12.12 51.39 0.24 192 61 
lines 0 0 639 199 7.27 48.38 0.15 214 104 
testl 120 15 455 120 10.91 56.29 0.19 54 17 
usamap 72 28 551 164 (Comprs ;. factor < 1, not applicable) 

AVERAGE 12.43 61.26 0.21 172 69 
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Reference [13] gave details and a flowchart of the compression and 

we provided details of the process of decompression in the flowchart in 

Figure 4.1. 

4.4. MREAD Implementation and Results 

The code for MREAD is presented in Appendix C. A close look at 

the code combined with our experience while debugging the program sug

gests that the code matching part might be improved in speed if we write 

the matching in a tree-like form, i.e., using IF() THEN {} ELSE {} and 

nesting these conditions. Such a code was tried and gave an average of 

9% decrease in decompress time. 

MREAD suggested using k = 2 to help in recovering from errors which 

decrease the compression factor. If no error recovery is needed, k = 

=0 can be used. This will give higher compression factor. To get k = 

it is only necessary to let KFACTOR be 201 in the programs listed in 

Appendix C. 

MREAD was modified by the modification described for the one di

mensional coding technique in section 2. Note that although MREAD has 

minimum scan line time specification, it has no fill bits. 

The results of compressing the data base images for the case of 

k = 2 and k = are given in Tables 4.9-4.16 and Tables 4.17-4.24, 

respectively. The times are obtained by using a tree-like code. 
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Figure 4.1. Flow diagram of the decompression process using 
the CCITT two dimensional compression technique 
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Table 4.9. Results of compressing images in Group 1 using the CCIIT 
two dimensional compression technique with k = 2 

Image xl yi x2 y2 
Comprs. 
factor 

Comprs. 
time 

(1/lOOth s) 

Dcmprs. 
time 

(1/lOOth s) 

docla 0 0 639 199 8.71 286 165 
doclb 0 0 639 199 3.41 400 325 
doclc 0 0 639 199 17.21 248 104 
doc2a 0 0 639 199 11.04 258 126 
doc2b 0 0 639 199 9.98 264 138 
doc2c 0 0 639 199 15.27 248 110 
doc4a 0 0 639 199 1.89 544 522 
doc4b 0 0 639 199 1.60 598 604 
doc4c 0 0 639 87 1.67 259 258 
docSla 3 0 514 199 3.96 291 220 
doc51b 0 0 511 199 6.33 247 154 
docSlc 0 0 511 114 12.70 120 55 
docSra 0 0 479 199 2.45 346 307 
doc5rb 0 0 479 199 7.67 220 127 
doc5rc 0 0 479 114 2.87 181 154 
doc6a 0 0 639 199 6.39 308 181 
docSb 0 0 639 199 9.62 274 143 
docS 0 0 639 199 9.14 259 132 

AVERAGE 7.33 297 213 
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Table 4.10. Results of compressing Images In Group 2 using the CCITT 
two dimensional compression technique with k = 2 

Comprs. Dcmprs. 
Comprs. time time 

Image xl yl x2 y2 factor (1/lOOth s) (1/lOOth s) 

frnchSa 0 0 639 199 7.29 297 176 
flowchrt 0 0 639 199 4.75 335 231 
electrc 0 0 639 199 2.04 478 445 
ordrfrm 0 0 639 199 4.29 362 269 
frnchla 0 0 639 199 6.36 313 198 
doc2a 0 0 639 199 11.04 258 126 
doc2b 0 0 639 199 9.98 264 137 

AVERAGE 6.54 330 226 

Table 4.11. Results of compressing Images In Group 3 using the CCITT 
two dimensional compression technique with k = 2 

Comprs. Dcmprs. 
Comprs. time time 

Image xl yl x2 y2 factor (1/lOOth s) (1/lOOth s) 

rcmtxt 0 0 639 199 1.38 670 698 
frnch2a 0 0 639 199 2.01 533 505 
pagel 0 0 639 199 3.11 407 335 
docl-2 0 0 639 199 3.25 400 324 
cprog 0 0 639 199 5.42 324 220 
doclb 0 0 639 199 3.41 401 324 
doc4a 0 0 639 199 1.89 544 527 
doc4b 0 0 639 199 1.60 599 604 

AVERAGE 2.76 485 442 
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Table 4.12, Results of compressing images in Group 4 using the CCITT 
two dimensional compression technique with k = 2 

Image xl yi x2 y2 

Comprs. 
factor 

Comprs. 
time 

(l/lOOth s) 

Dcmprs. 
time 

(1/lOOth s) 

pdraw3 0 0 639 199 4.32 352 258 
sciencel 0 0 639 199 3.87 379 280 
science2 0 0 639 199 2.63 445 384 
doc51a 3 0 514 199 3.96 292 214 

AVERAGE 3.70 367 284 
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Table 4.13. Results of compressing images in Group 5 using the CCITT 
two dimensional compression technique with k = 2 

Image xl yi x2 y2 

Comprs. 
factor 

Comprs. 
time 

(1/lOOth s) 

Dcmpi 
tim< 

Cl/100< 

opampl 160 0 639 158 7.12 170 99 
opamp2 0 0 639 190 5.95 297 187 
ecll 72 7 551 166 11.45 153 71 
ecl2 0 7 607 190 9.87 236 121 
netwrk 16 9 623 187 6.79 264 159 
tablel 0 13 639 147 3.95 258 198 
usai 56 24 519 164 11.90 126 55 
doc51a 36 48 483 115 7.06 65 38 
docSrb 28 43 475 169 6.94 137 82 
lotssin 88 22 631 165 3.55 241 187 
usamap 72 28 551 164 0.63 747 851 
frnch3b 0 0 639 71 7.60 104 60 
barchrt 30 10 333 145 6.47 99 60 
barchrt 30 10 237 60 4.11 33 22 
barchrt 32 68 335 145 6.85 55 33 
testl 120 15 455 120 18.01 72 27 
test2 120 15 455 120 5.79 83 49 
tests 120 15 455 120 5.02 88 55 
test4 120 15 455 120 4.41 94 60 
tests 120 15 487 120 4.24 104 72 
diagl 70 26 453 120 7.16 83 50 
diag2 42 42 393 108 7.79 49 22 
diagS 210 18 449 131 1.26 153 154 
diag4 108 14 443 88 5.63 60 38 
diagS 68 5 467 102 10.80 83 39 
diagSs 208 28 479 98 7.69 44 28 
diag6 40 9 279 76 7.45 38 22 
diagô 22 109 405 141 9.38 28 16 
diagô 22 9 405 141 12.69 105 50 
netwrk2 136 62 391 136 3.81 55 44 
pdrawl 0 70 287 150 4.58 60 44 
usa2 202 26 329 61 3.68 11 5 
usa2 164 92 403 162 6.07 39 22 
docSlb 24 19 471 51 11.20 27 11 
science] 0 80 127 196 3.20 49 38 
sciences 456 12 535 66 2.33 16 17 

AVERAGE 6.58 120 86 
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Table 4.14. Results of compressing images in Group 6 using the CCITT 
two dimensional compression technique with k = 2 

Comprs. Dcmprs. 
Comprs. time time 

Image xl yl x2 y2 factor (1/lOOth s) (1/lOOth s) 

pdrawl 0 0 559 150 4.01 236 176 
pdraw2 0 0 575 152 3.55 258 203 
pdrawS 0 0 575 191 3.76 324 247 
pdraw3 16 0 559 39 1.41 110 116 
pdraw3 0 70 287 150 4.58 61 39 
pdraw3 380 77 571 152 3.56 44 32 
pdraw3 48 160 575 191 3.70 50 39 
pdraw3 0 0 639 199 4.32 352 252 

Compression factor using 4 blocks 

Table 4.15. Results of compressing images in Group 7 using the CCITT 
two dimensional compression technique with k = 2 

Image xl yl x2 y2 
Comprs. 
factor 

Comprs. 
time 

(1/lOOth s) 

Dcmprs. 
time 

(1/lOOth s) 

bignames 0 0 639 199 1.48 659 670 
sun 0 0 639 199 2.89 423 352 
hazard 0 0 639 199 2.46 439 379 
manscl 0 0 539 199 2.10 517 472 
mansc2 0 0 639 199 3.10 417 340 
fig2 0 0 639 199 1.77 538 495 
fig4 0 0 639 199 4.02 379 280 
fig6 0 0 639 199 3.87 357 263 
fig7 0 0 639 199 5.57 302 186 
fig8 0 0 639 199 3.47 379 291 

AVERAGE 3.07 441 373 
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Table 4.16. Results of compressing images In Group 8 using the CCITT 
two dimensional compression technique with k = 2 

Comprs. Dcmprs. 
Comprs. time time 

Image xl yl x2 y2 factor (1/lOOth s) (1/lOOth s) 

blok3 0 0 639 199 43.17 225 77 
blokô 0 0 639 199 7.78 302 176 
boxes 0 0 639 199 20.55 248 104 
lines 0 0 639 199 11.76 280 148 

AVERAGE 20.82 264 126 
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Table 4.17. Results of compressing images in Group 1 using the CCITT 
two dimensional compression technique with k = " 

Theort. Comprs. Dcmprs. 
Comprs. comprs. C.F» time time 

Image xl yl x2 y2 factor factor T.C.F. (1/lOOth s) (1/lOOth s) 

docla 0 0 639 199 9.57 10.36 0.92 346 247 
doc lb 0 0 639 199 3.40 3.88 0.88 511 439 
doclc 0 0 639 199 19.54 26.55 0.74 286 176 
doc2a 0 0 639 199 14.30 18.96 0.75 302 193 
doc2b 0 0 639 199 12.75 17.57 0.73 308 203 
doc2c 0 0 639 199 18.83 27.37 0.69 280 176 
doc4a 0 0 639 199 1.87 2.09 0.89 730 693 
doc4b 0 0 639 199 1.56 1.69 0.92 808 786 
doc4c 0 0 639 87 1.64 1.80 0.91 346 335 
docSla 3 0 514 199 4.23 5.28 0.80 368 297 
docSlb 0 0 511 199 7.60 10.18 0.75 297 220 
docSlc 0 0 511 114 18.81 35.12 0.54 137 88 
docSra 0 0 479 199 2.50 2.79 0.90 450 401 
docSrb 0 0 479 199 10.10 13.79 0.73 258 186 
docSrc 0 0 479 114 2.90 3.36 0.86 236 209 
doc 6a 0 0 639 199 9.57 13.06 0.73 368 264 
doc6b 0 0 639 199 16.10 25.71 0.63 318 214 
doc8 0 0 639 199 22.99 32.69 0.70 308 197 

AVERAGE 9.90 14.01 0.78 370 296 
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Table 4.18. Results of compressing images in Group 2 using the CCITT 
two dimensional compression technique with k = °° 

Theort. Comprs. Dcmprs. 
Comprs. comprs. C.F. time time 

Image xl yl x2 y2 factor factor T.C.F. (1/lOOth s) (1/lOOth s) 

frnch3a 0 0 639 199 12.05 14.70 0.82 357 253 
flowchrt 0 0 639 199 5.56 6.39 0.87 412 330 
electrc 0 0 639 199 2.04 3.66 0.56 631 599 
ordrfrm 0 0 639 199 4.77 5.74 0.83 467 385 
frnchla 0 0 639 199 7.16 9.41 0.76 385 286 
doc2a 0 0 639 199 14.30 19.81 0.72 296 192 
doc2b 0 0 639 199 12.75 18.33 0.70 313 209 

AVERAGE 8.38 11.00 0.75 409 322 

Table 4.19. Results of compressing images in Group 3 using the CCITT 
two dimensional compression technique with k = <» 

Theort. Comprs. Dcmprs. 
Comprs. comprs. C.F. time time 

Image xl yl x2 yl factor factor T.C.F. (1/lOOth s) (1/lOOth s) 

romtxt 0 0 639 199 1.40 1.57 0.89 900 890 
frnch2a 0 0 639 199 1.96 2.11 0.93 698 660 
pagel 0 0 639 199 3.25 3.85 0.84 528 456 
docl-2 0 0 639 199 3.36 4.13 0.81 517 445 
cprog 0 0 639 199 5.68 7.49 0.76 406 319 
doclb 0 0 639 199 3.40 4.26 0.80 511 440 
doc4a 0 0 639 199 1.87 2.14 0.87 725 692 
doc4b 0 0 639 199 1.56 1.70 0.92 807 785 

AVERAGE 2.81 3.41 0.85 637 586 
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Table 4.20. Results of compressing images in Group 4 using the CCITT 
two dimensional compression technique with k = «> 

Theort. Comprs. Dcmprs. 
Comprs. comprs. C.F. time time 

Image xl yi x2 y2 factor factor T.C.F. (1/lOOth s) (1/lOOth s) 

pdraw3 0 0 639 199 4.84 5.31 0.91 439 352 
sciencel 0 0 639 199 4.19 4.85 0.86 467 390 
science! 0 0 639 199 2.61 2.99 0.87 582 522 
doc51a 0 0 514 199 4.23 5.10 0.83 363 297 

AVERAGE 3.97 4.56 0.87 463 390 
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Table 4.21. Results of compressing Images In Group 5 using the CCITT 
two dimensional compression technique with k = ™ 

Comprs. 
Image xl yl x2 y2 factor 

Theort. Comprs. Dcmprs. 
comprs. C.F. time time 
factor T.C.F. (1/lOOth s) (1/lOOth s) 

opampl 160 0 639 158 9.07 10.08 0.90 204 143 
opamp2 0 0 639 190 6.85 7.66 0.89 357 269 
ecll 72 7 551 166 15.82 22.10 0.72 181 115 
ecl2 0 7 607 190 12.51 15.99 0.78 275 182 
netwrk 16 9 623 187 9.87 13.51 0.73 313 226 
tablel 0 13 639 147 5.21 6.31 0.83 324 264 
usai 56 24 519 164 13.40 24.20 0.55 148 94 
doc5rb 36 48 483 115 9.16 12.21 0.75 88 60 
doc5rb 28 43 475 169 9.81 13.40 0.73 165 115 
lotssin 88 22 631 165 4.38 7.17 0.61 302 247 
frnchSb 0 0 639 71 12.42 20.48 0.61 126 88 
barchrt 30 10 333 145 11.38 18.10 0.63 116 83 
barchrt 30 10 237 60 12.01 68.63 0.17 38 28 
barchrt 32 68 335 145 8.88 13.69 0.65 66 49 
testZ 120 15 455 120 6.75 8.21 0.82 94 71 
tests 120 15 455 120 5.59 7.10 0.79 104 77 
test4 120 15 455 120 4.86 6.18 0.79 110 88 
test5 120 15 487 120 4.56 5.67 0.80 126 99 
diagl 70 26 453 120 8.99 13.08 0.69 99 71 
diag2 42 42 393 108 9.07 15.00 0.60 60 38 
diagS 210 18 449 131 1.52 4.27 0.36 204 192 
diag4 108 14 443 88 6.32 8.22 0.77 71 50 
diagS 68 5 467 102 18.46 28.90 0.64 99 66 
diag5s 208 28 479 98 12.76 18.15 0.70 55 38 
diag6 40 9 279 76 13.88 21.61 0.64 44 33 
diag6 22 109 405 141 17.70 41.35 0.43 33 16 
diag6 22 9 405 141 26.19 45.54 0.58 120 77 
netwrk2 136 62 391 136 5.78 8.43 0.69 66 49 
pdrawl 0 70 287 150 5.34 6.16 0.87 71 55 
usa 2 202 26 329 61 3.94 4.80 0.82 11 11 
usa2 164 92 403 162 7.35 9.78 0.75 50 33 
doc51b 24 19 471 51 20.82 52.41 0.40 38 22 
sciences 0 80 127 196 3.40 4.36 0.78 60 50 
sciences 456 12 535 66 2.43 3.02 0.80 22 16 

AVERAGE 9.60 16.64 0.68 125 92 
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Table 4.22. Results of compressing images in Group 6 using the CCITT 
two dimensional compression technique with k = « 

Image xl yl x2 y2 
Comprs. 
factor 

Comprs. 
time 

(1/lOOth s) 

Dcmprs. 
time 

(1/lOOth s) 

pdrawl 0 0 559 150 4.34 297 242 
pdraw2 0 0 575 152 3.99 330 275 
pdraw3 0 0 575 191 4.19 401 335 
pdrawS 16 0 559 39 1.45 148 148 
pdrawS 0 70 287 150 5.34 72 55 
pdrawS 380 77 571 152 5.47 60 44 
pdrawS 48 160 575 191 3.94 66 504 
pdrawS 0 0 639 199 4.84 439 352 

Compression factor using 4 blocks 4.18 

Table 4.23. Results of compressing images in Group 7 using the CCITT 
two dimensional compression technique with k = •» 

Theort. Comprs. Dcmprs. 
Comprs. comprs. C.F. time time 

Image xl yl x2 y2 factor factor T.C.F. (1/lOOth s) (1/lOOth s) 

blgnames 0 0 639 199 1.59 1.81 0.88 873 851 
sun 0 0 639 199 3.20 4.46 0.72 527 456 
hazard 0 0 639 199 2.53 3.43 0.74 560 494 
manscl 0 0 639 199 2.28 2.79 0.82 665 610 
mansc2 0 0 639 199 3.61 4.69 0.77 533 456 
fig2 0 0 639 199 2.40 4.35 0.55 686 637 
fig4 0 0 639 199 6.78 12.23 0.55 466 368 
fig6 0 0 639 199 4.34 6.76 0.64 445 357 
fig7 0 0 639 199 6.29 10.75 0.59 363 269 
fig8 0 0 639 199 3.94 6.30 0.63 466 384 

AVERAGE 3.70 5.76 0.69 558 488 
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Table 4.24. Results of compressing images in Group 8 using the CCITT 
two dimensional compression technique with k = " 

Theort. Comprs. Dcmprs. 
Comprs. comprs. C.F. time time 

Image xl yl x2 y2 factor factor T.C.F. (1/lOOth s) (1/lOOth s) 

blokS 0 0 639 199 109.03 359.73 0.30 252 138 
blokô 0 0 639 199 24.54 142.33 0.17 363 247 
boxes 0 0 639 199 69.57 813.68 0,09 280 171 
lines 0 0 639 199 32.07 191.23 0.17 324 214 
testl 120 15 455 120 49.60 99.19 0.50 77 44 
usamap 72 28 551 164 1.56 7.13 0.22 1011 962 

AVERAGE 47.73 268.88 0.24 385 296 
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4; 5. Entropy Calculation of the One 

Dimensional Model 

The one dimensional coding can be represented as a first order 

Markov chain as in Figure 4.2. The per pel entropy is given in 

[6] as follows: 

(4.1) 

where : 

.P̂  = probability of white pels 

Pg = probability of black pels 

= white run-length entropy 

N 

i=0 
(4.2) 

= black run-length entropy 

N 

- Jg Pbi-̂ °S2 Pbl C4.3) 

p̂  ̂= probability of run-length of i white pels 

p̂  ̂= probability of run-lengths of i black pels 

r̂  ̂= average white run-length in pels = S i-p̂  ̂

r = average black run-length in pels = Z i'p 
D 02. 

(4.4) 

(4.5) 

Note that: 

(4.6) 

(4.7) 
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B̂W 

Figure 4.2. A first order Markov model for the CCITT one 
dimensional coding technique 
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EPbi = 1 (4.8) 

To get and p̂ , we solve the matrix question: 

p P , P , 
WW wb 

— 
W 

p P,, P 
. bw bb. - B. 

(4.9) 

Then, we get the following equations: 

= • wb 

W Pwb + Pbw 
(4.10) 

P, 
•bw 

wb ̂  ̂bw 
(4.11) 

Substituting from (4.10) and (4.11) in (4.1), we get 

«W + 

+ Ps 
(4.12) 

The maximum theoretical compression factor is defined as 

(4.13) 

Reference [12] applied CCITT one dimensional coding technique to 

the 8 CCITT documents and gave the result of r , r , li , H , Q , and 
w D w D mâx 

actual compression factor in Table IV of the reference. 

The result of calculating the Q of the data base is included in 
max 

Tables 4.1-4.8. 
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Figures 4.3-4.11 show the distribution of the frequency of the 

run-lengths for a sample of images from the data base. Runs greater 

than 63 were broken into two runs as described by the standard. 

Reference [13] did not calculate the entropy for the 8 CCITT doc

uments. Reference [9], which has the same principles of using three 

states, did. Besides, the compression factors in [9] are comparable 

to those of MREAD. So, we will calculate the entropy and using a 

modified version of the model given in [9]. The model we will use is 

valid only for the case of k = <». 

We assume that each of the three states is independent of the other 

4.6. Entropy Calculation of the Two 

Dimensional Model 

states. Hence, the entropy per pel H 

H (4.14) 

where 

= average entropy per state 

= average number of pels per state 

Hj = entropy of state . 

The entropies of the three states are given by 

= -log PCŜ ) + 

= -log PCSg) 

H3 = -log PCS]) + (4.17) 

(4.15) 

(4.16) 
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Figure 4.3. Frequency distribution of image "doc2a" 
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Figure 4.4. Frequency distribution of image "doc2b" 
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Figure 4.5. Frequency distribution of image "doc2c" 
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where 

Hj = entropy of the edge difference d(d = bl - al) in the 
vertical mode (state Ŝ ) 

3 
= - E P(d)*log P(d) (4.18) 

d=-3 

. =entropy of the i run (i = 1 or 2) in the horizontal 
 ̂ mode (state Ŝ ) 

lk-0 

P(d) = the probability that (bl - al) is equal to d where d 
is an integer varying between -3 and 3 

P(&.) = the probability that the i run (i=l or 2) is equal to 
 ̂ 5,̂  in the horizontal mode. 

The average number of pels per state is given by 

"aOal + '(Sz) 'aOb2 + + '2> 

where 

r̂ Oai ~ average of absolute value of aOal, aOal = al-aO 

640 
E P(aOal).aOal (4.21) 

aOal=l 

â0b2 ~ average value of pass mode distance a0b2 

640 
E P(aOb2)'aOb2 (4.22) 

aOb2=2 

r̂  = average length of first run in the horizontal mode 

640 
= E P(A.).A_ (4.23) 
& =1 ^ 
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= average length of second run in the horizontal mode 

640 
(4.24) 

The theoretical compression factor is calculated from the en

tropy per pel by the following formula; 

(4.25) 

Tables 4.17-4.24 include the theoretical compression factor, using 

the two dimensional model, for the images in the data base. Figures 

4.12-4.21 show the distribution of the frequency of the run-lengths, in 

the horizontal mode, for a sample of images from the data base. Runs 

greater than 63 were broken into two runs as described by the standard. 

The figures also show the distribution of the vertical distance d. 

Looking at the results, we concluded the following points: 

1) The two dimensional (k = ") coding technique gave better com

pression factor than the one dimensional coding technique except for 

the case of screens or blocks full of text. The ratio of the two di

mensional compression factor to the one dimensional compression factor 

depended on the class of image to be compressed. In Table 4.25, the 

first three columns contain the compression factor averages of the pic

tures of each group calculated using one dimensional, two dimensional 

(k = 2), and two dimensional (k = <») techniques. This table shows that 

the ratio of the compression factors of the two dimensional (k = <») to 

4.7. Analysis of the Results 
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Figure 4.19. Frequency distribution of image "doc4a" 
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Table 4.25. Compression factors averages of each group of the image 
data base using each technique 

Group # ID* 2Kb 2K/1D FK/ID 

Group 1 6.07 7.33 9.90 1.21 1.63 
Group 2 5.52 6.54 8.38 1.18 1.52 
Group 3 2.85 2.76 2.81 0.97 0.99 
Group 4 3.54 3.70 3.97 1.05 1.12 
Group 5 5.19 6.58 9.60 1.27 1.85 
Group 6 2.69 3.07 3.70 1.14 1.38 

AVERAGE 4.31 5.00 6.39 1.14 1.41 

ID = compression factor using the CCITT one dimensional compres
sion technique. 

2̂K = compression factor using the CCITT two dimensional compres
sion technique with k = 2. 

FK = compression factor using the CCITT two dimensional compres
sion technique with k = <». 



www.manaraa.com

94 

the one dimensional technique has an average of 1.41 with minimum and 

maximum equal to 0.99 and 1.85, respectively. The 0.99 ratio is for 

screens full of text and is the only ratio that is less than 1. The 

1.85 ratio is for group 5 which consists of sample blocks of graphics. 

2) In Table 4.25, it is shown that for screens full of graphics 

(group 2), the ratio of the average compression factor of the two di

mensional, k = 2, to the average compression factor of the one dimen

sional is 1.18. This ratio is 1.52 for the case of two dimensional, 

k = 00. This result shows that two dimensional technique with k = <» is 

the best choice for screens full of graphics. 

3) From Table 4.25, it is clear that, for screens full of text 

(group 3), there is no significant difference between two dimensional 

and one dimensional compression factors. The average compression fac

tor of the group using one dimensional technique is 2.85. 

4) For screens that are a mixture of graphics and text blocks 

(group 4), Table 4.25 shows that the two dimensional compression factor 

is higher than one dimensional compression factor and the ratio of the 

average of the two dimensional to the average of the one dimensional 

compression factor is 1.05 and 1.12 for k = 2 and k = respectively. 

The one dimensional compression factor was found to have an average of 

3.54. 

5) In Table 4.25, it is shown that for blocks of graphics (group 

5), the ratio of the average compression factor of the two dimensional 

technique, k = 2, to the average compression factor of the one dlmen-
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slonal technique is 1.27. This ratio is 1.85 for the case of two di

mensional technique, k = ". This result shows that the two dimensional 

technique with k =®is the best choice for graphics blocks. 

6) Screen pdraw3 contains 4 blocks. We compressed each of the 4 

blocks separately and a big block containing all of these 4 blocks. The 

following two compression factors were calculated: 

i) Compression factor of the big block = original size of 
the big block/size of the compressed block. 

ii) Compression factor using the 4 small blocks to represent 
the big block = original size of the big block/ 
4 
Z (size of the compressed block i). 
i=l 

Comparing the compression factors in i) and ii), we found that in 

ii) it is very slightly bigger than in i) using the one dimensional 

technique and almost the same when we used the two dimensional technique 

(k = "'). Hence, it may be concluded from this example that dividing a 

big block into smaller blocks and compressing them individually will not 

give a better compression factor than in the case of compressing the big 

block as a whole. Besides, the division into smaller blocks will add 

more complexity and a small overhead of bytes that represents the sizes 

of the small blocks. 

7) Table 4.26 contains the compression factors using the one 

dimensional and two dimensional (k = <*>) techniques taken from [13] for 

some CCITT standard documents. These values are normalized with refer

ence to the compression factor of docl and included in the table. Ta

ble 4.27 contains similar values deduced from Tables 4.1 and 4.17. It 
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Table 4.26. Compression factors of the CCITT documents according to Reference [13] 

ID̂  2D̂  
LowC Hlghd 

Document Norm. Norm. Norm. Low High 
it C.F. C.F.® Size C.F. C.F. Size C.F. C.F. ID ID 

1 15. 160 1. 000 130684 15. 709 1. 000 175704 23.367 1. 000 1. 036 1. 541 
2 16. 670 1. 100 106851 19. 212 1. 223 117304 35.001 1. 498 1. 153 2. 100 
4 4. 911 0. 324 408261 5. 028 0. 320 585074 7.017 0. 300 1. 024 1. 429 
5 7. 927 0. 523 226285 9. 072 0. 578 288655 14.224 0. 609 1. 144 1. 794 
6 10. 780 0. 711 150572 13. 634 0. 868 164085 25.022 1. 071 1. 265 2. 321 

AVERAGE 11.090 0.732 204531 12.531 0.798 266164 20.926 0.896 1.124 1.837 

ÎD = the CCITT one dimensional compression technique. 

2̂D = the CCITT two dimensional compression technique with k = «>. 

L̂ow = document compressed in low resolution. 

Ĥigh = document compressed in high resolution. 

N̂orm. C.F. = normalized compression factor. 
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Table 4.27. Compression factors of the CCITT documents using the CCITT 
one and two dimensional compression techniques 

Document 
# 

ID* 2D̂  
2D C.F. 
ID C.F. 

Document 
# C.F. 

Norm. 
C.F.c C.F. 

Norm. 
C.F. 

2D C.F. 
ID C.F. 

1 6.267 1,000 6,670 1.000 1.064 
2 9.579 1.528 14,891 2.233 1.555 
4 1.782 0.284 1.680 0.252 0.943 
5 4,070 0.649 4.741 0.711 1.165 
6 5.617 0.896 12.004 1.800 2.137 

ÎD = the CCITT one dimensional compression technique. 

2̂D = the CCITT two dimensional compression technique. 

*̂ Norm. C.F. = normalized compression factor. 
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was found that the ratios of two dimensional/one dimensional compression 

factors in the low resolution case in Table 4.26 were close to those in 

Table 4.27 except for doc2 and doc6. For the high resolution case, the 

only ratios thgt were close to each other in the two tables were those 

of doc6. This may be interpreted by noticing that low resolution mode 

was just enough to show the textural material in documents docl, doc4, 

and doc5 which are documents that contain a lot of text. Similarly, the 

resolution of the screen was just enough to represent textual material 

in images docl, doc4, and doc5. 

8) To investigate the possibility of using a modified Huffman 

table with codes that are suitable to the screen statistics, frequency 

graphs for each image were generated. The coordinates of the horizontal 

axis in these figures represent the run-lengths while the coordinates of 

the vertical axis represent the number of times this run-length was used 

in compressing the picture. Runs greater than 63 were broken into two 

runs as described by the standard. From these graphs, we got the fol

lowing remarks and conclusions: 

a) Distribution of white runs has almost the same form in 
all the images. It has a concentration of small runs 
mostly located in the region between run 1 and run 6. 
The maximum run frequency occurs in run 1 for some of the 
images, specially graphics screens, and in run 2 for 
some other images, specially screens that have a lot of 
text. Since this maximum is not fixed, we might try to 
change the code so that, for the maximum frequency run, 
it varies with the image. We will show later that no 
big difference in compression factor can result from 
this change. 

b) Frequency of the black runs is more distributed and varies 
from image to image with no fixed form. So, making vari
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able code as suggested for the white runs in a) is not 
suitable. The frequency is also concentrated on small 
runs to the extent that the standard one dimensional code 
is efficient enough and no clear benefit can be seen from 
changing it. 

Run length 1 has one of the highest frequencies, but the 
CCITT code assigns a code of length 6 while other less 
important frequencies are assigned a code of length 4. 
So, an improvement in the code may be found by assigning 
less bits to run-length 1. 

c) Figures 4.3-4.5 show the distribution of the frequency 
for pictures doc2a, doc2b, and doc2c which represent 
graphics screens. Their distribution agrees with a) and 
b) above. Similar comments are applicable to doc6a, doc6b, 
and any graphics screen in groups 2, 5, and 7. Figures 
4.6-4.9 show the frequency distribution for some graphics 
screens. 

d) Figures 4.10 and 4.11 show the frequency distribution for 
pictures doc4a and pagel which represent screens full of 
text (group 3). The distribution of white is as explained 
in a) while the distribution of black is as in b) but more 
condensed than in graphics screens and more concentrated 
on small runs. To show that changing the code does not 
result in a big increase in the compression factor, we 
give the following example: 

Table 4.3 shows that the compression factor of image doc4a 
is 1.96 which corresponds to a compressed image of size 
8163 bytes. Figure 4.10 shows that white run-length 2 
has a frequency equal to 5905. The modified Huffman table 
assigns a code of length 2 bits to this run. If a new 
code assigns 1 bit to this run (without going in details 
of this new code), the compressed buffer will decrease 
by 738 (= 5905/8) bytes. Hence, the new compressed size 
will be 2.15 (= 16000/(8163-738)). This represents 8% 
increase in the compression factor. Note that this cal
culation assumed that a code of length 1 bit was possible 
and neglected the negative effects of changing other 
codes in the table. In spite of that, the increase in 
compression factor is only 8%. 

e) A calculation similar to the one in d) was done for doc6a, 
which is a sample of graphics screen, and showed 6% in
crease in the compression factor if the code was changed. 
Hence, we reached the same conclusion we got in d). 
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9) Comparing the compression factor of the two dimensional'(k = 

<») coding technique with the theoretical compression factor of the one 

dimensional technique, we found that the former one was higher than the 

latter one except for documents containing a lot of text. So, two di

mensional technique is the best choice. 

10) Tables 4.1-4.8 show that, using the one dimensional technique, 

the average ratio of the real compression factor to the theoretical one 

is slightly low (0.68) for graphics screens and almost acceptable (0.77) 

for screens full of text. This result may be explained by two reasons. 

First, the code was optimized for the frequency of the runs in textual 

materials, but not for the frequency in graphics materials where it is 

hard to predict this frequency. Second, the model is not accurate for 

graphics screens because it assumed that black and white runs were inde

pendent of each other. 

11) Tables 4.18-4.19 show that, using the two dimensional technique, 

the average ratio of the real compression factor to the theoretical one 

is 0.75 for graphics screens and 0.85 for screens full of text. Al

though the different variables that were used in calculating these com

pression factors were examined, no clear interpretation can justify why 

the model worked better in the case of screens full of text than in the 

case of graphics screens. The code of the first and second runs in the 

horizontal mode should not be considered as a part of the interpretation, 

as was the code for the runs in the one dimensional case, because the 

probability of the horizontal mode is almost the same in the two groups. 
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12) The average probabilities of the vertical, pass, and horizontal 

modes were found to be 0.75, 0.1, and 0.15, respectively. These are 

different from the values reported in [9] where the probability of the 

vertical mode was almost 0.9. This shows that the distributions of black 

and white pels in the computer screen are different than the same dis

tributions in regular papers such as the CCITT standard documents. 

13) The vertical mode was dominated by V(0). This fact and the 

result of the previous point indicate that the two dimensional technique 

worked as designed and to its limit. 

14) The compression factor of the image usamap using the one di

mensional technique was found to be less than 1. It was found to be 

1.56 when using the two dimensional technique. The fact that these 

compression factors are low, even though the image usamap contains a lot 

of redundancy, indicates that these two techniques are not efficient 

for certain classes of images. Some examples of these classes are images 

that contain some repeated similar blocks or cross hatching. To over

come the deficiency found when the compression factor is less than 1, 

the standard techniques allow for uncompressed mode. 

4.8. Conclusion 

From the above analysis, we conclude that the CCITT standard two 

dimensional coding technique have better compression factor than the one 

dimensional technique, hence, should be our choice although its decom

pression time is higher. We also conclude that the two methods worked 
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to their limit and produce satisfactory compression factors for the 

screen resolution. The facts that no improvement could be seen to 

changing the modified Huffman table and that for some class of data 

the two techniques are not efficient enough indicate we should search 

for other techniques. 
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5. APPLICATION OF THE LEMPEL-ZIV-WELCH ALGORITHM 

In this chapter, we will present the LZW algorithm and the results 

of compressing the images of the data base defined in Chapter 3 using 

the LZW algorithm. 

As a new major contribution,.this research modifies the regular 

use of LZW in three different ways. The new modifications will be called 

LZWB, LZWBl, LZWB2-A, and LXWB2-B methods. 

5.1. Description of the Lempel-Ziv-Welch 

Algorithm 

The Lempel-Ziv-Welch (LZW) algorithm examines the data serially as 

a sequence of characters. It has a table to which it adds new strings 

of characters that it did not encounter before. Each entry "w,k" in the 

table consists of the symbol of a previously encountered string, w, and 

a character symbol, k. At each step, the algorithm searches for the 

string "w,k" in the table. If the string is found in the table, w is 

assigned the symbol of the string "w,k", k is assigned the value of the 

next input character, and a new search starts. If the string "w,k" is 

not found in the table, the symbol w is sent to the output, w is equated 

to k, k is equated to the next input character, and a new search starts. 

By this technique, the algorithm codes the input data according to its 

repeated strings and their distribution. 

The first 256 symbols of the table are initialized to 256 charac

ters, where each symbol content is equal to the symbol number. The 
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string w and the character k are Initialized to the values of the first 

and second characters in the input data, respectively. The size of the 

table is chosen to be 4096 symbols, so each symbol is represented by 12 

bits. For more details, refer to [41] or Appendix D which has the list

ing of the code that simulates the LZW algorithm. 

5.2. Method LZWB 

The LZW algorithm compresses the data without any previous knowledge 

of its source. This may not be efficient enough when the source and 

some of its characteristics are known in advance. For the data this 

research works on, screens of text and graphics, the distribution of 

the black and white runs are known in advance. So, to let LZW benefit 

from this previously known source information, this research introduces 

a new solution that we call method LZWB. The proposed solution is to 

count the black and white runs in the image and then send the codes of 

these runs to LZW for compression. The letter "B" in method LZWB 

stands for "binary". 

Method LZWB assumes that the first 128 symbols in the LZW Table 

represent run-lengths 1 to 128 of black pels and the symbols 129 to 256 

represent run-lengths 1 to 128 of white pels. The input first goes 

through a counter which counts runs between 1 and 128. Any run-length 

greater than 128 is divided into one or more multiples of 128 and a run-

length smaller than 128. The output of this counter is fed to the LZW 

algorithm for compression. The output of the counter may be greater than 

the size of the original block in some cases but it is expected that the 
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distribution of the runs makes this data more suitable to compression 

than the original data. This better compressibility comes from the 

facts that certain runs are more frequent than the others and the de

pendency among the different runs is present in the form of repeated 

strings. Appendix E gives the code necessary to simulate the LZWB 

method. 

5.3. Method LZWBl 

Method LZWBl, as proposed by this research, assumes the first 200 

characters in the LZW table to represent run-lengths 1 to 100 of black 

and white pels. The remaining 56 symbols of characters in the table 

are used to represent two or three consecutive run-lengths. Table 5.1 

has these runs and their corresponding symbols. These runs were chosen 

because their probabilities, as given in the CCITT modified Huffman 

table, are the highest among other runs. 

Table 5.2 shows the most probable black and white run-lengths and 

the lengths of their corresponding codes as defined in the modified 

Huffman table. The Huffman table is optimum if the probabilities of 

the entries are in the form (1/2)̂  where n is an integer greater than or 

equal to 1. We assume that the table is optimum and, hence, calculate 

the probabilities as given in Table 5.2. According to Table 5.2, white 

run lengths 1 to 4 have a total probability equal to 75% of the white 

run-lengths whereas black run-lengths 2 to 7 have (6/16) of the black 

run-lengths. So, from the white run-lengths, we only used run-lengths 

1 to 4 in the symbols. As for the black run-lengths, we chose run-
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Table 5.1. The probability and code length of some run-lengths derived 
from Table I in [13] 

Black runs White runs 
Run Code Run Run Code Run 

length length prob. length length prob. 

2 4 1/16 2 2 1/4 

3 4 1/16 3 2 1/4 

4 4 1/16 1 3 1/8 

5 4 1/16 4 3 1/8 

6 4 1/16 

7 4 1/16 

8 5 1/32 

9 5 1/32 

10 5 1/32 

11 5 1/32 

64 5 1/32 

128 5 1/32 
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Table 5.2. The strings used in LZWBl and their corresponding symbols 

String starting String starting 
Symbol with black pel Symbol with white pel 

200 01 212 10 
201 001 213 110 
202 0001 214 1110 
203 00001 215 11110 

204 Oil 216 100 
205 0011 217 1100 
206 00011 218 11100 
207 000011 219 111100 

208 0111 220 1000 
209 00111 221 11000 
210 000111 222 111000 
211 0000111 223 1111000 

224 010 240 101 
225 0100 241 1011 
226 01000 242 10111 
227 010000 243 101111 

228 0010 244 1101 
229 00100 245 11011 
230 001000 246 110111 
231 0010000 247 1101111 

232 0110 248 1001 
233 00110 249 11001 
234 01100 250 10011 
235 001100 251 110011 

236 01110 252 10001 
237 001110 253 110001 
238 011100 254 100011 
239 0011100 255 1100011 
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lengths 1 to 4; we did not choose run-lengths 5 to 7 because we wanted 

to simplify the operation although if there is a benefit or not of in

cluding them is a point that needs more research. The CCITT modified 

Huffman table assumes that the frequency of black run-length 1 is smaller 

than the probability of any run-length between 2 and 11, but our dis

tribution analysis in Chapter 4 showed that frequency of black run-length 

1 was comparable to that of run length 3 and might be a little less than 

run length 2. So, in the symbols we chose, we also represented run-

length 1. 

Method LZWBl is a step beyond LZWB and, as in method LZWB, we pre

dict that the output of the counter is more compressible than the original 

data. We also predict that, since some of the symbols represented two or 

three of the most frequent runs, the size of the counter output will not 

be as big as the size of the counter output in LZWB. Appendix F gives 

the code necessary to simulate method LZWBl. 

5.4. Method LZWB2 

The LZW algorithm initializes the first 256 symbols to character 

symbols. Since it has no previous knowledge of the symbols in the input 

data, it does not try to initialize symbols other than the characters 

symbols. The symbols of method LZWB2, as in LZWB, represent white and 

black run-lengths; hence, we assume that LZWB2 has a prior knowledge of 

the frequency of the symbols and benefit from this knowledge by initial

izing some symbols, from symbol 257 and above, to symbols of strings that 

are very likely to occur. 
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Two table initializations were tried. The symbols and their 

corresponding run-lengths for these two initializations are presented 

in Tables 5.3 and 22.1. The initialization of the table requires a 

change in the code of the LZW decompression process. The change needed 

is to allow for the first received symbol to be a string symbol in the 

form of "w,k". The code of this is inserted before the code of the 

decompression used in LZW. Appendix G gives the code necessary to 

simulate method LZWB2 using Table 5.3. Ue will call this combination 

method LZWB2-A. The code of method LZWB2 using Table 22.1 is exactly 

the same as the code using Table 5.3 except for the part of initializing 

the table which differs by the number of symbols to be initialized. 

We will call method LZWB with the LZW table initialized by Table 22.1 

as method LXWB2-B. 

5.5. Results of LZW and the Above Mentioned 

Modifications 

The results of compressing the images in the data base using the 

LZW algorithm are presented in Tables 5.4-5.10. Tables 5.11-5.15 give 

the results of the average values for each group when compressed by 

methods LZW, LZWB, LZWBl, LZWB2-A, and LZWB2-B. Note, that for the 

methods LZWB, LZWB2-A, and LZWB2-B, the results for group 8 do not 

include the image "usamap" because the result of the symbols counter 

is bigger than the buffer used. In the following sections, we will try 

to analyze the above results. 
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Table 5.3. Extended LZW tables to be used with LZWB2-A 

Symbol String w k 

256 01 0 128 
257 001 1 128 
258 0001 2 128 
259 00001 3 128 
260 Oil 0 129 
261 0011 1 129 
262 00011 2 129 
263 000011 3 129 
264 0111 0 130 
265 00111 1 130 
266 000111 2 130 
267 0000111 3 130 
268 010 256 0 
269 0100 256 1 
270 01000 256 2 
271 010000 256 3 
272 0010 257 0 
273 00100 257 1 
274 001000 257 2 
275 0010000 257 3 
276 0110 260 0 
277 00110 261 0 
278 01100 260 1 
279 001100 261 1 
280 OHIO 264 0 
281 001110 265 0 
282 011100 264 1 
283 0011100 265 1 
284 10 128 0 
285 110 129 0 
286 1110 130 0 
287 11110 131 0 
288 100 128 1 
289 1100 129 1 
290 11100 130 1 
291 111100 131 1 
292 1000 128 2 
293 11000 129 2 
294 111000 130 2 
295 1111000 131 2 
296 101 284 128 
297 1011 284 129 
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mbo 

298 
299 
300 
301 
302 
303 
304 
305 
306 
307 
308 
309 
310 
311 

111 

continued 

String w k 

10111 284 130 
101111 284 131 
1101 285 128 
11011 285 129 
110111 285 130 
1101111 285 131 
1001 288 128 
11001 289 128 
10011 288 129 
110011 289 129 
10001 292 128 
110001 293 128 
100011 292 129 
1100011 293 129 
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Table 5.4. Results of compressing images in group 1 using method LZW 

Co»prs. Table Ê tra 
Image factor size calls 

s s 

docla 6.62 19.93 1.59 1867 0 
doclb 3.69 19.55 1.53 3142 0 
doclc 13.25 12.91 1.60 1060 0 
doc2a 7.71 11.21 1.54 1638 0 
doc2b 6.82 14.55 1.59 1818 0 
doc2c 10.01 14.99 1.60 1321 0 
doc4a 2.91 33.67 1.54 3917 0 
doc4b 2.55 32.24 1.54 4096 341 
doc4c 2.31 8.74 0.66 2283 0 
doc51a 3.88 18.62 1.21 2454 0 
doc51b 5.44 11.75 1.27 1822 0 
docSlc 8.41 5.28 0.71 838 0 
docSra 2.97 15.87 1.16 2946 0 
doc5rb 5.87 11.48 1.16 1617 0 
doc5rc 3.18 6.54 0.66 1703 0 
doc6a 4.86 18.84 1.59 2448 0 
doc6b 6.81 21.58 1.60 1822 0 
doc8 5.77 16.75 1.60 2104 0 

AVERAGE 5.73 16.36 1.34 2161 19 
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Table 5.5. Results of compressing images in group 2 using method LZW 

Comprs. 
Image factor size calls 

s s 

frnch3a 5.63 16.31 1.60 2148 0 
flowchrt 4.57 18.18 1.59 2589 0 
electrc 3.87 22.90 1.53 3012 0 
ordrfrm 5.17 17.91 1.53 2316 0 
frnchla 6.11 17.14 1.53 2001 0 
doc2a 7.71 11.15 1.59 1638 0 
doc2b 6.82 14.50 1.59 1818 0 

AVERAGE 5.70 16.87 1.57 2217 0 

Table 5.6. Results of compressing images in group 3 using method LZW 

Comprs. ""mpra. Tw,l« Extra 
Image factor ® ® size calls 

s s 

romtxt 2.35 34.43 1.54 4096 691 
frnch2a 2.91 27.91 1.54 3925 0 
pagel 4.15 17.75 1.59 2825 0 
docl-2 4.68 18.78 1.59 2535 0 
cprog 7.07 17.19 1.54 1763 0 
doclb 3.69 19.56 1.54 3142 0 
doc4a 2.91 33.67 1.53 3917 0 
doc4b 2.55 32.24 1.54 4096 341 

AVERAGE 3.79 25.19 1.55 3287 129 
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Table 5.7. Results of compressing images in group 4 using method LZW 

Co»prs. Table Extra 
Image factor size calls 

pdraw3 4.58 25.43 1.59 2585 0 
sciencel 3.53 24.50 1.54 3279 0 
science2 2.77 29.44 1.54 4096 10 
doc51a 3.88 18.62 1.21 2454 0 

AVERAGE 3.69 24.50 1.47 3104 3 
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Table 5.8. Results of compressing images in group 5 using method LZW 

Cô rs. "7̂ - T.bla Extra 
Image factor  ̂  ̂ size calls 

opampl 5.94 7.09 0.93 1326 0 
opamp2 6.07 13.46 1.54 1934 0 
ecll 7.77 6.54 0.94 1078 0 
ecl2 7.98 10.27 1.43 1423 0 
netwrk 6.16 10.77 1.32 17.28 0 
tablel 3.47 14.01 1.05 2331 0 
usai 9.13 5.11 0.82 852 0 
doc51a 4.79 2.31 0.33 785 0 
doc5rb 5.03 5.22 0.71 1198 0 
lotssin 3.56 10.66 0.99 2087 0 
frnchSb 5.11 4.39 0.54 1006 0 
barchrt 5.27 3.79 0.49 909 0 
barchrt 3.36 0.82 0.16 518 0 
barchrt 5.58 1.70 0.27 609 0 
test2 4.03 3.03 0.44 992 0 
tests 3.43 3.19 0.44 1121 0 
test4 3.21 3.35 0.44 1184 0 
tests 3.04 3.95 0.44 1324 0 
diagl 4.49 3.07 0.44 932 0 
diag2 4.78 • 1.92 0.27 666 0 
daig3 3.81 2.30 0.33 853 0 
diag4 3.58 2.03 0.28 842 0 
diagS 7.63 2.86 0.49 683 0 
diagSs 5.41 1.38 0.27 552 0 
diagô 5.27 1.16 0.17 513 0 
diag6 4.71 0.88 0.16 479 0 
diag6 8.62 4.01 0.61 749 0 
netwrk2 3.36 1.65 0.28 731 0 
pdrawl 3.19 1.92 0.28 864 0 
usa2 2.06 0.32 0.06 441 0 
usa2 4.01 1.20 0.22 609 0 
docSlb 5.62 0.99 0.17 474 0' 
sciences 2.54 1.32 0.16 746 0 
sciences 1.85 0.33 0.05 453 0 

AVERAGE 4.82 4.03 0.52 970 0 
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Table 5.9. Results of compressing images in group 7 using method LZW 

Comprs. 
Comprs. 
time 
s 

Decmprs. 
time 
s 

Table Extra 
Image factor 

Comprs. 
time 
s 

Decmprs. 
time 
s 

size calls 

bignames 2.11 37.68 1.54 4096 1222 
sun 2.95 27.73 1.54 3872 0 
hazard 2.66 28.73 1.54 4096 166 
manse1 2.35 34.93 1.53 4096 690 
mansc2 3.31 23.01 1.54 3478 0 
fig2 8.42 14.17 1.60 1522 0 
fig4 7.86 12.85 1.53 1612 0 
fig6 3.69 22.74 1.54 3149 0 
fig7 5.09 15.98 1.53 2350 0 
fig8 3.43 23.84 1.54 3364 0 

AVERAGE 4.19 24.17 1.54 3164 208 

Table 5.10. Results of compressing images in group 8 using method LZW 

Image 
Comprs. 
factor 

Comprs. 
time 
s 

Decmprs. 
time 
s 

Table 
size 

Extra 
calls 

blok3 
blok6 
boxes 
lines 
testl 
usamap 

27.97 
10.98 
16.06 
15.19 
12.79 
6.57 

10.49 
14.06 
10.38 
12.25 
2.47 
6.59 

1.59 
1.59 
1.60 
1.59 
0.44 
0.77 

636 
1226 
919 
957 
487 
1089 

0 
0 
0 
0 
0 
0 

AVERAGE 14.93 9.37 1.26 886 0 
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Table 5.11. Results of compressing each group of the image data base 
suing method LZW 

Comprs. Dcmprs. 
Gomprs. C.F. time time Table Extra 

Group // factor FAX s s size calls 

GROUP 1 5.73 0.58 16.36 1.34 2161 19 
GROUP 2 5.70 0.68 16.87 1,57 2217 0 
GROUP 3 3.79 1.35 25.19 1.55 3287 129 
GROUP 4 3.69 0.93 24.50 1.47 3104 3 
GROUP 5 4.82 0.50 4.03 0.52 970 0 
GROUP 7 4.19 1.13 24.17 1.54 3164 208 

AVERAGE 4.65 0.86 18.52 1.33 2484 60 

Table 5.12. Results of compressing each group of the image data base 
using method LZWB 

Cmprs. Dcmprs. 
Comprs. C.F. C.F. time time Count Table Extra 

Group # factor FAX LZW s s smbl. size calls 

GROUP 1 5.88 0.59 1.02 13.80 1.03 6425 2227 164 
GROUP 2 5.42 0.65 0.95 13.11 1.03 6428 2368 0 
GROUP 3 2.96 1.05 0.78 26.75 2.39 14931 3588 785 
GROUP 4 3.37 0.85 0.91 20.47 1.42 8853 3284 44 
GROUP 5 5.18 0.54 1.07 2.83 0.29 1768 970 0 
GROUP 7 3.79 1.02 0.90 26.95 1.99 12218 3306 362 

AVERAGE 4.43 0.78 0.94 17.32 1.36 8437 2624 226 
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Table 5.13. Results of compressing each group of the image data base 
using method LZWBl 

Cmprs. Dcmprs. 
Cmprs. C.F. C.F. time time Count Table Extra 

Group it factor FAX LZW s s smbl. size calls 

GROUP 1 5.86 0.59 1.02 12.31 0.91 5057 2224 158 
GROUP 2 5.41 0.65 0.95 11.86 0.94 4973 2369 0 
GROUP 3 3.01 1.07 0.79 29.00 1.96 9994 3566 751 
GROUP 4 3.37 0.85 0.91 18.38 1.21 6297 3285 43 
GROUP 5 5.19 0.54 1.08 2.61 0.28 1491 958 0 
GROUP 7 3.89 1.05 0.93 23.77 1.66 8584 3285 371 

AVERAGE 4.46 0.79 0.95 16.32 1.16 6066 2615 221 

Table 5.14. Results of compressing each group of the image data base 
using method LZWB2-A 

Cmprs. Dcmprs. 
Cmprs. C.F. C.F. time time Count Table Extra 

Group # factor FAX LZW s s smbl. size calls 

GROUP 1 6.00 0.61 1.05 13.72 1.02 6425 2255 168 
GROUP 2 5.49 0.66 0.96 13.29 1.04 6428 2401 0 
GROUP 3 2.98 1.06 0.79 27.04 2.39 14931 3608 803 
GROUP 4 3.40 0.86 0.92 20.48 1.42 8853 3310 50 
GROUP 5 5.29 0.55 1.10 2.91 0.30 1768 1012 0 
GROUP 7 3.81 1.03 0.91 27.79 1.99 12218 3330 380 

AVERAGE 4.50 0.79 0.95 17.54 1.36 8437 2653 234 
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Table 5.15. Results of compressing each group of the image data base 
using method LZWB2-B 

Cmprs. Dcmprs. 
Cmprs. C.F. C.F. time time Count Table Extra 

Group it factor FAX LZW s s smbl. size calls 

GROUP 1 6.28 0.63 1.10 15.77 1.02 6425 2493 196 
GROUP 2 5.72 0.68 1.00 15.44 1.05 6428 2661 0 
GROUP 3 3.07 1.09 0.81 30.79 2.39 14931 3731 925 
GROUP 4 3.53 0.89 0.96 22.73 1.42 8853 3485 105 
GROUP 5 5.48 0.57 1.14 3.63 0.29 1768 1323 0 
GROUP 7 3.86 1.04 0.92 26.14 1.99 12218 3512 494 

AVERAGE 4.66 0.82 0.99 19.08 1.36 8437 2868 287 

Table 5.16. Compression and decompression times averages for each group 
when compressed by the CCITT two dimensional compression 
technique with k = « 

Comprs. Dcmprs. 
time time 

Group It s s 

GROUP 1 3.70 2.96 
GROUP 2 4.09 3.22 
GROUP 3 6.37 5.86 
GROUP 4 4.63 3.90 
GROUP 5 1.48 1.14 
GROUP 7 5.58 4.88 

AVERAGE 4.31 3.66 



www.manaraa.com

120 

5,6. LZW vs. FAX 

By method FAX here and throughout the rest of the thesis, we mean, 

unless otherwise specified, the CCITT two dimensional coding technique 

with k = 00. The results of the average compression factor (c.f.) for 

each group were presented in Table 4.25 and the results of the compres

sion and decompression times are presented in Table 5.16. Comparing 

the results in the above tables with the results in Table 5.11, we get 

the following points: 

1) Compression factor: FAX gives higher c.f. than LZW for graphics 

data, such as group 2 (g2) and g5, and LZW gives higher c.f. than FAX 

for g3 and g7. This means when the data consist of mainly long black 

runs and short white runs FAX outperforms LZW, but when the data con

sists of mainly small runs, of black and white pels, LZW outperforms 

FAX. For the data that are mixed of short and long runs, it seems that 

FAX outperforms LZW as in group 4 or the average of group 1. 

2) LZW needs longer compression time (c.t.), almost 4 times the 

time used by FAX. But the LXW decompression time (d.t.) is smaller than 

that of FAX, almost 0.36 times the time used by FAX. The decompression 

times are in the range of 3 s and 1 s for FAX and LZW, respectively. 

5.7. LZWB and LZWB2 vs. LZW and FAX 

From Tables 5.11 and 5.12, we observe that LZWB advantages over 

LZW are that groups 1 and 5 have higher c.f. and lower d.t. and c.t. 

than those of LZW. The disadvantages are that the overall c.f. is 
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smaller and the table size is bigger. So, in general, LZW is still bet

ter than LZWB. 

Tables 5.14 and 5.15 show that initializing the LZW table, as in 

LZWB2-A and LZWB2-B, gave slight improvement in the c.f. and the bigger 

the initialized part is the bigger the increase in c.f. is. The increase 

in the LZWB2-B c.f. were 10% and 14% over the c.f. of LZW for gl and g5, 

respectively. These increases are 3% and 7% for LZWB. The d.t. are very 

small for g5, average of 29 s, with LZWB, LZWB2-A, and LZWB2-B. The dis

advantages of the initialization are that the c.t. and the counter out

put increase slightly with the initialized portion. 

Compared to FAX, methods LZWB, LZWB2-A, and LZl:7B2-B have c.f. no 

more than 10% higher for g3 and g7. But the c.f. of LZl̂ /B, LXWB2-A, and 

LZWB2-B are less than the c.f. of LZW for the same groups. 

5.8. LZIVBI vs. LZWB 

From Table 5.13, we notice that LZWBl has almost the same c.f. 

as IZWB. The c.t., d.t., and the counter output are smaller for LZWBl 

than for LZWB. So, the theory behind LZWBl worked but produced no over

all higher c.f. than LZWB. 

5.9. Conclusion 

Based on the results of the previous sections, we conclude that 

LZW gives a higher c.f. than FAX for some groups and lower d.t. for all 

groups. So, an improvement in the LZW that increases the c.f. is desir

able if LZW is to be used instead of FAX. 
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The techniques of compressing the run-lengths of the image instead 

of the Image itself gave better c.f. and d.t. than those of FAX for g3 

and g7. These techniques gave higher c.f. than LZW for gl and g5. 

This means that more improvement in these techniques may produce a c.f. 

that is better than both LZW and FAX. Moreover, in the case that we are 

investigating which consists of black and white text and graphics, each 

pel is represented by 1 bit. So, it is envisioned that for the case of 

colored images where each pel is represented by more than one bit, the 

LZWBs methods will give better c.f. and they may be better than LZW 

and/or FAX. 
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6. MODIFICATIONS TO THE LZW ALGORITHM 

Each entry in the LZlf algorithm table consists of a string symbol 

and a character symbol that was previously encountered after this string. 

Reference [43] suggested using a table in which each entry consists of 

the symbols of two strings that were encountered after each other. This 

modification was chosen because it was expected that it would result 

in matching longer input strings to table entries. So, both LZW and the 

method suggested by [43] search for the longest string in the input that 

can be matched to a string encountered before; but the strings that are 

obtained by this method are predicted to be longer. 

The search for the longest string in LZW is easy because after each 

successful match the string increases by one character. Hence, in LZW 

the search starts at symbol 256 and continues in one pass till all the 

table entries are searched. The search in this new method is not so 

easy because searching for the longest string requires the decomposition 

of every table entry that has as its first character the next unprocessed 

character in the input. Reference [43] did not show how it accomplished 

this task. In designing a code to do this task, the following two prob

lems arose: 

1) The first character of each table entry should be stored 
in a separate table so that only strings beginning with 
the required character are searched. Without this stor
ing, it would be necessary to decompose each table entry 
just to see if it starts with the desired character or 
not; this results in a big increase in the compression 
time. 

2) The decomposition of each table entry that begins with 
the desired character will take long searches; so, it 



www.manaraa.com

124 

is desirable to search for the longest block without the 
need to do these long searches. 

In the following sections, we will propose two new methods that 

we will call LZWl and LZW2 and that search for the longest string with

out decomposing every table entry that begins with the next unprocessed 

input character. Next, a method of decomposing every possible table 

entry will be presented. This method, that we will call LZW3, follows 

the concept suggested in [43]; nevertheless, it is not clear if [43] 

designed the details of the method in the same way we did. Actually, 

[43] never showed how to get the longest string, although this is a 

critical point in applying the concept that [43] proposed. 

The following definitions are used in the following discussions and 

in the code used to simulate the above three methods: 

= The last string sent to the output. 

Lj = The current longest string to be sent to the output. 

ŵ  = The first symbol of a table entry. 

Wg = The second symbol of a table entry. 

ŵ  = The first character of Wg in a table entry. 

first_char = The first character in w while searching for 
the longest block. 

code(wl, w2) = The code of the tables index corresponding to 
"ŵ ,wg". It is found by a scan function. 

The variables w_ and first char are used to solve the first of the j — 

two problems mentioned above. Since these two variables represent a 

character, 8 bits are needed to address each of them. The variable ŵ  

represents a string symbol; hence, at least 12 bits are needed to ad
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dress in the case of a 4096 entry table. To simulate a table where 

each entry consists of ŵ , and ŵ , three.tables were used. Two of 

these tables, where in these two each entry is an unsigned number, repre

sent ŵ  and Wg and the third table is a table of characters that repre

sent ŵ . 

Note that LZW used one table of unsigned numbers to represent w 

and a character table to represent k. The three tables mentioned above 

need more memory than the two tables of LZW. This explains the need to 

use the far pointers in coding these new methods. To make the code of 

LZW as close as possible to the code of its modifications, far pointers 

were also used in coding LZW although there was no need for these far 

pointers. 

6.1. Method LZWl 

Method LZWl avoids using long searches, used in LZW3 later, by 

firstly, finding the longest string it can build character by charac

ter, i.e., it will search the ŵ  table with ŵ  only equal to one of the 

character symbols. Secondly, it enters a second loop where it searches 

for a string that begins with the current string and that matches the 

input. If it finds that string, this string will be the LZWl current 

string, and this second loop will start again. If no string, that be

gins with the current string and matches the input, was found, the cur

rent string will be in this case the longest string we can get. Hence, 

it will be sent out, the tables will be updated, and LZWl will start 

again in the first loop. The coding of LZWl can be described as follows. 
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in a C language like code; 

1. in_index = out_index = 0; 

2. = input[in_index++]; 

output[out_index++] = L̂ ; 

Lj = input[input_index++]; 

first_char = ; 

3. while (in_index < bufr_size) 

{ 

while Cin_index < bufr_size) 

{ 

«2 = input[input_index++]; 

if (string "wl,w2" is in the tables] 

= code(wl,w2); 

else 

first__char = ŵ ; 

} 

while (in_index < bufr_size) 

{ 

start from "position" and search wl_table and 

w3_table for symbol "code" that corresponds 

to wl and first_charOj; 

if(tables has ŵ  as first string and second string 
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starts with first_char, i.e., corresponding 

first_char) 

{ 

position = code + 1; 

find Wg at the matched symbol code; 

decompose into characters; 

if (Wg matches the input) 

{ 

ŵ  = code; 

adjust in_index; 

first_char = input[input_index++]; 

} 

} 

else 

break 

) 

= "li 

output[out_index++] = ; 

update tables wl_table, w2_table, and w3_table with L 

Lj, and ŵ , respectively; 

Li=L.; 

ŵ  = Wg = first_char; 

} 

END. 
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The decompression is straightforward and can be described as 

follows : 

1. in_index = out_index = 0; 

2. while (in_index < input_size) 

{ 

ŵ  = input [ in_index-H-] ; 

decompose(ŵ ); 

update decompress buffer with characters from ŵ  

decomposition; 

update wl table and w2 table with w, and w„; 
— — i / 

ŵ  = ŵ } 

3. END. 

Appendix H contains the listing of the LZWl code. 

6.2. Method LZW2 

Method LZW2 does more searching than LZWl in order to get the 

longest string. It also consists of a "while" loop that contains two 

smaller "while" loops. The outer and first "while" loops are similar 

to the ones in LZWl. The second "while" loop is different. 

In LZWl, the second "while" loop can be summarized as follows: 

while (more input and more table entries are to be searched) 

{ 

read next character element in the input string; 

match the input string to a table entry that has ŵ  

as its first string and first_char as first character 
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of the entry second string; 

let = symbol of the matched entry; 

} 

In LZW2, the second "while" loop can be summarized as follows: 

while (more input and more table entries are to be searched) 

{ 

read next character element in the input string; 

loop till you find the longest string that matches 

the input and has ŵ  as its first string and first_char 

as the first character of its second string; 

let ŵ  = symbol of the longest matched string; 

} 

The decompression of LZW2 is exactly the same as of LZWl. Appendix 

I contains the listing of the LZW2 code. 

6.3. Method LZW3 

Method LZW3 searches in the LZW table for the longest possible 

string. It searches every single element that has ŵ  as its first 

string and its second string ŵ  starts with first_char. To make the 

search more efficient, we also make a table for the second character 

of Wg and use this information to speed up the search. In the results, 

we will see that even with this improvement, LZW3 takes a very long time 

without producing a considerable increase in the compression factor. 

The decompression process of LZW3 is exactly the same as of LZWl. Ap

pendix J contains the listing of the LZW3 code. 
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6.4. Results of Compression Using LZWl, 

LZW2, and LZW3 

To compare the LZW, LZWl, LZW2, and LZW3 methods, we apply them 

to an image that has an infinite size and consists of a repetition of 

the same byte, e.g., black or white images. From manually tracing the 

methods, we observe that after sending n symbols from each method, 

these symbols represent a total number of input bytes, we will call 

"sum", as follows : 

1) LZW: sum = 1+2+3+4+ +n 

which can be expressed as 

sum 2 
n(n+l) 

int((n-l)/2) 
2) LZWl; sum = 1+1+2+2+4+4+8+8+16+16 +2 

which can be expressed for n = 2m as 

sum = 2(1+2+4+8+ +2°"̂ ) 

= 2̂ "+̂  - 2 

= _ 2 ; n = 2, 4, 6, 8 

3) LZW2: sum = 1+1 +2+2 +4 +6+6 +12 +18+18 +36 +54+54 +108 

for n = 2 + 3m and n > = 5 we get 

sum = 1+1 +(2+2+6+6+18+18+54+54+....) 

+(4+12+36+108+...) 

= 1+1 +4(1+3+9+27+ ) +4(1+3+9+27+ ) 
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2 +8(1+3+9+27+ +3̂ " 

= 2 +8(1+3+9+27+ +3(((n-2)/3)-l)̂  

;n=5,8,ll,14,... 

= 2 + 4(3 -1) 

;n=5,8,ll,l4,. . . 

4) LZW3: sum = 1+1+2+3+5+8+13+21 +a 
n 

from [45], we get 

iW) 
where = 0, â  = 1, â  = 1, â  = 2, and so on. 

These terms can be summed as two geometrical series. Hence, after 

rearranging, we get: 

2 sum = — 
/5 /s - 1 /5 + 1 

Table 6.1 contains the results of sum with respect to some values 

of n for LZW, LZW1-LZW3. These values are drawn in Figures 6.1 and 6.2. 

From the above table and figures, we see that for small values of n, LZW 

gives higher value of sum than the other methods. LZW3 crosses LZW at 

almost n = 6 and then rises very fast. LZWl and LZW2 cross LZW at almost 

n = 9 and 8, respectively, then rise but not as fast as LZW3, with LZW2 

being the highest. We will use these results in our analysis of the 
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Size of the data represented by n symbols for each LZWx 
method 

LZW LZWl LZW2 LZW3 

1 1 1 1 
3 2 2 2 
6 4 4 4 
10 6 6 7 
15 10 10 12 
21 14 16 20 
28 22 22 33 
36 30 34 54 
45 46 52 88 
55 62 70 143 
66 94 106 232 
78 126 160 376 
91 190 214 609 
105 254 322 986 
120 382 484 1596 
136 510 646 2583 
153 766 970 4180 
171 1022 1456 6764 
190 1534 1942 10945 
210 2046 2914 17710 
231 3070 4372 28656 
253 4094 5830 46367 
276 6142 8746 75024 
300 8190 13120 121392 
325 12286 17494 196417 
351 16382 26242 317810 
378 24574 39364 514228 
406 32766 52486 832039 
435 49150 78730 1346268 
465 65534 118096 2178308 
496 98302 157462 3524577 
528 131070 236194 5702886 
561 196606 354292 9227464 
595 262142 472390 14930351 
630 393214 708586 24157816 
666 524286 1062880 39088168 
703 786430 1417174 63245985 
741 1048574 2125762 l.OE+08 
780 1572862 3188644 1.7E+08 
820 2097150 4251526 2.7E+08 
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Figure 6.1. Plot of size of data (sum) vs. number of symbols 
used (n) for compressing a white image of infinite 
size (n = 1 to 10) 
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LZWl 
LZW2 

Number of symbols sent, n 

Figure 6.2. Plot of size of data (sum) vs. number of symbols 
used (n) for compressing a white image of in
finite size (n = 11 to 20) 
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images compression results. Note that although this theoretical treat

ment shows a big difference between the methods for the infinite image, 

the results are not the same for an image of limited size. Table 6.2 

contains the results of compressing a white screen using each of the LZW 

methods. This table shows that there is no big difference in the c.f. 

of the 4 LZW methods. 

The results of compressing each group by methods LZWl, LZW2, and 

LZW3 are presented in Tables 6.3, 6.4, and 6.5, respectively. Table 6.6 

contains the results of compressing each group using "LZW3+LZWB1" which 

is similar to LZWbl but with the LZW3 used instead of LZW. From these 

tables and the corresponding tables for LZW and FAX, we get the follow

ing remarks; 

1) The results of LZW2 and LZWl are very close to LZW. LZWl and 

LZW2 have very small advantage in c.f. and table size. LZW2 has slight

ly higher c.t. than LZWl. The c.t. of both methods are slightly higher 

than the c.t. of LZW. The table size of both LZWl and LZW2 are very 

slightly higher than LZW. Taking all the groups into consideration, it 

seems that LZWl and LZW2 give better c.f. and d.t. than IZW. 

2) LZW3 gives better c.f. than LZW for all groups except g3. The 

d.t. of LZW3 is similar to LZW but its c.t. is very big. In fact, the 

c.t. of LZW3 is bigger than one minute; for this reason, we do not in

clude c.t. in the tables of LZW3. 

3) LZW gives better c.f. than LZWl and LZW2 for g3 and g4. This 

can be explained by using the theoretical analysis we presented before. 
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Table 6.2. Results of compressing a white screen, using methods FAX, 
LZW, LZWL, LZW2, and LZW3 

Comprs. Decomprs. 
Comprs. time time Table Extra 

Method factor s s size calls 

FAX 305.49 2.79 1.54 NÂ  NA 
LZW 59.48 8.95 1.59 ' 434 0 
LZWl 340.43 2.64 1.48 286 0 
LZW2 363.64 3.13 1.49 284 0 
LZW3 410.26 5.44 1.54 281 0 

N̂A = entry not valid for this method. 

Table 6.3. Results of compressing each group of the image data using 
method LZWl 

Comprs. Dcmprs. 
Comprs. C.F. C.F. time time Table Extra 

Group # factor FAX LZW s s size calls 

GROUP 1 6.29 0.64 1.10 13.32 1.20 2118 49 
GROUP 2 5.72 0.68 1.00 13.43 1.37 2209 0 
GROUP 3 3.60 1.28 0.95 29.14 1.46 3388 268 
GROUP 4 3.62 0.91 0.98 22.60 1.36 3127 33 
GROUP 5 5.31 0.55 1.10 3.20 0.47 941 0 
GROUP 7 4.27 1.15 1.02 30.28 1.46 3208 308 

AVERAGE 4.80 0.87 1.03 18.66 1.22 2499 110 
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Table 6.4. Results of compressing each group of the image data base 
using method LZW2 

Comprs. Dcmprs. 
Comprs. C.F. C.F. time time Table Extra 

Group // factor FAX LZW s s size calls 

GROUP 1 6.35 0.64 1.11 15.04 1.20 2113 48 
GROUP 2 5.78 0.69 1.01 15.16 1.36 2187 0 
GROUP 3 3.62 1.29 0.96 32.82 1.47 3386 260 
GROUP 4 3.64 0.92 0.99 24.25 1.35 3113 31 
GROUP 5 5.40 0.56 1.12 3.68 0.43 936 0 
GROUP 6 4.30 1.16 1.03 29.20 1.46 3200 309 

AVERAGE 4.85 0.88 1.04 20.03 1.21 2489 108 

Table 6.5. Results of compressing each group of the image data base 
using method LZW3 

Dcmprs. 
Comprs. C.F. C.F. time Table Extra 

Group # factor FAX LZW s size calls 

GROUP 1 6.62 0.67 1.16 1.43 2056 39 
GROUP 2 6.12 0.73 1.07 1.57 2048 0 
GROUP 3 3.74 1.33 0.99 1.59 3345 216 
GROUP 4 3.77 0.95 1.02 1.48 3047 14 
GROUP 5 5.82 0.61 1.21 0.47 894 0 
GROUP 7 4.54 1.23 1.08 1.59 3149 268 

AVERAGE 5.10 0.92 1.09 1.36 2423 90 
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Table 6.6. Results of compressing each group of the image data base, 
using method LZW3 combined with LZWBl 

Dcmprs. 
Comprs, C.F. C.F. time Table Extra 

Group # factor FAX LZW s size calls 

GROUP 1 6.06 0.61 1.06 1.01 2215 182 
GROUP 2 5.53 0.66 0.97 0.98 2323 0 
GROUP 3 3.00 1.07 0.79 2.04 3567 858 
GROUP 4 3.34 0.84 0.91 1.28 3294 69 
GROUP 5 5.77 0.60 1.20 0.27 930 0 
GROUP 7 4.14 1.12 0.99 1.74 3261 451 

AVERAGE 4.64 0.82 0.98 1.22 2598 260 



www.manaraa.com

139 

Since the analysis showed that LZW is better than LZWl and LZW2 for small 

values of n adding to that the fact that g3 and g4 contain a lot of text 

(which means the run-lengths of these two groups consist of small runs), 

the length of the strings LZWl and LZW2 produce in the LZW table is 

small, hence LZW is better. 

4) The same conclusion reached in 3 about LZWl and LZW2 can be 

reached for LZW3. But as the calculation shows, LZW3 crosses with LZW 

for smaller values of n and does much better than LZW for bigger values 

of n; hence, in general, LZW3 is better than IZW. Table 6.5 showed 

that LZW3 always had bigger c.f. than LZW except for g3 where the c.f. 

of the two methods were very close to each other. 

4) The c.f. of LZW1-LZW3 compared to FAX are, as was the case for 

LZW, higher for g3 and g5 and lower for the other groups. The ratio of 

the c.f. of LZW3 to that of FAX is 1.35 for g3 which is screens full of 

text. This big gain in c.f. for g3 justifies using LZW3 at least for 

S3. 

5) From Table 6.6, it is clear that the only advantage LZW3+LZWB1 

has over LZW3 is a slightly less d.t. LZW3+LZWB1 has the disadvantage 

of lower c.f. and slightly bigger table size. Compared to LZWBl alone, 

LZW3_LZ\̂ B1 gives a higher c.f. The same analysis and conclusion we got 

for LZWBl in Chapter 4 applies to LZW3+LZWB1. 
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7. METHODS R8, R4, AND BIG 

7.1. Method R8 

The following observations led to the development of methods R8 and 

R4: 

1) LZW gives higher c.f. if the input contains repeated strings 

and strings that can be built from each other. The methods LZWBs were 

an attempt to change the input data to LZW from just the pels of the 

screen in their regular form to other form, run-lengths symbols, that 

might result in a higher c.f. using LZW. As was shown in Chapter 5, 

this attempt was successful for some groups and not successful for 

others. So, another attempt to produce better input.to LZW was de

veloped by the author. 

2) The attempt of Chapter 6 to produce better versions of LZW gave 

modified versions of LZW (namely, LZWl, LZW2, and LZW3) that gave bet

ter c.f. than LZW but not as high as expected. 

3) LZW, LZWl, LZW2, and LZW3 gave better c.f. than FAX for g3 

which consists of screens full of text. At the first glance, it seems 

that groups consisting of mainly graphical data, and not g3, should give 

higher c.f. because there is no relation between the screen bytes in 

the case of g3. But, besides the fact that FAX is not optimum for 

screens that have a lot of small white and black runs, a closer look at 

the functioning of LZW and the structure of the input data suggests that 

LZW does better than FAX for g3 because LZW benefits from the dependency 
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between the characters themselves. That is to say, if character "B" 

comes after "A", the rows of pels representing "B" come after the rows 

of pels representing "A". This results in adding, to the LZW table, 

a number of strings equal to the character height (assume from now on 

that the character height is 8). So, the next time "B" comes after "A", 

LZW will detect that 8 strings have already been encountered before and 

are in the table. Hence, LZW represents these 8 strings with fewer sym

bols than in the case of an input from the normal scan. Note that at 

this point LZW denotes any of LZW, LZWl, LZW2, and LZW3. 

Taking the above 3 points into consideration, we developed methods 

R8 and R4. Method R8 can be explained as follows. 

Instead of reading the screen in the normal scan, R8 divides the 

screen into blocks of 8 lines and reads each block column by column, 

where a column width is one byte. Figure 7.1 represents the normal 

scan and the scan in method R8. So, method R8 is not a compression 

method; it is only a way of arranging the screen data in the best form 

for compression. Consequently, method R8 (similarly, R4) should be 

used with any LZW method. The notation for using LZW combined with 

R8 will be "LZW+R8". Throughout the rest of the thesis the notation 

LZWx will be used to denote LZW, LZWl, LZW2, or LZW3 (so, x = 0, 1, 2, 

or 3 with LZWO denoting LZW). The notation Ry will be used to denote 

R8 or R4. The letter "R" in the method name stands for "rotated" scan. 

The numbers 4 and 8 stand for the column width in pels. 
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of method RS 
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7.2. Method R4 

Method R8 was designed with the screen viewed as characters in 

order to increase the c.f. of compressing textual data. But for graphics 

screens or blocks this view may not be the best idea for compression. 

To investigate this point, we developed method R4. R4 works similar to 

R8 except that the column width in the rotated scan is 4 pels or half a 

byte. It is envisioned that this will work better for graphics data 

because it can isolate longer strings, specially runs of black pels. 

Another reason for developing R4 is that such a scanning method 

might be necessary when scanning typed material where the character width 

of each letter is not the same for all letters. 

7.3. Method BIG 

LZW is known to work better as the input data size increases, up 

to a certain limit [41]. In all the previous LZWx methods, we compress 

a screen or part of a screen; this means that the input data maximum 

size is 16 KB. The previous methods (e.g., LZWx+Ry) results showed that 

the table size was smaller than the table maximum size. This means, 

as will be cleared later, there is a room for increasing the input size. 

In method BIG, we use any of the previous methods to compress more than 

one screen. So, BIG is not an actual method but we name it as a method 

to make the comparison and investigation clearer. 
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7.4. Results and Analysis of R8 and R4 

Tables 7.1 and 7.2 contain the results of using LZW with R8 and 

R4, respectively. Tables 7.3 and 7,4 contain the results of using 

LZWl with R8 and R4, respectively. Tables 7.5 and 7.6 contain the re

sults of using LZW2 with R8 and R4, respectively. Tables 7.7 and 7.8 

contain the results of using LZW3 with R8 and R4, respectively. 

From the above mentioned tables, we get the following points: 

1) For all groups, Ry+LZW3 gives higher c.f. than Ry+LZWx 
(where x=0, 1, 2) and LZWx without Ry. 

2) c.f. of R8 vs. c.f. of R4: the c.f. results of the dif
ferent groups can be classified as follows: 

a) For gl, R4+LZW or R4+LZW1 is almost the same as 
R8+LZW or R8+LZW1, respectively, and R4+LZW2 or 
R4+LZW3 is better than the R8+LZW2 or R8+LZW3, 
respectively. 

b) For g2, R4 is better than R8 when any of them is com
bined with LZWl, LZW2, or LZW3. For the LZW, R8 is 
better. 

c) For g3, R8 is better than R4 for any LZWx. 

d) For g4, R4 is better than R8 for any LZWx. 

e) For g5, R4 is better than R8 for LZW1-LZW3 and R8 
is better than R4 for LZW. 

f) For g7, R4 is better than R8 for LZWl and LZW2, same 
as R8 for LZW3. For g7, using LZW, R8 is better than 
R4. 

From the above classification, it is clear that, as ex
pected, R8 is better than R4 when the data is only, or 
mostly, a textual screen. But for graphical data, R4 is 
better. When the data are a combination of text and 
graphics R4 is better or at least the same as R8 for all 
the LZWx methods except LZW. 
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Table 7.1. Results of compressing each group of the image data base 
using method LZW combined with method R8 

Comprs. Dcmprs. 
Comprs. C.F. C.F. time time Table Extra 

Group # factor FAX LZW s s size calls 

GROUP 1 6.96 0.70 1.21 14,58 1.79 1706 0 
GROUP 2 6.70 0.80 1.18 16.78 2.09 1928 0 
GROUP 3 5.84 2.08 1.54 20.09 2.09 2313 0 
GROUP 4 4.41 1.11 1.20 24.33 1.99 2761 0 
GROUP 5 5.44 0.57 1.13 3.89 0.67 855 0 
GROUP 6 4.67 1.26 1.11 24.01 2.07 2882 167 

AVERAGE 5.67 1.09 1.23 17.28 1.78 2074 28 

Table 7.2. Results of compressing each group of the image data base 
using method LZW combined with method R4 

Comprs. Dcmprs. 
Comprs. C.F. C.F. time time Table Extra 

Group # factor FAX LZW s s size calls 

GROUP 1 6.95 0.70 1.21 15.10 2.06 1726 0 
GROUP 2 6.61 0.79 1.16 17.67 2.41 1959 0 
GROUP 3 5.40 1.92 1.42 22.65 2.39 2513 24 
GROUP 4 4.67 1.18 1.27 24.32 2.25 2620 0 
GROUP 5 5.47 0.57 1.13 4.07 0.76 859 0 
GROUP 7 4.59 1.24 1.10 25.74 2.38 3207 208 

AVERAGE 5.62 1.07 1.22 18.26 2.04 2147 39 
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Table 7.3. Results of compressing each group of the image data base 
using method L2Mfl combined with method R8 

Comprs. Dcmprs. 
Comprs. C.F. C.F. time time Table Extra 

Group 1/ factor FAX LZW s s size calls 

GROUP 1 7.51 0.76 1.31 7.83 1.16 1598 0 
GROUP 2 6.78 0.81 1.19 10.21 1.33 1895 0 
GROUP 3 7.58 2.70 2.00 11.68 1.43 1974 0 
GROUP 4 4.71 1.19 1.28 17.46 1.31 2698 0 
GROUP 5 5.80 0.60 1.20 2.42 0.44 839 0 
GROUP 7 4.86 1.31 1.16 25.10 1.43 2948 228 

AVERAGE 6.21 1.23 1.36 12.45 1.18 1992 38 

Table 7.4. Results of compressing each group of the image data base 
using method LZWl combined with method R4 

Comprs. Dcmprs. 
Comprs. C.F. C.F. time time Table Extra 

Group it factor FAX LZW s s size calls 

GROUP 1 7.52 0.76 1.31 7.63 1.17 1590 0 
GROUP 2 6.95 0.83 1.22 9.72 1.35 1864 0 
GROUP 3 6.98 2.48 1.84 13.05 1.44 2127 21 
GROUP 4 5.19 1.31 1.41 14.83 1.32 2453 0 
GROUP 5 6.02 0.63 1.25 2.33 0.45 824 0 
GROUP 6 4.94 1.34 1.18 24.51 1.45 2905 249 

AVERAGE 6.27 1.22 1.37 12.01 1.20 1961 45 



www.manaraa.com

147 

Table 7.5. Results of compressing each group of the image data base 
using method LZW2 combined with method R3 

CoQprs. Dcmprs. 
Comprs. C»F. C.F. time time Table Extra 

Group // factor FAX LZW s s size calls 

GROUP 1 
GROUP 2 
GROUP 3 
GROUP 4 
GROUP 5 
GROUP 7 

AVERAGE 6.22 1.23 1.36 13.10 1.19 1988 38 

Table 7.6. Results of compressing each group of the image data base 
using method LZW2 combined with method R4 

Comprs. Dcmprs. 
Comprs. C.F. C.F. time time Table Extra 

Group a factor FAX LZW s s size calls 

GROUP 1 7.64 0.77 1.33 8.91 1.18 1521 0 
GROUP 2 6.91 0.82 1.21 11.33 1.37 1877 0 
GROUP 3 6.59 2.35 1.74 15.88 1.47 2133 15 
GROUP 4 5.12 1.29 1.39 17.03 1.31 2474 0 
GROUP 5 6.06 0.63 1.26 2.65 0.41 822 0 
GROUP 7 4.99 1.35 1.19 21.92 1.45 2893 249 

AVERAGE 6.22 1.20 1.35 12.95 1.20 1953 44 

7.56 0.76 1.32 9.04 1.16 1589 0 
6.84 0.82 1.20 11.65 1.36 1884 0 
7.64 2.72 2.02 14.37 1.42 1970 0 
4.65 1.17 1.26 18.98 1.32 2701 0 
5.83 0.61 1.21 2.78 0.41 837 0 
4.82 1.30 1.15 21.80 1.44 2944 226 
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Table 7.7. Results of compressing each group of the image data 
base using method LZW3 combined with method R8 

Dcmprs. 
Comprs. C.F. C.F. time Table Extra 

Group it factor FAX LZW s size calls 

GROUP 1 8.07 0.82 1.41 1.48 1515 0 
GROUP 2 7.33 0.87 1.29 1.57 1781 0 
GROUP 3 7.84 2.79 2.07 1.58 1915 0 
GROUP 4 4.93 1.24 1.34 1.51 2599 0 
GROUP 5 6.41 0.67 1.33 0.51 790 0 
GROUP 7 5.30 1.43 1.26 1.63 2835 200 

AVERAGE 6.65 1.30 1.45 1.38 1906 33 

Table 7.8. Results of compressing each group of the image data 
base using method LZW3 combined with method R4 

Dcmprs. • 

Comprs. C.F. C.F. time Table Extra 
Group it factor FAX LZW s size calls 

GROUP 1 8.17 0.83 1.43 2.14 1506 0 
GROUP 2 7.41 0.88 1.30 2.40 1773 0 
GROUP 3 7.31 2.60 1.93 2.41 2075 0 
GROUP 4 5.41 1.36 1.47 2.28 2387 0 
GROUP 5 6.60 0.69 1.37 0.72 783 0 
GROUP 7 5.30 1.43 1.26 2.43 2827 228 

AVERAGE 6.70 1.30 1.46 2.06 1892 38 
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Although the c.f. ratios (LZW3/FAX) and (LZW3/LZW) seem 
to be the same for R4 and R8 when combined with LZW3, the 
average c.f. of all groups is higher in the case of R4 
(6.7 for R4 vs. 6.65 for R8). 

3) R4 has higher d.t. than R8 when any of them is combined 
with LZW or LZW3 and almost the same as R8 when any of 
them is combined with LZWl or LZW2. The d.t. of R8+LZW3 
is approximately 2/3 of the d.t. of R4+LZW3. 

d.t. of R8+LZWX (x=l, 2, 3) are less than d.t. of R8+LZW 

with R8+LZW1 and R8+LZW2 having the smallest values. 

d.t. of R4+LZW1 or R4+LZW2 are less than d.t. of R4+LZW. 
d.t. of R4+LZW3 is the same as d.t. of R4+LZW. 

So, for Ry+LZWx (x=l, 2, 3), although LZW1-LZW3 have longer 
strings to be decomposed than LZW, the number of strings 
in the case of LZW1-LZW3 is less, resulting in a d.t. 
smaller than or equal to the d.t. of LZW. 

4) Although unexpected, the c.t. of Ry+LZWl or Ry+LZW2 are 
smaller than the c.t. of Ry+LXIV. Most of the c.t. of 
LZW3 or Ry+LZW3 are longer than one minute, so it was 
decided not to include them in the tables. 

5) The table size for Ry+LZWx decreases as x increases. The 
table size of R4+LZWx is close to the table size for 
R8+LZWX for each corresponding value of x. 

6) For g3, the c.f. of R8+LZWx increases as x increases. R4 
has a similar trend except for R4+LZW2, where the c.f. 
is less than R4+LZW1 but still higher than LZW. 

7) The c.f. of Ry+LZW3 is higher than FAX for g3, g4, and g7 
and less for easy graphics such as g2, g5, and gl which is 
mixed of text and easy graphics. The result of compress
ing gl can be explained by the fact that the majority of 
the documents in gl are easy graphics ; only document 4 
can be considered as a "text only" document. Hence, the 
effect of documents totally or partially consisting of 
graphics cause the c.f. of FAX to be higher than Ry+LZW3. 

The highest ratio of the c.f. of Ry+LZWx to FAX c.f. 
is for R8+LZW3 where it is 2.79. 

8) LZWl or LZW2 when combined with Ry give c.f. that are 
smaller than LZW3+Ry by no more than 10%; but they have 
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the advantage of lower d.t. and extremely lower c.t. in 
comparison to LZW3. So, If the c.t. Is not important, 
as In our case, LZW3+Ry is the best choice. Choosing 
between R4 and R8 depends on the group of data to be 
compressed and the. d.t. allowed. But as we saw before, 
LZW3+R4 gives an overall c.f. that is higher than LZW3+R8 
and its d.t. is only in the range of 2 s (=1.5 times the 
d.t. of LZW3+R8). Hence, we think LZW3+R4 should be the 
choice. 

Furthermore, R8 may not do as well for variable width 
characters as it did in the case of g3 as shown in Tables 
7.7. 

If the c.t. is Important, Ry+LZWl or Ry+LZW2 is the choice. 
From the previous data and analysis, there is no big dif
ference between Ry+LZWl and Ry+LZW2, and choosing any of 
them will do as well as the other. 

7.5. Results and Analysis of BIG 

To investigate BIG, we grouped two or more files for a total of 

19 groups or combinations. To avoid confusion with the group numbering 

that we made in Chapter 3, we call these "combinations" and denote them 

by cl, c2,... etc. Table 7.9 lists these combinations and the images 

they combine. The images in each combination are listed in their com

pression order. Tables 7.10-7.12 contain the c.f. results of BIG+Ry+LZWx 

(x=0, 2, and 3). Table 7.13 contains the c.t. results of BIG+Ry+LZW and 

BIG+Ry+LZW2. Since the c.t. results of BIG+Ry+LZW3 are bigger than 1 

mln, they will not be included. Table 7.14 contains the summation of 

the c.t. of the individual Images in each combination when each indi

vidual image is compressed alone using Ry+LZW and Ry+LZW2. Table 7.15 

contains the extra calls made when compressing each combination. The 

presence of negative values of the "extracalls" is used to denote that 
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Table 7.9. The combinations used in BIG 

Combination image 1 Image 2 Image 3 Image 4 Image 5 

1 docla 
2 doc2a 
3 doc4a 
4 doc6a 
5 docla 
6 doc2a 
7 doc4a 
8 doc4a 
9 doc4a 
10 doc4a 
11 doc4a 
12 doc4a 
13 doc4a 
14 doc4a 
15 doc6a 
16 doc6a 
17 doc6a 
18 doc6a 
19 doc6a 

doclb doclc 
doc2c doc2c 
doc4b 
doc6b 
doclb 
doc2b 
doc4b romtxt 
doc4b £rnch2a 
doc4b doc4c 
doc4b doc4a 
doc4b doc2a 
doc4b cprog 
doc2a doc4b 
electrc doc4b 
doc6b doc8 
doc6b frnch3a 
doc6b electrc 
doc6b flowchrt 
doc6b flowchrt 

romtxt frnch2a 

electro 
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Table 7.10. Compression factor results using Ry+LZW 

Combi
nation R8+LZW R4+LZW 
# BIG IND BIG/IND BIG/FAX BIG IND BIG/IND BIG/FAX 

1 6.70 6.07 1.10 1.00 6.61 6.05 1.09 0.99 
2 11.49 9.34 1.23 0.77 11.37 9.35 1.22 0.76 
3 5.97 5.09 1.17 3.51 5.54 4.72 1.17 3.26 
4 8,49 7.55 1.12 0.71 8.65 7.82 1.11 0.72 
5 5.09 4.80 1.06 1.01 5.00 4.77 1.05 1.00 
6 9.80 8.61 1.14 0.73 9.79 8.66 1.13 0.73 
7 4.34 4.85 0.89 2.73 2.54 4.53 0.56 1.60 
8 4.07 4.45 0.91 2.29 2.84 3.74 0.76 1.60 
9 2.78 4.44 0.63 1.67 2.57 3.84 0.67 1.55 
10 6.61 5.16 1.28 3.78 6.16 4.79 1.29 3.52 
11 6.70 5.98 1.12 2.78 6.11 5.63 1.09 2.54 
12 6.68 6.09 1.10 3.01 5.25 5.64 0.93 2.36 
13 6.78 5.98 1.13 2.81 6.51 5.63 1.16 2.70 
14 5.23 4.91 1.07 2.91 4.94 4.59 1.08 2.74 
15 8.46 7.54 1.12 0.59 8.62 7.77 1.11 0.60 
16 8.89 7.52 1.18 0.74 8.85 7.59 1.17 0.74 
17 6.65 6.21 1.07 1.46 6.55 6.19 1.06 1.43 
18 7.48 6.66 1.12 0.86 7.51 6.81 1.10 0.87 
19 5.54 5.99 0.92 1.16 5.07 5.98 0.85 1.06 
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Table 7.11. Compression factor results using Ry+LZW2 

Combi
nation R8+LZW2 R4+LZW2 

it BIG IND BIG/IND BIG/FAX BIG IND BIG/IND BIG/FAX 

1 6.68 6.14 1.09 1.00 6.73 6.30 1.07 1.01 
2 10.97 9.05 1.21 0.74 11.10 9.18 1.21 0.75 
3 8.67 7.04 1.23 5.10 8.15 6.55 1.24 4.79 
4 8.50 7.91 1.07 0.71 8.96 8.18 1.10 0.75 
5 5.05 4.80 1.05 1.01 5.10 4.92 1.04 1.02 
6 9.33 8.19 1.14 0.69 9.46 8.35 1.13 0.70 
7 7.86 6.83 1.15 4.94 7.17 6.41 1.12 4.51 
8 5.57 5.20 1.07 3.13 4.09 4.43 0.92 2.30 
9 4.61 5.41 0.85 2.78 4.05 4.79 0.85 2.44 
10 10.49 7.13 1.47 5.99 9.99 6.59 1.52 5.72 
11 8.82 7.53 1.17 3.66 8.54 7.20 1.19 3.54 
12 10.03 8.42 1.19 4.52 9.41 7.74 1.22 4.24 
13 8.68 7.53 1.15 3.60 8.37 7.20 1.16 3.47 
14 6.55 6.04 1.08 3.64 6.14 5.72 1.07 3.41 
15 8.38 7.84 1.07 0.59 9.00 8.21 1.10 0.63 
16 8.58 7.67 1.12 0.71 9.03 7.80 1.16 0.75 
17 6.74 6.44 1.05 1.47 6.75 6.47 1.04 1.48 
18 7.34 6.88 1.07 0.85 7.81 7.09 1.10 0.90 
19 5.25 6.15 0.85 1.10 4.97 6.23 0.80 1.04 
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Table 7.12. Compression factor results using Ry+LZW3 

Combi
nation R4+LZW3 R4+LZW3 

// BIG IND BIG/IND BIG/FAX BIG IND BIG/IND BIG/FAX 

1 6.93 6.46 1.07 1.04 6.98 6.54 1.06 1.05 
2 11.63 9.77 1.19 0.78 11.73 9.89 1.19 0.79 
3 8.63 7.14 1.21 5.08 8.38 6.66 1.26 4.93 
4 9.60 8.67 1.11 0.80 9.79 9.02 1.09 0.82 
5 5.25 5.02 1.05 1.05 5.26 5.09 1.03 1.05 
6 9.86 8.88 1.11 0.73 9.99 9.03 1.11 0.74 
7 7.87 6.87 1.15 4.95 7.51 6.57 1.14 4.72 
8 5.69 5.36 1.06 3.20 4.36 4.55 0.96 2.45 
9 4.43 5.51 0.80 2.67 3.99 4.93 0.81 2.40 
10 10.54 7.19 1.47 6.02 10.24 6.72 1.52 5.85 
11 9.02 7.78 1.16 3.74 8.89 7.42 1.20 3.69 
12 10.15 8.50 1.19 4.57 9.75 7.97 1.22 4.39 
13 9.01 7.78 1.16 3.74 8.86 7.42 1.19 3,68 
14 6.87 6.24 1.10 3.82 6.69 5.95 1.12 3.72 
15 9.33 8.57 1.09 0.65 9.74 8.96 1.09 0.68 
16 9.59 8.37 1.15 0.80 9.70 8.64 1.12 0.81 
17 7.40 6.96 1.06 1.62 7.28 7.05 1.03 1.59 
18 8.30 7.43 1.12 0.96 8.51 7.74 1.10 0.98 
19 5.72 6.62 0.86 1.20 5.63 6.77 0.83 1.18 
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Table 7.13. Compression time of each combination using Ry+LZlf and 
Ry+LZW2 

Combination R8+LZW R4+LZW R8+LZW2 R4+LZW2 
# s s s s 

1 99 100 60 60 
2 60 61 36 38 
3 55 61 34 35 
4 37 39 24 23 
5 64 65 47 47 
6 31 32 23 24 
7 129 131 66 70 
8 121 125 96 121 
9 264 276 183 187 
10 96 104 52 53 
11 111 108 55 57 
12 111 112 47 49 
13 105 112 59 62 
14 105 114 83 89 
15 81 85 52 49 
16 70 85 48 47 
17 82 88 66 66 
18 75 78 58 56 
19 116 124 122 132 
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Table 7.14. Summation of the compression times of the Images in each 
combination using Ry+LZW and Ry+LZW2 

Combination R8+LZW R4+LZW R8+LZW2 R4+LZW2 
# s s s s 

1 58 60 36 36 
2 41 42 23 24 
3 44 48 26 27 
4 30 31 18 17 
5 46 46 32 31 
6 26 27 17 17 
7 66 72 40 42 
8 69 83 56 67 
9 98 115 75 87 
10 66 72 38 40 
11 55 60 34 36 
12 60 66 31 33 
13 55 60 34 36 
14 64 70 44 46 
15 45 46 28 26 
16 45 46 29 27 
17 50 53 37 36 
18 48 50 33 30 
19 68 72 51 49 
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Table 7.15. Extra calls required when compressing each combination 
using Ry+LZW, Ry+LZW2, and Ry+LZW3 

Combi
nation 
# R8+LZW R4+LZW R8+LZW2 R4+LZW2 R8+LZW3 R4+LZW3 

1 936 1001 948 907 775 739 
2 -1059 -1028 -930 -963 -1093 -1115 
3 —268 12 -1382 -1225 -1371 -1299 
4 -1331 -1376 -1334 -1464 -1622 -1665 
5 346 422 381 338 219 214 
6 -1666 2434 -1557 -1589 -1679 -1707 
7 3523 8738 227 615 222 417 
8 4016 7422 1902 3981 1781 3496 
9 15320 16904 7705 9290 8179 9518 
10 995 1354 -794 -641 -809 -722 
11 936 1393 -218 -98 -299 -247 
12 947 2256 -655 -444 -692 -564 
13 874 1072 -159 -24 -293 -238 
14 2273 2633 1041 1365 816 936 
15 -61 -132 -28 -290 -413 -560 
16 -244 -229 -115 -300 -507 -547 
17 966 1038 906 898 480 547 
18 435 419 513 251 13 —88 
19 3861 4567 4281 4745 3612 3732 
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there were no extra calls and the number given, is equal to the table 

size minus the table maximum size, i.e., minus 4096. 

Checking the c.f. results in Tables 7.10-7.12, we observe that 

the method BIG, in general, produced the desired increase in the c.f. 

We also observe that the trends in the three tables are very similar. 

Hence, we chose to comment on only Table 7.12 which has the results of 

using BIG+Ry+LZW3. 

From Table 7.12, we see that the difference between using R4 and 

R8 is very small, except for c8. In general, as expected and explained 

before, R8 produces a higher c.f. for textual data and R4 produces a 

higher c.f. for graphics data. In the following, we will look at the 

results of BIG+R8+LZW3. We will refer to the. results of BIG+R4+LZW3 

when necessary. 

1) Combinations cl, c2, c3, and c4 represent the combination 
of the parts of each of the CCITT documents. This means 
the images combined in each combination are related to
gether. For this reason, the result of cl, c2, c3, and 
c4 shows an increase in the ratio of the c.f. if the 
combination is compressed at once, over the total c.f. 
if each image was compressed alone. Tables 7.10-7.12 
denote this ratio by BIG/IND, and we will use this nota
tion in the rest of the thesis. Among the BIG/IND ratios 
of cl, c2, c3, and c4, the highest ratio was that of c3. 
This is expected since this combination is a combination 
of two textual screens. Note that the c.f. of c3 is 8.63 
which is higher than the c.f. if each screen was sent 
as an ASCII text. If each screen was sent as ASCII text, 
then the c.f. is given by 

c.f. = 16000/(80x25) = 8.0 

We should note that the two textual screens in c3 have only 
24 lines each with the last line being blank characters. 
So, for a completely filled screen the c.f. may be a little 
less, or may be higher. 
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The fact that we get a c.f. of c3 that is higher than the 
c.f. if we send the screen as ASCII is a very interesting 
and important result. It means that without any pattern 
recognition we get a c.f. higher than the c.f. if pattern 
recognition is used. 

2) Combinations c5 and c6 are each the combination of the 
first two Images in cl and c2, respectively. Their c.f. 
result shows that for such images, compressing three 
images is better than compressing two Images in one com
bination. 

3) Combinations c7 and c8 consist of doc4a and doc4b each, 
followed by romtxt and frnchZa, respectively. The BIG/IND 
ratio of c7 is higher than that of c8. This difference 
can be explained by the following remarks; 

a) The characters in frnchZa are different from the 
characters in doc4a and doc4b while the characters 
of romtxt are the same. 

b) The image frnch2a is a screen filled with 22 lines 
while the images doc4a, doc4b, and romtxt are textual 
pages with 24 lines as a text and line 25 is blank. 
This means that, first image romtxt is more similar 
to doc4a and doc4b than image frnch2a. Second, the 
compression of frnch2a will not be as good as any of 
the other images because it is not in the best form 
for R8, i.e., it does not consist of lines that are 
next adjacent to each other and frnch2a has charac
ters of 8 pels high. 

4) The ratio of the c.f. of c8 using BIG+R8+LZW3 to the 
c.f. of BIG+R4+LZW3 Is the highest ratio in Table 7.12 
for any combination. 

5) Each of c9 and cl9 represent a combination of 5 images 
of textual and graphics screens, respectively. In the 
result of both combinations, BIG/IND is less than 1 but 
BIG/FAX is bigger than 1. The fact that BIG/IND is less 
than 1 suggests that, as expected, the LZWx methods lose 
their adaptation if the input size Increases beyond a 
certain limit. 

6) Combination clO shows how LZWx benefits from repeated 
strings and how it is highly adaptable. These two ob
servations come from the fact that doc4a is the first and 
third image in this combination. 
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7) Combinations cil and cl2 have images doc4a and doc4b as 
their first two images and doc2a and cprog as their third 
image, respectively. Although the third image is a 
graphics image in cll and a textual image in cl2, both 
combinations have BIG/IND around 1.15. This also shows 
the adaptability of LZWx. 

8) The second and third images In cl3 are the third and 
second images in cll. It is Interesting that with this 
flipping of the images order, the resulted c.f. are still 
almost the same. BIG+R4+LZW3 gives similar results. 

9) Combinations cl3 and cl4 both have doc4a and doc4b as 
their first and third images, and their second image is 
a graphical screen. Both combinations give BIG/IND big
ger than 1.10. This also shows the adaptability of LZWx. 

10) In the combination cl5, the third image is completely 
different from the first two images and still BIG/IND 
is bigger than 1. This also shows the adaptability of 
LZWx. 

11) Combinations cl6, cl7, and cl8 start each with two related 
graphics screens, namely, doc6a and doc6b, followed by 
a third image that is also a graphics screen. The BIG/IND 
is bigger than 1 in the three combinations. The BIG/IND 
ratio Increases with the c.f. of the third image. 

12) In most combinations, there were some extra calls made 
but this did not affect the c.f. very much. 

13) The compression time of the document increases as its 
order in compression increases. The compression time for 
images other than the first image is usually longer than 
when compressing this image alone. This is due to the 
fact that the method takes longer time to search the table 
as the table size increases. 
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8. GENERAL ANALYSES 

In the previous chapters, we looked at the methods when we developed 

them. In this chapter, we will present some general remarks about these 

methods. 

8.1. Building the Screen 

In Chapter 3, we defined group 6 as a group that contains an image 

that is built gradually and can be divided into smaller blocks. We saw 

in Chapter 4 that, when using FAX, this division does not increase the 

total c.f. of the small blocks. We did not look at this point for the 

methods LZWx in the last chapters. Table 8.1 presents the results of 

dividing the image pdraw3 into 4 smaller blocks using all the methods 

developed so far. 

From Table 8.1, we conclude that LZWx does not benefit from divid

ing the screen into smaller blocks. This is due to the fact that LZWx 

works better as the input size increases, but by dividing the screen we 

produce data of sizes smaller than the size of the original block; hence, 

the c.f. will decrease. For small blocks, the LZWx method will not 

gather enough data about the input to be able to produce a high c.f. 

8.2. Screen Division 

Table 8.2 gives the total c.f. when the screen is cut into two or 

three equal parts then each part is compressed alone using all previous 

compression methods. The table shows that the total c.f. of FAX is not 
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Table 8.1. Compression factors of image pdraw3 taken as a whole and 
as 4 parts and using all methods 

4 parts 
Method 4 parts Whole whole 

FAX 2.91 4.19 0.69 
LZW 2.58 4.00 0.65 
LZW+R8 3.35 5.76 0.58 
LZW+R4 3.16 5.59 0.57 
LZWl 2.53 3.95 0,64 
LZW1+R8 3.60 6.32 0.57 
LZW1+R4 3.41 6.32 0.54 
LZW2 2.53 3.96 0.64 
LZW2+R8 3.59 6.54 0.55 
LZW2+R4 3.40 6.24 0.54 
LZW3 2.64 4.08 0.65 
LZW3+R8 3.70 6.97 0.53 
LZW3+R4 3.62 6.68 0.54 
LZW3+LZWB1 2.18 3.40 0.64 
LZWB 2.11 3.39 0.62 
LZWBl 2.18 3.44 0.63 
LZWB2-A 2.15 3.42 0.63 
LZWB2-B 2.29 3.52 0.65 
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Table 8.2. Compression factors of romtxt and doc6a taken as whole 
2-part and 3-part figures using all methods 

ROMTXT D0C6A 
2 3 2 3 

2 3 parts parts 2 3 parts parts 
Method parts parts total total parts parts total total 

FAX 1.40 1.40 1.00 1.00 9.52 9.44 0.99 0.98 
LZW 2.12 1.98 0.90 0.84 4.41 4.14 0.91 0.85 
LZW+R8 3.75 3.36 0.85 0.76 5.53 5.08 0.88 0.81 
LZW4-R4 3.52 3.12 0.84 0.74 5.60 5.22 0.89 0.83 
LZWl 1.97 1.85 0.91 0.86 5.41 5.07 0.93 0.87 
LZW1+R8 5.01 4.34 0.78 0.67 5.55 5.23 0.93 0.87 
LZW1+R4 4.71 3.96 0.75 0.63 5.81 5.37 0.91 0.85 
LZW2 1.97 1.85 0.91 0.86 5.61 5.17 0.95 0.88 
LZW2+R8 5.01 4.34 0.78 0.67 5.60 5.10 0.92 0.84 
LZW2+R4 4.66 3.98 0.76 0.65 5.81 5.36 0.93 0.86 
LZW3 2.02 1.88 0.91 0.85 5.93 5.54 0.94 0.88 
LZW3+R8 5.03 4.34 0.79 0.68 6.28 5.78 0.91 0.84 
LZW3+R4 4.69 4.05 0.75 0.65 6.38 5.94 0.92 0.86 
LZW3+LZWB1 1.43 1.43 0.91 0.85 5.60 5.36 0.94 0.90 
LZWB 1.55 1.45 0.91 0.85 5.42 5.10 0.93 0.87 
LZWBl 1.57 1.46 0.91 0.84 5.46 5.20 0.94 0.89 
LZWB2-A 1.56 1.45 0.91 0.85 5.54 5.26 0.94 0.89 
LZWB2-B 1.61 1.51 0.93 0.87 5.79 5.56 0.94 0.90 
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affected by this division while the total c.f. of LZWx is reduced by 

this division. This observation of FAX can be explained by the fact 

that FAX uses the information of only the previous line when coding the 

current line. This understanding of FAX allows us to assume that the 

total c.f. of compressing two or more screens together using FAX is, in 

fact, the same as the total c.f. when each screen is compressed alone. 

In the previous chapter, we implicitly used this result. Of course, 

LZWx benefits from compressing two or more screens together as was shown 

by the results of BIG in the previous chapter. 

8.3. The Significance of the Groups Averages 

Since there is no standard test to compare different compression 

algorithms, we developed the image data base described in Chapter 3. 

Comparing two compression methods based on the result of only one image 

or one group of Images can be misleading. We avoid this problem by look

ing at the results of each group, the average of each group, and the aver

age of all groups averages. This comprehensive checking makes sure that 

we avoid any anomaly that might exist in any Image or group. But this 

creates another problem that might not be apparently noticeable; this 

problem is that this group averaging makes it subtle to notice the power 

these methods have when compressing some of the images. So, the best 

way is to use the group average and the average of all groups averages 

while keeping in mind that for some individual images (or groups) we may 

get a c.f. considerably higher than the average value. For the above 

reasons, we include Tables 8.3-8.22. Tables 8.3-8.10 contain the results 
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Table 8.3. Results of compressing images in group 1 using method R8+LZW2 

Comprs. Decomprs. 
Comprs. time time Table Extra 

Image factor s s size calls 

docla 7.10 8.56 1.37 1757 0 
doclb 3.63 23.13 1.48 3191 0 
doclc 13.85 4.78 1.31 1025 0 
doc2a 8.77 8.19 1.32 1471 0 
doc2b 7.69 9.12 1.27 1642 0 
doc2c 11.44 6.09 1.26 1187 0 
doc4a 7.33 11.80 1.43 1710 0 
doc4b 6.77 14.44 1.43 1831 0 
doc4c 5.21 4.88 0.66 1156 0 
doc51a 4.58 11.26 1.10 2116 0 
docSIb 7.70 7.64 1.09 1363 0 
docSIc 10.93 2.53 0.60 692 0 
docSra 4.83 11.09 1.04 1910 0 
docSrb 6.64 6.43 0.99 1460 0 
docSrc 4.55 4.73 0.61 1239 0 
doc6a 6.07 12.09 1.32 2011 0 
doc6b 11.35 6.32 1.32 1195 0 
doc8 7.71 9.72 1.32 1638 0 



www.manaraa.com

166 

Table 8.4. Results of compressing images in group 2 using method 
R8+LZW2 

Comprs. Decomprs. 
Comprs. time time Table Extra 

Image factor s s size calls 

frnch3a 7.23 10.22 1.37 1731 0 
flowchrt 5.46 14.83 1.37 2208 0 
electrc 4.70 18.23 1.37 2524 0 
ordrfrm 7.98 10.16 1.43 1591 0 
fmchla 6.05 10.71 1.32 2018 0 
doc2a 8.77 8.24 1.37 1471 0 
doc2b 7.69 9.17 1.32 1642 0 

AVERAGE 6.84 11.65 1.36 1884 0 

Table 8.5. Results of compressing images in group 3 using method 
R8+LZW2 

Comprs. Decomprs. 
Comprs. time time Table Extra 

Image factor s s size calls 

romtxt 6.46 14.00 1.48 1907 0 
frnch2a 3.41 29.88 1.42 3387 0 
pagel 8.75 9.34 1.37 1474 0 
docl—2 10.89 7.41 1.43 1234 0 
cprog 13.85 5.00 1.32 1025 0 
doclb 3.63 23.07 1.42 3191 0 
doc4a 7.33 11.81 1.48 1710 0 
doc4b 6.77 14.45 1.43 1970 0 

AVERAGE 7.64 14.37 1.42 1970 0 
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Table 8.6. Results of compressing images in group 4 using method 
R8+LZW2 

Comprs. 
File Comprs. time 
name factor s 

pdraw3 7.31 10.10 
sciencel 3.80 22.19 
science2 2.92 32.19 
docSla 4.58 11.43 

AVERAGE 4.65 18.98 

Decomprs. 
time Table Extra 
s size calls 

1.38 1715 0 
1.37 3063 0 
1.42 3910 0 
1.10 2116 0 

1.32 2701 0 
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Table 8.7. Results of compressing images in group 1 using method 
R4+L2W2 

Conçrs. Decomprs. 
Comprs. time time Table Extra 

Image factor s s size calls 

docla 7.40 8.24 1.37 697 0 
doclb 3.68 22.90 1.48 3150 0 
doclc 14.39 4.89 1.32 996 0 
doc2a 8.95 8.40 1.32 1447 0 
doc2b 7.82 9.06 1.32 1619 0 
doc2c 11.45 6.37 1.31 1186 0 
doc4a 6.65 12.42 1.43 1858 0 
doc4b 6.46 14.77 1.48 1907 0 
doc4c 4.89 4.89 0.66 1214 0 
docSla 6.06 8.40 1.15 1663 0 
docSlb 7.50 7.14 1.10 1392 0 
docSlc 10.93 2.14 0.61 692 0 
docSra 4.56 12.03 1.10 2009 0 
doc5rb 6.45 6.98 0.99 1495 0 
docSrc 3.94 5.33 0.60 1392 0 
doc6a 6.24 11.48 1.32 1965 0 
doc6b 11.89 5.44 1.32 1152 0 
doc8 8.26 9.44 1.32 1546 0 

AVERAGE 7.64 8.91 1.18 1521 0 
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Table 8.8. Results of compressing images in group 2 using method 
R4+LZW2 

Comprs. Decomprs. 
Comprs. time time Table Extra 

Image factor s s size calls 

frnchSa 7.13 10.05 1.32 1750 0 
flowchrt 5.60 13.35 1.37 2158 0 
electrc 4.56 18.90 1.43 2593 0 
ordrfrm 8.36 8.84 1.42 1530 0 
frnchla 5.96 10.71 1.43 2045 0 
doc2a 8.95 8.40 1.32 1447 0 
doc2b 7.82 9.06 1.32 1619 0 

AVERAGE 6.91 11.33 1.37 1877 0 

Table 8.9. Results of compressing images in group 3 using method 
R4+LZW2 

Comprs. Decomprs. 
Comprs. time time Table Extra 

Image factor s s size calls 

romtxt 6.13 14.34 1.48 1996 0 
fmch2a 2.69 40.20 1.54 4096 122 
pagel 8.06 9.11 1.37 1579 0 
docl-2 9.76 7.80 1.48 1348 0 
cprog 12.16 5.38 1.43 1132 0 
doclb 3.68 22.90 1.49 3150 0 
doc4a 6.65 12.52 1.43 1858 0 
doc4b 6.46 14.78 1.53 1907 0 

AVERAGE 6.95 15.88 1.47 2133 15 
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Table 8.10. Results of compressing images in group 4 using method 
R4+LZW2 

Comprs. 
Comprs. time 

Image factor s 

pdraw3 7.21 11.20 
sciencel 3.98 20.93 
science2 3.22 27.68 
doc51a 6.06 8.29 

Decomprs. 
time Table Extra 
s size calls 

1.37 1735 0 
1.37 2932 0 
1.42 3567 0 
1.09 1663 0 

AVERAGE 5.12 17.03 1.31 2474 0 



www.manaraa.com

171 

Table 8.11. Results of compressing images in group 1 using method 
LZW3 

Decomprs. 
Comprs. time Table Extra 

Image factor s size calls 

docla 6.97 1.60 1786 0 
doclb 3.59 1.65 3228 0 
doclc 15.17 3.25 958 0 
doc2a 7.96 1.54 1594 0 
doc2b 7.32 1.53 1712 0 
doc2c 10.78 1.54 1244 0 
doc4a 2.77 1.54 4096 0 
doc4b 2.35 1.59 4096 701 
doc4c 2.17 0.72 2418 0 
docSla 3.92 1.26 2434 0 
docSlb 6.04 1.21 1668 0 
docSlc 12.35 0.66 652 0 
docSra 2.86 1.26 3054 0 
docSrb 6.64 1.16 1460 0 
docSrc 3.11 0.66 1736 0 
doc6a 6.30 1.59 1948 0 
doc6b 11.68 1.53 1168 0 
doc8 7.09 1.53 1760 0 

AVERAGE 6.62 1.43 2056 39 
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Table 8.12. Results of compressing images in group 2 using method 
LZW3 

Decomprs. 
Comprs. time Table Extra 

Image factor s size calls 

frnch3a 7.06 1.54 1766 0 
flowchrt 4.63 1.59 2558 0 
electro 4.25 1.60 2762 0 
ordrfrm 5.38 1.59 2236 0 
frnchla 6.25 1.59 1962 0 
doc2a 7.96 1.54 1594 0 
doc2b 7.32 1.54 1712 0 

AVERAGE 6.12 1.57 2084 0 

Table 8.13. Results of compressing images in group 3 using method 
LZW3 

Decomprs. 
Comprs. time Table Extra 

Image factor s size calls 

romtxt 2.22 1.65 4096 970 
fmch2a 2.74 1.60 4096 51 
pagel 3.99 1.64 2926 0 
docl-2 4.61 1.54 2566 0 
cprog 7.62 1.54 1654 0 
doclb 3.59 1.59 3228 0 
doc4a 2.77 1.54 4096 0 
doc4b 2.35 1.64 4096 701 

AVERAGE 3.74 1.59 3345 216 
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Table 8.14. Results of compressing images in group 4 using method 
LZW3 

Image 
Comprs. 
factor 

Decomprs. 
time 
s 

Table 
size 

Extra 
calls 

pdraw3 4.71 1.48 2520 0 
sciencel 3.70 1.59 3136 0 
scienceZ 2.74 1.59 4096 56 
docSla 3.92 1.27 2434 0 

AVERAGE 3.77 1.48 3047 14 
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Table 8.15. Results of compressing images in group 1 using method 
R8+LZW3 

Decomprs. 
Comprs. time Table Extra 

Image factor s size calls 

docla 7.35 2.08 1707 0 
doclb 3.81 1.59 3056 0 
doclc 15.15 3.35 959 0 
doc2a 9.49 1.59 1379 0 
doc2b 8.35 1.59 1532 0 
doc2c 12.21 1.59 1128 0 
doc4a 7.29 1.54 1718 7 
doc4b 6.99 1.59 1780 0 
doc4c 5.20 0.72 1158 0 
doc51a 4.83 1.31 2022 0 
doc51b 8.36 1.27 1276 0 
doc51c 12.38 0.72 641 0 
doc5ra 5.06 1.15 1836 0 
doc5rb 6.94 1.15 1408 0 
doc5rc 4.85 0.66 1179 0 
doc6a 6.87 1.59 1808 0 
doc 6b 11.73 1.54 1164 0 
doc8 8.39 1.60 1526 0 

AVERAGE 8.07 1.48 1515 0 
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Table 8.16. Results of compressing images in group 2 using method 
R8+LZW3 

Decomprs. 
Comprs. time Table Extra 

Image factor s size calls 

frnch3a 7.83 1.65 1617 0 
flowchrt 5.79 1.53 2098 0 
electrc 4.99 1.49 2392 0 
ordrfrm 8.60 1.54 1495 0 
frnchla 6.27 1.59 1956 0 
doc2a 9.49 1.59 1379 0 
doc2b 8.35 1.59 1532 0 

AVERAGE 7.33 1.57 1781 0 

Table 8.17. Results of compressing images in group 3 using method 
R8+LZW3 

Decomprs. 
Comprs. time Table Extra 

Image factor s size calls 

romtxt 6.40 1.53 1922 0 
frnch2a 3.58 1.59 3238 0 
pagel 9.41 1.60 1389 0 
docl-2 11.49 1.59 1183 0 
cprog 13.76 1.59 1030 0 
doclb 3.81 1.64 3056 0 
doc4a 7.29 1.54 1718 0 
doc4b 6.99 1.54 1780 0 

AVERAGE 7.84 1.58 1915 0 
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Table 8.18. Results of compressing images in group 4 using method 
R8+LZW3 

Decomprs. 
Comprs, time Table Extra 

Image factor s size calls 

pdraw3 7.95 1.54 1597 0 
sciencel 3.94 1.53 2962 0 
scienceZ 3.00 1.70 3814 0 
doc51a 4.83 1.27 2022 0 

AVERAGE 4.93 1.51 2599 0 
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Table 8.19. Results of compressing images in group 1 using method 
R4+LZW3 

Decomprs. 
Comprs. time Table Extra 

Image factor s size calls 

docla 7.48 2.42 1681 0 
doclb 3.86 2.47 3018 0 
doclc 15.12 3.68 960 0 
doc2a 9.65 2.37 1360 0 
doc 2b 8.49 2.41 1511 0 
doc2c 12.19 2.42 1130 0 
doc4a 6.84 2.36 1814 0 
doc4b 6.48 2.37 1902 0 
doc4c 5.01 1.04 1191 0 
docSla 6.39 1.98 1590 0 
doc51b 8.15 1.92 1302 0 
docSlc 12.85 1.10 627 0 
doc5ra 4.69 1.81 1960 0 
docSrb 7.06 1.82 1388 0 
docSrc 4.13 1.05 1339 0 
doc6a 6.92 2.41 1797 0 
doc6b 12.96 2.42 1078 0 
doc8 8.84 2.42 1461 0 

AVERAGE 8.17 2.14 1506 0 
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Table 8.20. Results of compressing images in group 2 using method 
R4+LZW3 

Decomprs. 
Comprs. time Table Extra 

Image factor s size calls 

frnch3a 7.96 2.37 1594 0 
flowchrt 6.03 2.42 2025 0 
electrc 4.91 2.36 2429 0 
ordrfrm 8.83 2.41 1462 0 
fmchla 6.01 2.42 2030 0 
doc2a 9.65 2.42 1360 0 
doc2b 8.49 2.41 1511 0 

AVERAGE 7.41 2.40 1773 0 

Table 8.21. Results of compressing images in group 3 using method 
R4+LZW3 

Decomprs. 
Comprs. time Table Extra 

Image factor s size calls 

romtxt 6.25 2.36 1963 0 
fmch2a 2.79 2.47 4073 0 
pagel 8.62 2.42 1493 0 
docl-2 10.48 2.41 1273 0 
cprog 13.17 2.42 1065 0 
doclb 3.86 2.41 3018 0 
doc4a 6.84 2.36 1814 0 
doc4b 6.48 2.41 1902 0 

AVERAGE 7.31 2.41 2075 0 
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Table 8.22. Results of compressing images in group 4 using method 
R4+LZW3 

Decomprs. 
Comprs. time Table Extra 

Image factor s size calls 

pdraw3 7.81 2.42 1620 0 
sciencel 4.13 2.36 2840 0 
science2 3.29 2.41 3496 0 
docSla 6.39 1.92 1590 0 
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of compressing gl, g2, g3, and g4 using Ry+LZW2. Tables 8.11-8.22 con

tain the results of compressing the above groups using LZW3 and Ry+LZW3. 

We have chosen these tables to show the detailed results of compressing 

each image or group using any LZWx method. Specifically, LZW3 was chosen 

because it has the highest c.f. among all LZWx methods and LZW2 was 

chosen because it is close to LZWl. 

To illustrate the above points, we give the following examples: 

1) The average c.f. of Table 8.22, which contains the results 
of compressing g4 using R4+LZW3, is bigger than the aver
age c.f. of Table 8.18, which contains the results of com
pressing g4 using R8+LZW3; but the c.f. of the image pdraw3 
in Table 8.18 is bigger than its c.f. in Table 8.22. 

2) From Table 8.17, the average c.f. when compressing the 
images in g3 using R8+LZW3 is 7.84 whereas the c.f. of 
image docl-2 is 11.49, i.e., considerably higher than the 
average c.f. 

3) Tables 7.7 and 7.8 give the group averages using R8+LZW3 
and R4+LZW3. From these tables, we see that R4+LZW3 gives 
higher groups average but R8+LZW3 gives higher c.f. for g3. 
Chapter 6 went into more detailed comparison of the groups 
results using Ry+LZWx. 

8.4. Using the CCITT Documents for Comparison 

To help in comparing the different methods we present Table 8.23 

which contains the results of the total compression factors of images 

docl, doc2, doc4, doc5, and doc6, where docx means docxa+docxb+...etc. 

Since these documents represent typical documents, it is easier to 

compare the methods using Table 8.23. Comparing the methods using this 

table, we get: 

1) For docl, R4+LZW3 has the highest c.f. among the other 
LZW methods. This c.f., 6.54, is slightly less than the 
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Table 8.23. Compression factors of the CCITT standard documents using 
all methods 

Documents 
Method docl doc2 doc4 doc5 doc6 Avera; 

FAX 6.67 14.89 1.69 4.74 12.00 8.00 
LZW 6.03 7.97 2.66 4.32 5.67 5.33 
LZW+R8 6.07 9.34 4.89 5.38 7.55 6.65 
LZW+R4 6.05 9.35 4.52 5.37 7.82 6.62 
LZWl 5.95 7.90 2.40 4.31 7.74 5.66 
LZW1+R8 6.16 8.95 6.64 5.78 7.74 7.05 
LZW1+R4 6.21 9.03 6.13 5.94 8.09 7.08 
L2W2 5.95 7.96 2.14 4.32 7.81 5.64 
LZW2+R8 6.14 9.05 6.62 5.83 7.91 7.11 
LZW2+R4 6.30 9.18 6.17 5.95 8.18 7.16 
LZW3 6.15 8.45 2.47 4.49 8.19 5.95 
LZW3+R8 6.46 9.77 6.69 6.20 8.67 7.56 
LZW3+R4 6.54 9.89 6.28 6.34 9.02 7.61 
LZW3+LZWB1 5.79 8.05 1.90 3.82 7.72 5.46 
LZWB 5.79 8.01 1.95 3.80 7.45 5.40 
LZWBl 5.82 7.99 1.97 3.80 7.42 5.40 
LZWB2-A 5.90 8.13 1.96 3.85 7.59 5.49 
LZWB2-B 6.18 8.58 1.99 4.01 7.91 5.73 
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c.f. of FAX, 6.67. FAX did better because the image con
tains a lot of empty spaces. 

2) For doc2, R4+LZW3 has the highest c.f., 9.89, among the 
other LZW methods. The c.f. of FAX is 50% higher. FAX 
did much better than R4+LZW3 because the image is a very 
simple graphics screen with long black runs and short 
white runs. 

3) For doc4, R8+LZW3 has the highest c.f. among the other LZW 
methods and the ratio of this c.f. to the corresponding 
c.f. of FAX is 3.96. This ratio is too high because doc4 
contains only textual data; and as we showed before Ry+LZWx 
does extremely better than FAX for textual data. 

4) For doc5, R4+LZW3 has the highest c.f. among the other LZW 
methods and the ratio of this c.f. to the corresponding 
c.f. of FAX is 1.34. The ratio is higher than 1 because 
the screen contains textual data. The fact that doc5 con
tains both text and graphics explains why the ratio is not 
as high as in the case of doc4. R4+LZW3 has higher c.f. 
than R8+LZW3 in this case due to the effect of the graphics 
data in doc5. 

5) For doc6, R4+LZW3 has the highest c.f. among the other LZW 
methods. This c.f. is 75% of the c.f. of FAX. The reason 
that FAX has the highest c.f. is that doc6 is any easy 
graphics screen. doc6 is not an easy graphics screen as 
doc2 is; this explains the difference between the ratio of 
the c.f. of R4+LZW3 to that of FAX for doc6 and the same 
ratio for doc2. This shows that as the graphics get more 
complex R4+LZWx becomes better till it produces a c.f. 
higher than FAX. 

6) We note that among the LZW methods, R4+LZW3 has the 
highest c.f. for graphics screens and screGng that have 
both textual and graphics data. R8+LZW3 has the highest 
c.f. for textual screens. 

7) Points 1 to 6 above agree with the observations we found 
in Chapter 7. 

8) Among all the LZW methods, R4+LZW3 has the highest average 
of the 5 images c.f. The average in the case of FAX was 
higher because of the high c.f. that FAX has for doc2 and 
doc6. 
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9) The c.f. of Ry+LZW3 is close to the c.f. of Ry+LZWl and 
Ry+LZW2. The c.f. of Ry+LZW3 is bigger by no more than 
10%. A similar trend is observed when the c.f. of LZW3 
is compared to the c.f. of LZWl and LZW2. 

8.5. Results of Group 5 

In Chapter 4, we presented the results of compressing the graphics 

blocks in g5. In Chapter 5, we presented the corresponding results using 

L2ÏÏÎ. The results of LZW show that LZW do not produce a c.f. higher than 

the c.f. of FAX for g5. The tables for the groups averages using all 

the LZW methods agree with this. This result agrees with the observa

tion we mentioned before in Section 8.1 that the LZW c.f. will decrease 

if the image is divided into smaller blocks. Hence, in the results of 

the modifications on LZW, we do not give a table for g5; instead, we 

only give the averages of each group. 

8.6. Results of Group 8 

In Chapter 3, group 8 was introduced to test the power of each 

method. To help in comparing the results of these methods when com

pressing the images in g8, we included the c.f. for all the methods in 

Table 8.24. From this table, we observe the following: 

1) For images blokô, boxes, and lines LZW3+LZWB1 gives 
the highest c.f. among all the methods, including FAX. 
This shows that the concept of the LZWBs is optimum for 
this kind of data. It also shows the need to use dif
ferent varieties of true images, as we did in the image 
data base, to compare the methods because, as we showed 
in Chapter 6, LZW3+LZWB1 did not perform as good as it 
is performing here. 

2) The c.f. of Ry+LZWl or Ry+ZLW2 are close to the c.f. of 
Ry+LZW3. Similarly, LZWl and LZW2 give c.f. close to the 
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Table 8.24. Compression factors of group 8 using all methods 

Image 
Method blokS blok6 boxes lines testl usamap 

FAX 109, .03 24, .54 69, .57 32, .07 49 .60 1. 56 
LZW 27, .97 10, ,98 16, ,06 15, .19 12 .79 6. 57 
LZW+R8 15, .47 11, ,80 21, ,30 15, .41 15 .01 7. 64 
LZW+R4 16. .79 14, .00 23. ,39 16, .68 14 .61 7. 27 
LZWl 51, .78 60. ,61 58. .18 81. ,22 26 .19 6. 36 
LZW1+R8 36, .87 24. ,84 38, ,37 52, ,81 18 .99 7. 33 
LZW1+R4 37, .91 27, ,35 44, .94 55, .75 21 .84 7. 51 
LZW2 56. .74 63. ,49 65. ,04 82, .47 30 .49 6. 37 
LZW2+R8 41. ,99 25. ,44 54. ,05 54, ,05 20 .22 7. 36 
LZW2+R4 37, .12 31. ,94 43. ,36 54, ,98 22 .75 7. 26 
LZW3 60, ,15 66. ,12 68. ,67 101. ,27 29 .88 6. 82 
LZW3+R8 49. .38 28. ,07 55. ,75 65. ,84 27 .65 8. 26 
LZW3+R4 46. .11 42. ,11 59. ,93 73, ,06 25 .54 7. 93 
LZW3+LZWB1 70, .18 91. ,95 75. ,47 137, ,93 30 .29 6. 47 
LZWB 54, .05 24. ,69 30. ,36 38. ,37 22 .60 NA 
LZWBl 46. .11 26. ,53 29. ,47 37, ,65 21 .61 5. 68 
LZWB2-A 54, .05 25, ,04 30. ,36 38, ,37 23 .94 NA 
LZWB2-B 24. ,92 30. ,36 30. ,36 38. ,37 23 .94 NA 
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c.f. of LZW3. This shows that although LZWl or LZW2 are 
not the optimum LZWx, they are close to the optimum 
method LZW3 without its complexity. 

3) The image "usamap" is an example where FAX fails to take 
advantage of the redundancy present in some images. 
The redundancy of this image is in the interior of the 
map which consists of strings of 0101... etc. that repre
sent the filling of the map. LZWx was able to detect 
this redundancy and give a higher c.f. R8+LZW3 has the 
highest c.f. for usamap, namely, 8.26. The ratio of the 
c.f. of R8+LZW3 to that of FAX is 5.29. 

8.7. The Significance of "Extracalls" 

The method LZW has a maximum number of symbols that it can recog

nize; this number is the table maximum size. The compressor and de

compressor agree not to put more symbols in the table if the table is 

filled up. This means that the LZW method loses its adaptability to the 

new input if the table is filled up. To measure the effect of filling 

up the table on the compression process, we count the number of the 

unsuccessful calls to the table after the table is filled up; this 

number is the variable "extracalls" in the results of LZW and the mod

ified LZWs. 

In the results of LZW, and its modifications, the extracalls were 

averaged for each group. This average value is misleading most of the 

time since most of the images do not require extracalls but the average 

shows that they do. So, the average of extracalls is meaningful only 

if compressing each image In a group requires extra calls. 
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8.8. Table Size 

The methods LZVTx assume the maximum size of the LZW table to be 

4096, which requires 12 bits to represent each symbol. But the results 

show that, for some Images and groups, the number of symbols that are 

actually used Is considerably less than the table maximum size. Using 

this fact, we propose to limit the size of the table for the Images 

or groups that use symbols less than the table maximum size. By limit

ing the table size, we limit the length of each symbol, decrease the 

size of the output of LZWx, and, hence. Increase the c.f. For example, 

if we let the table maximum size be 1024, the length of each symbol is 

only 10 bits; for an image that has a table size less than 1024 the c.f., 

will increase by exactly 20%, ((12/10)-1)100. This table size limita

tion is not arbitrary if we use a fixed addressing or a fixed symbol 

length scheme, which we will. In the case of a fixed length symbol, 

the table size must be only a number that is a power of 2 since any 

other number will result in losing some symbols. For example, if the 

maximum table size was chosen to be 2000, LZW needs 12 bits to address 

or represent each symbol. But if we use 12 bits, we can represent up to 

4096 symbols. So, this 12-bit length of the symbol allows us to use the 

symbols 2001 to 4096 which we will lose if we choose the maximum size to 

be 2000 symbols. 

From the results of Ry+LZWx, we find the following; 

1) For all Ry+LZWx, the average table size of g5 never ex
ceeded 1024. Hence, the table size of compressing g5 can 
be limited to 1024 giving an approximately 20% increase 
In the c.f. The Increase is approximate because some of 
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the Images in g5 require more than 1024 symbols. 

2) For all Ry+LZWx, the average table size of gl and g2 is 
less than 2048. Hence, the table size of compressing 
gl and g2 can be limited to 2048 giving an approximately 
9% increase in the c.f. 

3) For RS+LZWx (x=l, 2, and 3), the average table size of 
g3 is less than 2048. Hence, as in the above point, the 
table maximum size can be set to 2048. 

4) For doc4a and romtxt using R8+LZW2, the tables size are 
1710 and 1907, respectively, and the c.f. are 7.33 and 6.46, 
respectively. If we let the table maximum size be 2048, 
the c.f. of doc4a and romtxt will be 8 and 7.05, respective
ly. These new c.f. are very close to the c.f. if the image 
was sent as an ASCII code. This is an important result 
because it shows that, as we mentioned in last chapter, 
we can get a c.f. very close to and sometimes better than 
the c.f. of pattern recognition without worrying about the 
difficulties of pattern recognition. 

It should be noted that the way the code for the LZWx was written 

makes it easy to change the code in order to let the table maximum size 

be adaptive but no more than 4096. 

8.9. Remarks about R8 and R4 

R8 and R4 were designed with the assumption that it is easy to find 

the characters' height and then divide the screen accordingly; neverthe

less, it was envisioned that even if this information is not known, 

these two methods will still give a high c.f. The image frnch2a proves 

our vision because, although the image is in a textual format that is 

different than the one R8 and R4 was designed for, the ratio of the re

sulted c.f. to the c.f. when using FAX is 1.77 which is a considerable 

increase. 
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Finding the height of the text lines is a matter that can be easily 

solved. In fact, in some of the pattern recognition techniques, finding 

the height of each character is one feature, among many features, that 

should be extracted. Refer to [11] and [8], 
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9. CONCLUSION 

In this work, the author developed a number of new improved com

pression algorithms, an extended test data base, an analysis of library 

needs, and a variety of test results. From this work, a number of 

conclusions were drawn as enumerated below. 

1) For easy graphics images, i.e., images containing long 
runs of black pels and short runs of white pels, FAX 
gives high c.f. that is satisfactory to the goal of this 
research. For textual screens and complex graphics FAX 
performs poorly. 

2) The LZW method was simulated and gave a c.f. better than 
that of FAX for the images for which FAX did poorly. 
But LZW was not as good as FAX for the easy graphics 
images. 

3) Three new methods, that use the fact that the input to 
LZW is a long string of pels of a scanned screen, were 
proposed and investigated. The first method, LZliB, counts 
the run-lengths of the screen and sends them to LZW. The 
second method, LZWBl, uses part of the run-lengths used 
in the first method and adds to them codes for some of the 
most probable two and three runs. The third method, LZWB2, 
counts the run-lengths as in the first method; in addition 
to that, it initializes the LZW table with some of the 
most probable two and three run-lengths. Each of these 
proposed methods showed an improvement in the c.f. It 
was explained that in the case of colored images, it 
would be expected from these methods to give a better c.f. 

4) An improvement, LZW3, in LZW, as suggested in [43], was 
simulated, and, in general, a gave c.f. higher than LZW. 
LZW3 needs long c.t., so we proposed two versions that 
avoid the long searches required by LZW3. These two pro
posals, LZWl and LZW2, give c.f. close to that of LZW 
but much shorter c.t. 

5) Two improvements in the way LZWs scan the screen were 
suggested. These improvements, R8 and R4, work with any 
of the above LZWs. They produced higher c.f. than when 
using the LZWs alone and even in some cases gave smaller 
d. t. 



www.manaraa.com

190 

6) Combining two or three images in the compression using 
Ry+LZWx (for x = 0, 2, 3) was investigated and, in general, 
produced a higher compression factor than compressing 
each image alone. 

7) The library survey that was presented in Chapter 3 showed 
that about 50% of the library material was in text format. 
The detailed format of the text varies from one library 
material, e.g., a book or a magazine, to another. 

8) Using some of the proposed methods, e.g., R8+LZW2, it 
was possible to reach a c.f. for a textual screen that 
is close to or even higher than the c.f. of compression 
methods that employ a pattern recognition technique. 
The proposed methods are much simpler to implement, need 
much less computation, and are more adaptive to the data 
change. 

From the above observations, we reach the conclusion that R8+LZW3 

should be used unless we are compressing a screen that is full of easy 

graphics. In this case of easy graphics screens, the system should be 

able to compress the screen using FAX and inform the receiver of the 

change in the compression method. The library system can handle the 

long c.t. of R8+LZW3. The d.t. of R8+LZW3, which is in the range of 1 to 

2 s, is acceptable for the library system. The c.t. of LZW3 is higher 

than that of other LZWx methods but, as was mentioned at the beginning 

of the research, the compression in the library system is done once so 

the c.t. is allowed to be long. For real time compression, LZWl or LZW2 

should be used instead of LZW3. 

The system should also be able to detect the needed maximum size 

of the table and signal the receiver accordingly. 
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9.1. Suggestions for Future Work 

The following points are suggested and should be investigated: 

1) The maximum size of the LZW table should be Increased 
over 4096 to compress many images at the same time or 
to compress colored images. Increasing the table size 
increases the c.t., d.t., and, hopefully, the c.f. Long 
c.t. is tolerable in the library system. Since both 
the d.t. and the c.f. increase at the same time, there 
is a trade-off that needs to be investigated. 

2) The modifications of LZWBs to work on colored images. 

3) The use of method BIG to compress an actual page which 
usually consists of more than one screen. 

4) The success of LZW for this type of data indicates that 
more methods in the field of data compression via textual 
substitution should be investigated as image compression 
methods. 

5} LZW builds its table using the first character that has 
not been sent yet. This gives LZW a look-ahead feature 
that raises its c.f. The methods LZWl, LZW2, and LZW3 
do not have this look-ahead feature so their d.t. is 
shorter than LZW, but this feature may raise their c.f., 
specifically for textual screens. So, a modified LZWl-
LZW3 that include the look-ahead feature should be in
vestigated. 

6) The application of LZWx in more than one pass that may in
crease the c.f. This may be better than increasing the 
table size. 

7) Implementing the LZWx in hardware. [43] reported on a 
hardware implementation but with no details. 

8) The use of Ry+LZWx for library material images captured 
using a camera or a scanner. The c.f. obtained in this 
thesis using FAX for the screen images are much smaller 
than the values reported for images scanned at high 
resolution and compressed using FAX. So, the c.f. for 
scanned documents using Ry+LZWx should be investigated. 

9) Applying Ry+LZWx to images other than library material 
like astronomical and medical images. 
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10) Changing the FAX modified Huffman table, although we 
think it will not be beneficial as we induced before. 

11) Improving FAX so that it can use the information from 
lines before the previous line in order to code the 
current line, and from parts other than the parts next 
to each other. 

12) Compressing the output of FAX, after modifying this 
output, using any of the LZWx methods. 

13) The extension of both FAX and Ry+LZWx to colored images. 

14) Developing a method similar to R4 but whose block height 
is only 4 pels. Developing similar methods with different 
block height. 

15) Using a hashing function to speed up the search in the 
LZW table in order to decrease the c.t. Examples of simple 
hashing functions are the following: 

a) The number of characters, and not symbols, in the 
string. 

b) The count of the values of the characters in the 
string. 

c) The third character in the string. 

For the kind of strings we get in the 137 table while 
compressing the library material Images, it is envisioned 
that any of these simple functions will perform success
fully. 
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APPENDIX A. IMAGES USED IN THE DATA BASE 
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Dear Pete, 

Ferait He to introduce you to the facility of facsiwile 
transHissioB. 

IH facsiHile a pLotocel! is caused to perfora a ruter scan over 
the subject copy. The variations of print density on the document 
cause the photocell to qenerate an analogous electrical videc signal. 
This signal is used to Modulate a carrier, which is transmitted to a 
remote destination over a radio or cable coHwinications link. 

At the rejttte terainaL diHodulation reconstructs the video 
signal, which is used to Modulate the density of print produced hy a 
printing device. This device is scanning in a raster scan synchronized 
with that at the transmitting teminal. As a result, a facsimile 
copy of the subject docuwent is produced. 

Probably you have uses for this facility in your organization. 
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IL'ordre de lancement et de realisation des applications fait l'objet Je decis 
niveau de la Direction Generale des lelecoiwunications. Il n'est certes 
construire ce swstew intégré "en bloc' mis bien au contrain de procéder 
paliers successifs. Certaines applications, dont la rentabilité ne pourra e 
seront pas entreprises. ActuelleHent. sur trente applications qui ont pu 
definiesi six en sont au stade de l'exploitation, six autres se sont vu donne 
leur realisation. 
Chaque application est confiee a un "cbef de projet", responsable suc 
conception, de son analgse-programwation et de sa wise en oeuvre dans un 
La generalisation ultérieure de l'application realisee dans cette reaion-pil 
résultats obtenus et fait l'objet d^une decision de la Direction Generale 
chef de projet doit des le depart considérer que son activité a une vocation 
refuser tout.particularisH. regional, Il est aide d'une, équipé d'analy 
et entoure d'un "groupe de conception" charge de rediger le docuwent d 
objectifs globaux" puis le "cabier des cbmes" de l'application, qui sont 
a tous les services utilisateurs potentiels et aux chefs de projet des autr 
Le groupe de conception coMPrend 6 a 16 personnes représentant les se 
divers concernes par le projet, et coHporte obligatoirewent un bon analyste 
plication. 

II - L'IMPLANTATION GEOGKAGHiaUE D'UN mm INFORMATIQUE MMOKMANT 

L'organisation de l'entreprise française des telecoiwunications repose sur 
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www.manaraa.com

20 regions. Des calculateurs ont etf iHplantes dus le passe au mins dans, 
iHportantes. On trouve ainsi des Hachines Bull Gaiwa 30 a Lyon et Marseil 
a Lille. Bordeaux, Toulouse et Montpellier, un GE 437 a Hassy, enfin q 
Bull 300 T1 a programes caUes etaient recetwent ou sont encore en s 
regions de Nancy, Nantes, Limoges, Poitiers et Rouen ; ce parc est essent 
pour la. compatibilité telepLonique, . , .. 
A l'avenir, si la plupart des fichiers nécessaires aux applications decrites 
etre seres entewps différé, un certain nombre d'entre eux devront necessai 
cessibles, voir mis a jour en temps reel : parais ces derniers le ficLier 
abonnes, le ficMer des renseignements, le fichier des circuits, le ficLie 
abonnes contiendront des quantités considerables d'information. 
Le volume total de caractères a gerer en phase finale sur un ordinateur 
welques 500 000 abonnes a ete estime a un milliard de cvacteres au moin 
tiers des donnees seront concemees par des traitements en temps ree 
Aucun des calculateurs enumeres plus haut ne permettait d'envisager de 
L'intégration progressive de toutes les applications suppose la creation d'un 
pour toutes les informations, une veritable "Banques de donnees" repart 
de traitement nationaux et régionaux, et qui devra rester alimentee, mise a 
nence, a partir de la base de l'entreprise, c'est-à-dire les chantiers, le 
guichets des services d'abonnement, les services de personnel etc. 
L'etude des différents fichiers a constituer a donc permis de définir les pr 
teristiques du reseau d'ordinateurs nouveaux a mettre en place pour aborder 
du system informatif. L'obligation de faite appel a des ordinateurs de trois 
très puissantes et dotes de volumneuses mémoires de masse, a conduit a en 

ro 
o 
ON 

Figure 12.8. Image docAb 
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tielleMent le mowtre.", , . ,i^ 
L'iHplantation Je sept centres Je calcul interroaicnaux constituera un 
d'une part le désir de reduire le coût econonique de renseHble de taciliter 
des eguipes d'infornaticiens, et d'autre part le refus de creer des centres 
difficiles a gerer et a diriger, et posant des problenes délicats de securi 
ient des traitements relatifs a plusieurs regions sur chacun de ces sept c 
de leur donner une taille relativement hoHogene. Chaque centre "cerera" 
lion d'abonnes a la fin du lileme Plan. 
La mise en place de ces centres a dekte au debut de l'annee 1971 un ordina 
la Compagnie Internationale pour l'Informatique a ete installe a Toulouse e 
ttene machine vient d'etre mise en service au centre de calcul interregion 

ro 
o 

Figure 12.9. Image docAc 
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Cela est d'autant plus valaUa que TA/ est plus 

Îrand. A cet égard la figure 2 represente la vraie courbe onnant |<^(/)i en fonction de / pour les valeurs numé
riques indiquées page precedente. 

4 
1» fw&l 

FIg, 2 

Dans ce cas, le filtre adapte pourra etre constitue, 
conforNBwent a la figure 3, par la cascade 

d'un filtre passe-bande de transfert unite pour 
fo < f < fo •A/ %% de transfert quasi nul pour 
f < fo et f> fo + AA filtre ne Modifiant pas la Phase 

N) 
O 
00 

Figure 12.10, Image doc51a 
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des conponants le traversant : 

J L L-O 

Ha. 9 

— filtre suivi d'une ligne a retard (LAK) disper 
sive ayant un tews de propagation de groupe i r 
décroissait linéairement avec la frequence / suivant 
l'expression 

Td = To + t/o-/J^(avec T o  >  T }  

(voir fig. 4) 

i 

T*..... 

\T: 

to 
o 
VO 

Figure 12.11. Image doc51b 
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IW 
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to 
M 
O 

Figure 12.12. Image docSIc 
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telle ligne a retail est donnee par : 

^ s — Sn r To èf 

**0 

Et cette phase est bien l'oppose de 
a un déphasage constant près (sans iNportance) 
et a un retard To près (inevitable), 
Un signal utile S i t )  traversant un tel filtre adapte 

donne a la sortie (a un retard To yres et un dépha
sage près de la porteuse) un signal dont la transfpriiee 
de Murier est reelle. constante entre _fo et fwA/, 
et nulle de part et d'autre de fo et defoAf, c'est-
à-dire un signal de frequence wrteuse fo+A7/2 et 
dont l'enveloppe a la fonte indiquée a la figure 5. 
ou l'on a represente siwultanement le signal S(t) 
et le signal Sit) correspondant obtenu a la sortie 
du filtre adapte. On comprend le now de recepteur 
a compression d'impulsion donne a ce genre de 
filtre adapte : la " largeur " (a 3 dB) du signal cow 

Figure 12.13. Image doc5ra 
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prine étant égalé a l/Ufj le rapport Je compression 

m) 

Etvihpp* 4# k (t) 

• 14 |JB 

Af- 5MHz 

T - 12^8 

M lU 
Emiigppt d# 

R'IM 

i 

v to 
H to 

Figure 12.14. Image doc5rb 
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On saisit physiquenent le phenonene de CON-
pression en réalisant que lorsque le signal S(t) entre 
dans la ligne a retard (LAS) la frequence qui entre 
la prewiere a l'instant 0 est la frequence basse fo, 
qui net un tewp To pour traverser. La frequence f 

T 

entre a l'instant t = et elle wet un temps 

7o-(f-fo)-^pour traverser* ce qui la fait ressortir 
Ai 

a l'instant To également, Ansi donc le signal S i t )  to 
H w 

Figure 12.15. Image docSrc 
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Figure 12.16. Image doc6a 
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Figure 12.17. Image doc6b 
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Figure 12.18. Image doc8 
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Figure 12.19. Image frnch3a 
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Figure 12.20. Image flowchrt 
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Figure 12,21. Image electrc 
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INVOICE NUHBEB 5EB1RL NUMBER 
DATE 

END USER 

NICROGRAR, INC 

DEALER DIST. 

SALESPERSON 

EDUC. CORP. 

;OLD TO! 
INE iiansDP ALJ5UMIMAN. 
ONPANY 

SHIP TO: 
J»R A. POHNw 

ADDRESS « 1 
ADDRESS # 2 
ADDRESS # 3 
HONE 

}RDERS: DESCRIPTION 

EXT 

QUANTITY UNIT PRICE ANOUNT 
M 
to 

• UPS 
• FED EXP 
• RIBBRN 
• TEXPRC 
• US HRIL 
• OTHER . 

PC-DRAW 
JR-DRAW 
DEMO (PC/JR) 
UPGRADE (PC/JR)... 
LIGHT PEN (PC/JR). 
JR PLOTTER SUPPORT 
OTHER 
SHIPPING ê HANDLING, 

Figure 12.22. Image ordrfnn 
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Figure 12.23. Image frnchla 
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In a BOH, the address lines and the output word bit lines fpoM a crossed array o 
r lines, i.e. a grid structure. At each wid intersection is placed a device Wi 
sde.Lipolar, or HOS transistor) or not, depending on whether the corresponding -
mi hit is to he 1 or 0. (In cases where Ihere is no special interest in the ty 
pe of device, the coupling between address line and hit line is often shown siiip 
ly By a dot at the grid intersection.) In a prograMwable RON <PRON) the nanufact 
iirer locates a connecting device at every grid intersection. However, in series 
with each such device there is provided a fusihle link. Any particular fusible 1 
ink is located at the intersection of sowe line Zi and sowe line Hi. BY waking c 
snnection to Zi and Ui and passing an adequately large current through the link 
, the link can be burned out. Thus, the user of such a PBON way bum out link a 
s necessary, leaving transistors only on locations required to establish the hbh 
m storage desired. One type of.erasable or alterable ROM uses floating gate F 
m transistors. These are transistors in which at norwal operating voltage the 
gate is entirely insulated and isolated froH electrical connection to any other 
?art of the integrated-circuit chip. It turns out to be possible to establish a 
negative charge on these gates by the application of hiyh voltage between source 
and drain. The negative charge left on the gate by such treatment leaves the co 
^responding transistor with a conducting channel. The RON can be erased by expos 
ire TO ultraviolet light, which serves to discharge any charged gate. Consider t 
hat we want to perforw the arithnetic operation of Multiplication. As we have se 
en in Sec. 11,16, Multiplication can be perforwed by a sequence of shifting oper 
itions, i.e. Multiplying by powers of two, and a sequence of additions. On the o 
iner hand, we Hay view a Multiplication table as a truth table. Thus, the entry 

ro 
to w 

Figure 12.24. Image romtxt 
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Deux IclateHents de taille se sont produits en 1968, ï  Paris e' 
Mai, i Prague en août, l'un pour le socialisne dans la liberie, l'autn 
pour la liberté dans le socialiswe. Une fois depouillfs de quelques ap
parences et oripeaux, les deux objectifs socialisHe et liberie apparais 
sent bien ceux de la grande Majorité de l'buwanitf fvolule. En dehors 
de rAmérique du Nord, peu nombreux sont ceux qui osent les répudier 
ouvertement. Du moins personne ne se prononce-t-il contre la justice s 
ciale, ni pour la mise en condition ou en tutelle des individus, ni 
meme pour la socifti de classes. 

Ceux qui ont peur du socialisms ne sont pas tous des proprié
taires endurcis de grandes usines ou de centaines d'hectares, nais 
d'accablants precedent leur font craindre pour la plus precieuse des 
propriftfs, celle de disposer de soi-meme. Et ceux que n'anthousiasme 
pas l'expression "mode libre" ont bien présentes a l'esprit les exac
tions que recouvre ce beau drapeau. 

Apres deux siecle de recherches, de revolutions, de theories, 
d'eiriences en tous sens, aucun point n'apparaît sur le planete, aui 
ilot, ou les deux objectifs socialisme et liberti soient concilies de 
façon satisfaisante. 

Pendant un siecle ou presque, la démocratie, appelle dans 1 
suite démocratie bourgeoise ou dlmocraite, occidentale, selon le degn 
de sympathie gui lui est porté, a vécu sous la banniere de la liberie, 

ro 
M 

Figure 12.25. Image frnch2a 
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In these .equations we have, ignored the uplifier inyut iitpedance Si. This 

Rf 
Uo = — Us 

R 
and the short-circuit current is 

(2.4-1) 

lo : 
Vs 

— — Ui = 
Us A RT 

R + Rf Ro R* Rf Ro R + Rf 
Us (2.4-2) 

RNs/(R f Rf), For this relationship Between Ui and Us to le valid it is only 
lecessary that Ri Le large in coMyarison with the parallel cowhination of R 
ind Rf, a requirwent which in practice invariaWy satisfied. 

rhe second tem in Eg. (2.4-2) is overwhelwingly larger than the first ter# 
because A is very large. Hence, when the first terw dropped, the output • J ## # " " • m m w m 

resistance Zo is 
Zo : Uo / lo : Ro(liI)f/II)/A = Ro (1 - Af)/A <2.4-3) 

Figure 12.26. Image pagel 
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Ferait we to introduce you to fusiHile 
transHissan. 

In facsiNile a photocell is caused to perfom a raster scan over 
the subject copy. The variations of print density in the docuwent 
iause the photocell to generate an analogous electrical video signal, 
[his signal is used to Modulate a crrier, which is transHitted to a 
MNote destination over a radio or cahle coNwunioations link. 

At the rewote terwinal, dewodulation reconstructs the video 
signal, whicb is usfd to %wdu|ate the.dengity of print produced k.a , 
printing device. This device is scanning in a raster scan synchronized 
iith that at the transwitting terwinal. As a result, a facsiwile 
!opy of the suhject document is produced. 

Prohahly you have uses for this facility in your organisation. 

Yours sincerely, 

P.J. CROSS 

N> ls> 
G\ 

Figure 12.27. Image docl-2 



www.manaraa.com

tatalcHppsbits=totalciipp5bits4ciimfactop[i]; 
cHppsfactopCi hxsize/cHppsractopLi J j 

if<tend>tstapt) , , ̂ , 
CMppstiHe=tend-tstapt; 

Ise 
cHppstiHe=(fi000-tsiapi)t<end; 

wintfCcflivPission ended\n"); 
^op(i=i;i<=ysize;ii=l) 

j^pintf<"%8u",CNPPsfactopE:I): /* f -> u 

iv^factopixsizel^sizel/tohlciippsliitsj 
vintfCavg coHppission factopcXd ,totalcwpsdh:ts:%lu \n",avgfactop, totalCNP!PS& 
its)J 
pinuCcopMPission i'mzYm \n"iCHppstiw); 

ro 
to •vj 

Figure 12.28. Image cprog 
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HÎniHUM input voltage in opdep to change state, the rise tiw of the 
input signal I Hust be less than sone HaxinuH value. FOP exanple, 
Gonsidep that a level change at S OP H of 0.75 V is needed to change 
the state of the flip-flop! then if the input voltage changes by 3 U 
and tau = 2 ns, the pise tine T Hust be less than 8 ns. 

Sd <H  ̂

logic 
level 1 

Rd^ h 

(a) 

Q 

Q 

Sd Kd Qntl 

0 8 Qn 

0 1 0 

1 8 1 

1 1 
Not 
used 

(b) 

FIGURE 9.8-3 
(a) Edge-tpiggered flip-flop using HAND gates and <b) truth table. 

Figure 12.29. Image pdraw3 
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SCIENTIFIC WRITER 
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1 
2 
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Figure 12-31. Image science2 
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Us 
+ 

Figure 12.32, Image opampl 

AUi 

I to 
w 

FIGURE 2.4-1 

Circuit used to calculate output iwreJance 
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R 

r-AAV 

KT 

•VW 

u;o 
t 

lli 

AUi 

-0"AAA/ * 
Uo 

FIGURE 2.4-1 

Circuit used to calculate output iHpedance 

The output iHpedance can he calculated frow fig. 2.4-1 as the ratio of 
the open-circuit output voltage Uo to the load current lo when the load is 
short circuit . We have that the open-circuit voltage is 

N3 
CO 
to 

Figure 12.33. Image opamp2 
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Figure 12.34. Image ecZl 
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-UP 

ï>-

-Uee 
Figure 7.13-3 

(a) The driven gates luHped at the end of a Hatched line; (I) a line Hatched 

ro 
w 4> 

Figure 12.35. Image ec22 
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DOCUMQII 

RESVHC PERIOD 
CODED BIT 

LOST RUMS 
(PELS) 

LOST PELS 
(PELS) DISPLACNENI 

PERCENTAGE 
5 PELS 

DOCUMQII 

AVREAGE MEDIAN AVREAGE NEDIAM AUREAGE NEDIAM 

DISPLACNENI 
PERCENTAGE 
5 PELS 

1 26 18 391 54 215 21 28% 

4 24 16 122 29 77 13 39% 

5 24 17 217 54 133 22 29% 

7 27 17 140 69 69 33 29% 

ro 
CO 
o\ 

Figure 12.37. Image tablel 



www.manaraa.com
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W 

Figure 12.38. Image usai 
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-1.5 
90.00 92.00 94.00 96.00 98.00 100.00 

ro 
w 
00 

Figure 12.39. Image lotssin 
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Figure 12.40. Image frnch3b 
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llliiiiL 
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O 

Figure 12.41. Image barchrt 
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N3 

Figure 12.42. Image test2 
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y/N 

ro 4> 
ro 

Figure 12.43. Image test3 
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to 4N 
W 

Figure 12.44. Image test4 
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JA = p d p d d 

JÛ' a cosi 

to 

Figure 12.45. Image test5 
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•P-Ui 

Figure 12.46. Image diagl 
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Figure 12.47. Image diag2 
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Figure 12.48. Image diag3 
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Figure 12.49. Image diag4 
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Figure 12.50. Image diag5 
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Figure 12.51. Image diagSs 
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Figure 12.52. Image diagô 
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Figure 12.53. Image netwrkZ 
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HiniHUH input voltage in order to change state, the pise tine of the 
input signal T Hust he less than sowe waxiwuM value. For exwple, 
consider that a level change at S or R of 0.75 V is needed to change 
the state of the flip-flop; then if the input voltage changes hy 3 U 
and tau = 2 ns, the rise tine T Must he less than 8 ns. 

R 

Figure 12.54. Image pdrawl 
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N3 
Ln 

Figure 12.55. Image usa2 
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to 
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Figure 12.56. Image science3 
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Mini MUM input voltage in order to change state, the rise tiiie of the 
input signal I Must k less than sowe MaxiNuw value. For exaMple, 
consider that a level change at S or R of 0.75 V is needed to change 
the state of the fliHloPl then if the input voltage changes k 3 U 
and tau : 2 ns, the rise liMe T Must he less than 8 ns. 

Sd 
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Figure 12.57. Image pdraw2 
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Figure 12.58. Image bignames 
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Figure 12.59. Image sun 
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Figure 12.60. Image hazard 



www.manaraa.com

VMir CitaHMfeiH 

MfS 

UkMw ka 

r At i\t UM 

N W  lint* aKfidtoi gyawa rui 0til ^8L 

PREVIEW PAGE 

FILE 
PAGE TYPE 

PAGE 
BEGIN SECTION 

END SECTION 
MAGNIFICATION 

SAMPLE.DOC 
BODY 
2 
L.1.3 
1.1.4 
S 

NEXT PAGE: 3 
REVERSE VIDEO: NO 

Figure 12.61. Image manscl 
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Figure 12.63, Image fig2 
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Figure 12.64. Image fig4 
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Figure 12.65. Image fig6 
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Figure 12.66. Image fig? 
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Figure 12.67. Image figS 
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Figure 12.68. Image blok3 
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Figure 12.69. Image blok6 
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Figure 12.70. Image boxes 
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Figure 12.71. Image lines 
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Figure 12.72. Image testl 
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Figure 12.73. Image usamap 
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APPENDIX B. PROGRAM LIST OF THE CCITT ONE 

DIMENSIONAL COMPRESSION TECHNIQUE 
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The C programs in this appendix and the following appendices 

were compiled with Microsoft C Compiler version 4.0 and used the 

library functions of this compiler. 

The assembly programs in this appendix and the following 

appendices were assembled with Microsoft Assembler version 4.0. 

13.1. File Main.c 

/* 

cmprs_line(uncmprsdbufr): 

* init_screen(): Function to initialize the screen, by setting 

the mode and choosing the screen to display. 

•' getCxl,yl,x2,y2,buffer ): Takes the portion of the screen with 

'• the x,y coordinates and saves it in 

the buffer. 

Apply the CCITT one-Dimensional 

compression technique, using a modified 

Huffman table, to compress each line of 

the specified portion of the screen and 

put the result in the uncompressed 

buffer. 

scrfilebufr: Array to hold the output of getO. The first 2 bytes 
hold the "xlength" of the block; the second two bytes 

hold the "ylength" of the block. The size of 

"scrfilebufr" is set to the maximum size of the 

blocks we want to capture. 

xsize : Horizontal length, in bits, of each line. 

ysize : Block height in bits. 

tstart : Time at start of compression or decompression. 

tend : Time at end of compression or decompression, 

cmprstime : Compression time. 

dcmprstime : Decompression time. 

A/ 

//include <stdio.h> 

//include <memory.h> 

//include <dos.h> 

//include <io.h> 

//include <fcntl.h> 

//include <malloc.h> 

//define LINT_ARGS 
//define screensize 16384 
//define XMAX 640 
//define YMAX 200 
//define HI_RES 6 
//define TEXT_MODE 3 
//define ulong unsigned 

void get(int,int, , int,int,char 
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unsigned 

void 

unsigned 

void 

static 

static 

static 

static 

cmprs_line(char '•); 

dcmprs_line_ld() ; 

gttimeC); 

print_results(char int, int, int, int, 

unsigned, unsigned, float); 

float 

ulong 

unsigned 

int 

char 

avgfactor ; 

totalcmprsbits=0; 

cmpr stime,dcmpr s time; 

/* window coordinates. 

xl,yl,x2,y2; 

/" figure input file. 
datafile[41]; 

*/ 

mainCargc,argv) 

int argc; 

char *argv[]; 

{ 

static 

static 

static 

unsigned 

unsigned 

unsigned 

register 

if( argc < 6 ) 
{ 

char 

unsigned 

char 

unsigned 

scrfilebufr[4+(XMAX/8)''-(YMAX)] ; 

cmprsbufr[XMAX][(YMAX+32)/l6]; 

"uncmprsbufr; 

xsizeinbytes,xsize; 

tstart.tend; 
cmprsfactor[200]; 

i,ysize; 

/* No data were entered at the 

/" command line. */ 

} 
else 

{ 

} 

printfC"enter xl yl x2 y2 \n"); 

scanf("%d %d %d %d",&xl,&yl,&x2,&y2); 

while((getchar( )) ! = '\n ' ) /•'< Read the end of the line ''</ 

/'•' marker. '•/ 

xl=atoi(argv[2]); yl=atoi(argv[3]); 

x2=atoi(argv[4]); y2=atoi(argv[5]); 

if( argc > 1 ) 

strcpyC datafile, argv[l] ); 

/:'( Read data from the input file* 

init_screen(argc); /* and dump it to the screen. •< 

uncmprsbufr= scrfilebufr; 

uncmprsbufr+=4; /* Skip over "xsize" and "ysize"'-

/* Get the specified portion of 

/* the screen into "scrfilebufr"* 
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getCxl ,yl ,x2,y2, (char ''Oscrf ilebufr) ; 

for(i=0;i<=55000;i++) ; I* A delay Loop. */ 

setscmode(TEXT_MODE); 

ysize=y2-yl+l; 

xsize=x2-xl+l; 

xsizeinbytes= (xsize/8)+((xsize%8)>0) ; 

/* First two numbers in the */ 

/* "screenfilebufr" represent */ 

'•'(unsigned ''Oscrfilebufr=xsize; I* the width and the height of */ 
'•'(unsigned *)(scrfilebufr+2)=ysize;/* of the block. ''V 

printf("starting to compress \n"); 

tstart=gttime( ) ; /'•' Get the starting time for '•'/ 

/'•: the compression. Initialize '•'/ 

I* "comprsbufr" and the other "I 

/'•' static variables. */ 
init_cmprsdblk( (unsigned ''Ocmprsbufr ) ; 

init_line_parm(xsize); 
for(i=l;i<=ysize;i++) 

{ 
cmprsfactor[i]=cmprs_line(uncmprsbufr); 

/'•' Point to the next uncom- "I 
uncmprsbufr+=xsizeinbytes; I* pressed line on the screen. '•'/ 
} 

tend=gttime( ) ; /'•' Get the time at the end of ''V 

I* the compression. */ 
for(i=l;i<=ysize;i++) 

{ 
totalcmprsbits=totalcmprsbits+cmprsfactor[i]; 

cmprsfactor[i]=xsize/cmprs factor[i]; 
} 

if(tend>tstart) 

cmprstime=tend-tstart; 

else 

cmprstime=(6000-tstart)+tend; 

printf("compression endedXn"); 

for(i=l;i<=ysize;i+=l) 

{ h' Print the results on the "I 

/'•: screen. "I 
printf("%8u",cmprsfactor[i]); 
} 

avgfactor=(float ) xsize ''' ysize/totalcmprsbits; 

/:•' Initialize "scrnfilebufr" to -V 

/'•: ASCII zero. '•'/ 
memset((serfilebufr+4),'\0',16000); 

printf(" starting to decompress \n"); 

tstart=gttime(); I* Start of the decompression. 

init_dcmprsbfr((serfilebufr+4),xsize); 
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init_cmprs(cmprsbufr); 
for(i=0;i<ysize;i++) 

dcmprs_line_ld(); 

tend=gttime(); /* End the decompression. */ 

if(tend>tstart) 

dcmprstime=tend-tstart; 

else 
dcmprstime=(6000-tstart)+tend; 

/* If no argument was entered 

!" at the command line then '•'/ 
if( argc < 2 ) /- display data to the screen. -/ 

{ 
setscmode(HI_RES); 

put(xl,yl,serfilebufr); 

getcharO ; 
setscmode(TEXT_MODE); 

} 
print_results(datafile.xl,yl,x2,y2,cmprstime,dcmprstime,avgfactor); 
} 
/,v END mainO 'V 

/,v END main.c */ 

13.2. File Cmprsln.c 

I* 
Vc=================================================================== 

* FUNCTIONS : 
I'C 
* cmprs_lastbits( word, no. of bits, color) : Compress the bits that 

* did not fit into the word boundary (connect with the previous 

* bits in the whole words portion of the line to be compressed.) 

* get_cmprs_reslt() : Returns the no. of compressed bits since the 

* last time we zeroed "cmprscounter". This function is in the 

* file "update.c", which in turn has the updateO function that 
* updates the compressed line after each compression. 

* init_lastbits (no. bits that did not fit into the line boundary) : 

* Pass the number of the last bits to the file "clast.c". 

* swapbyts( from, to , number of words) : Swap the high and low byte 

* of each word stored in 'from' and store the result in 'to'; do 

* it for the passed number of words. 
* 

* VARIABLES : 
Vc 

oldlineptr : Pointer to the current line of uncompressed buffer. 

* newlineptr ; Pointer to the compressed line. 

* xsize : Horizontal length, in bits, of each line. 

* currentword : Pointer to current position, in words , 

in the "uncmprsbufr. " 

* lastbits : Number of bits in the last word of the uncompressed 

* line if the number of bits in a line does not fit on 
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* the word boundary. 

" nmbrwords : Word length of the portion of the uncompressed line 

* that fits in the word boundary. 

* color : Color of the current bit. 

* lastcolor : Color of the last bit processed in the whole words 

* portion of a line. 

* bitcolor ; Color of the current bit (temporary storage.) 

'• word : Current word in the uncompressed line. 

* bitpos : Index to the position in "word". 

bitpos = 16 for the left-most bit and 

" 1 for the right-most bit. 

*/ 

//include 

//define 

//define 

//define 

//define 

<dos.h> 

LINT_ARGS 

BLACKBIT 

WHITEBIT 

ENDBITS 

unsigned get_cmprs_reslt() ; 

void init_lastbits(unsigned); 

void init_cmprsdblk(unsigned '•) ; 

void update_cmprsdblk(unsigned,int); 

void cmprs_lastbits(unsigned.unsigned,int); 

void swapbyts(unsigned unsigned *,unsigned); 

static unsigned lastbits,nmbrwords; 

/,'c====================== cmprs_line( ) :*/ 
unsigned 

char 

{ 

unsigned 

int 

int 
unsigned 

register 

cmprs_line (oldlineptr) 

"Oldlineptr; 

'•'currentword ; 

wordcount; 

color,lastcolor,bitcolor ; 
bitcontr=0; 

unsigned word,bitpos; 

wordcount=nmbrwords; /* Initialize the variables. */ 

currentword=(unsigned ''Ooldlineptr; 

set_cmprscontr_to_zero(); 

swapbyts( (unsigned ''Ooldlineptr, (unsigned *) oldlineptr,nmbrwords); 
word=''«cur rentword ; 

if ((word)&0x8000) /* Is bit 16 in "word" white ? 

{ /* Yes, bit 16 was white. */ 

update_cmprsdblk(0,BLACKBIT); 
color=WHITEBIT; 
} 
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else 

{ /* Bit 16 was black. */ 
color=BLACKBIT; 

/'• Negate the word so we can */ 
word=~word; I* check for the new color. */ 
} 

/îV We assume "xsize" >= 16, to */ 

/* take care of "xsize" < 16. We*/ 

bitpos=16; /* have to modify the code here.*/ 

while(color<ENDBITS) /* While not end of line, do. */ 
{ 

/* While the color is the same */ 

/'• and we are still inside */ 
h'< "currentword", do. */ 

whileC (word&0x8000) && (bitpos > 0) ) 
{ 
bitcontr++; 

bitpos — ; /* Bit position in a word. */ 

word=word<<l; /* Get the next bit in bit 16. */ 
} 

ifCbitpos > 0) /* Still inside "currentword" ? */ 
{ 
update_cmprsdblk(bitcontr,color); 
word=~word; 

color=(coior) ? 0 : 1; 

bitcontr=0; 
} 

/'• Done with all the bits in * 

else /* the current word. * 
{ 
bitpos=16; /* Start again with bit 16 * 

currentword++; /* of the next word. * 

/* If the color is black then * 

/* negate the word pointed to by* 

/* "currentword" to check for * 

/* the color later. * 

word= (color) ? *currentword : "('''currentword) ; 

/* Test for the end of the line * 

/* marker. * 
if(—wordcount == 0) 

{ /* Save the last color in this * 

/* line. * 

lastcolor=color; 

/* Signal "eol" to the outer * 

/* loop. * 

color=ENDBITS; 
} 

} 



www.manaraa.com

280 

ifClastbits == 0) /* Does the line fit in the word*/ 

/* boundary ? */ 

update_cmprsdblk(bitcontr,lastcolor); 
else 

cmprs_lastbits(*currentword,bitcontr,lastcolor); 

if(color>ENDBITS) 

printf(" ****** error in color, color=%d /n",color); 

/* Return the number of bits */ 
return(get_cmprs_reslt()); /* in that compressed line. */ 
} 
/* END cmprs_line() */ 

/*====================== init_line_parm() =========================;v/ 

/* Initialize some static variables to the appropriate values. */ 
/ yt============!=====================================================, 'c /  

void init_line_parm(xsize) 

unsigned xsize; 

{ 
nmbrwords=xs ize/16 ; 

lastbits=xsize & OxOOOf; /* Let "lastbits" = "xsize" % 16*/ 

init_lastbits(lastbits); 
} 
/* END init_line_param() */ 

/* END cmprsln.c */ 

13.3. File Cupdt.c 

/* 

* STATIC VARIABLES : 
it 

* bitsleft : Number of bits still vacant in the compressed word, 

* it starts with 16 bits left in the word. 

* cmprscounter : Count the number of bits in the compressed block 

* which is filled from left to right. 

* cmprsdwordptr: Pointer to the current word position in the 

* compressed block. 

*/ 

static int bitsleft; 

static unsigned cmprscounter; 

static unsigned *cmprsdwordptr; 

/* This is function update_cmprsdblk( bitcounter, color), where */ 



www.manaraa.com

281 

/bitcounter is the number of consecutive bits of current color. 
/Vc===============================================================. 

void update_cmprsdblk(uncinprsdbitscont.color) 
unsigned 
register 

{ 
struct 

static 

uncmprsdbitscont; 
int color: 

FAXDATA 
{ 

struct 
0x35,8, 
Oxf,4, 
0x34,6, 
0x17,7, 
0x18,7, 
0x14,8, 
0x2b,8, 
0x52,8, 
0x59,8, 
0x34,8, 
0x64,8, 

}; 

FAXDATA 

0x7,6, 
0x13,5, 
0x35,6, 
0x3,7, 
0x2,8, 
0x15,8, 
0x2c,8, 
0x53,8, 
0x5a,8, 
Oxlb,5, 
0x65,8, 

unsigned 

int 

I* Code for a sequence of bits 
/* of type color and run-length 
/* = // of the uncompressed bits, 

bits ; 
I* Length of the code in the 
I* bits. 

length; 

/* Initialize "FAX". 
I* black data , FAX[ 
I* white data. 

FAX[2][74]={ { 
0x7,4, 0x8,4, 0xb,4, 0xc,4, 
0x14,5, 0x7,5, 0x8,5, 0x8,6, 
0x2a,6, 0x2b,6, 0x27,7, Oxc,7, 
0x4,7, 0x28,7, 0x2b,7, 0x13,7, 
0x3,8, Oxla,8, Oxlb,8, 0x12,8, 
0x16,8, 0x17,8, 0x28,8, 0x29,8, 
0x2d,8, 0x4,8, 0x5,8, 0xa,8, 
0x54,8, 0x55,8, 0x24,8, 0x25,8, 
0x5b,8, 0x4a,8, 0x4b,8, 0x32,8, 
0x12,5, 0x17,6, 0x37,7, 0x36,8, 
0x68,8, 0x67,8} , { 

*/ 
••••I 

FAX[0][ 
1 ] [ ]  = =  

0xe,4, 
0x3,6, 
0x8,7, 
0x24,7, 
0x13,8, 
0x2a,8, 
Oxb,8, 
0x58,8, 
0x33,8, 
0x37,8, 

0x37,10, 
0x2,4, 
0x7,7, 
0x8,10, 
0x17,11, 
0x68,12, 
0xd4,12, 
Oxda,12, 
0x64,12, 
0x38,12, 
0x2c,12, 
0xc9,12, 
0x6d,13, 

0x2,3, 
0x3,5, 
0x4,8, 
0x67,11, 
0x18,11, 
0x69,12, 
0xd5,12, 
Oxdb,12, 
0x65,12, 
0x27,12, 
0x5a,12, 
0x5b,12, 
0x4a,13} 

0x3,2, 
0x5,6, 
0x7,8, 
0x68,11, 
Oxca,12, 
0x6a,12, 
0xd6,12, 
0x54,12, 
0x52,12, 
0x28,12, 
0x66,12, 
0x33,12, 
} ; 

0x2,2, 
0x4,6, 
0x18,9, 
0x6c,11, 
Oxcb,12, 
0x6b,12, 
0xd7,12, 
0x55,12, 
0x53,12, 
0x58,12, 
0x67,12, 
0x34,12, 

0x3,3, 
0x4,7, 
0x17,10, 
0x37,11, 
Oxcc,12, 
Oxd2,12, 
0x6c,12, 
0x56,12, 
0x24,12, 
0x59,12, 
Oxf,10, 
0x35,12, 

0x3,4, 
0x5,7, 
0x18,10, 
0x28,11, 
Oxcd,12, 
Oxd3,12, 
0x6d,12, 
0x57,12, 
0x37,12, 
0x2b,12, 
0xc8,12, 
0x6c,13, 

register unsigned code; 
int length; 

I* Code for the run of the pels.*/ 
I* Length of the above code */ 
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unsigned multiple; /* = "uncmprsdbitscont" / 64. */ 
unsigned bitcont; /* Local run-length. */ 

/* To get the least significant */ 
static unsigned maskl=0x003f; /* 6 bits. */ 

/* Is "uncmprsdbitscont" a */ 
/* multiple of 64 ? */ 

if ((multiple=(uncmprsdbitscont»6) )>0) 
{ 

/'•' Compress the multiple of */ 
bitcont=multiple+63; /* 64 part. */ 

code=FAX[color][bitcont].bits ; 

length=FAX[color][bitcont].length; 

cmprscounter=cmprscounter+length; 

/* Is old "bitsleft" > length ? =•/ 
if ((bitsleft=bitsleft-length)>0) 

I* Put the new code at the •</ 

!'•' current compressed word, '•/ 

I* using the new "bitsleft" to */ 

/* put it in the correct '•'I 
/'•' position. "/ 

(*cmprsdwordptr) | =code«(bitsleft) ; 

else /:'( The old "bitsleft" <= length.*/ 

{ /* Negate "bitsleft" and put the*/ 

/* part of the code that fills */ 

/* the word in the compressed */ 

/* word. */ 
(*cmprsdwordptr)|=(code) » (-bitsleft); 

/* Move to a new word and put */ 

/* the rest of the code in a */ 

/* new compressed word, filling */ 

/* from the left to the right. */ 
*(++cmprsdwordptr)=(code) « 

(bitsleft = (16 + bitsleft)); 
} 

/* Now compress the part that */ 

/* is less than 64 bits. */ 

/* If the no. of bits = 640 we */ 
if(multiple<10) /* skip putting the zero part. */ 

{ 
/* "bitcont" is the remainder of*/ 

/* dividing "uncmprsdbitscont" */ 

/* by 64. */ 
bitcont=uncmprsdbitscont & maskl; 

/* Get the corresponding code */ 

/* and the "code-length". */ 
code=FAX[color][bitcont].bits; 

length=FAX[color][bitcont].length; 
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/* Update "cmprscounter" by the*/ 

"code-length". */ 

cmprscounter=cmprscounter+length; 

I* If there are still more *! 

I* unprocessed bits in the */ 

/vt current word then put the */ 

/* compressed bits in the */ 

/'• corresponding part of the *! 

I* word in the compressed buffer*/ 
if(( bitsleft=bitsleft-length)>0 ) 

(*cmprsdwordptr) | =code«(bitslef t) ; 

else 

{ /* Otherwise split the code */ 

/* among the current and next */ 

/* words of the compressed */ 

/* buffer. */ 
((*cmprsdwordptr))|=(code) » (-bitsleft); 

(*++cmprsdwordptr)=(code) « 

(bitsleft = (16 + bitsleft)); 
} 

} 
} 

/* Run-length was less than */ 

else /* 64 bits. */ 
{ 

/* Get the corresponding number */ 

/* of bits and "run-length" */ 

/* then update "cmprscounter". */ 
code=FAX[color][uncmprsdbitscont].bits ; 

length=FAX[color][uncmprsdbitscont].length; 

cmprscounter=cmprscounter+length; 

/* Same case as the one before. */ 
if ((bitsleft=bitsleft-length)>0) 

(*cmprsdwordptr) | =code«(bitslef t) ; 

else 
{ 
((*cmprsdwordptr))|=(code) » (-bitsleft); 

(*++cmprsdwordptr)=(code) « 

(bitsleft = (16 + bitsleft)); 
} 

} 

* UPDATE_CMPRSDBLK() */ 

* Initialize the compression buffer pointer to the first word of */ 

* the space allocated, set the compression counter to zero and */ 

* start with the most left bit of the first word in the compressed*/ 

* buffer. */ 
î'f = = = = == = =3 = !== ===3=== = ss = = = =! === ====:=3 = = =====5 =====s==s ====! = =====:== = =:=ïz= = = = = = 5'c / 
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void init_cmprsdblk(newblkptr) 

unsigned *newblkptr; 

cmprsdwordptr=newblkptr; 

bitsleft=16; 

cmprscounter=0; 

/,v END INIT_CMPRSDBLK() '•-/ 

/A==================== get_cmprs_reslt() ==========================vt/ 

/'•< This function returns the number of compressed bits since last '''/ 

/* initialization of "cmprscounter". 
/ Vc=================================================================yc/ 

unsigned get_cmprs_reslt() 

return(cmprscounter); 

/A END get_cmprs_reslt() */ 

/''«================= set_craprscontr_to_zero( ) ======================!'c/ 

/* Set_cmprscontr_to_zero() : it sets "cmprscounter" to zero. Use it*/ 

/* if you are compressing a block and want to get "cmprscounter" */ 
/* for each line alone. */ 
/ î'c = ====== ======== = ==== = ========== = ======= ====== = = === = ===:= = = === = = = = = ,V/ 

void set_cmprscontr_to_zero() 

cmprscounter=0; 

/,v END set_cmprscontr_to_zero( ) '•/ 

/,'c END cupdt.c */ 

13.4. File Clast.c 

//include <dos.h> 

//define LINT_ARGS 
//define BLACKBIT 0 
//define WHITEBIT 1 
//define ENDBITS 2 
//define flip(word) \ 

{ \ 

inregs.x.ax=word; \ 

inregs.h.bl=inregs.h.al; \ 

inregs.h.al=inregs.h.ah; \ 

inregs.h.ah=inregs.h.bl; \ 

word=inregs.x.ax; \ 
} 

void update_cmprsdblk( unsigned, int); 
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static unsigned lastbits; 

/ Vc============================ CMPRS_LASTBITS ===================== 

/'•' The bits left in the last word after compressing the whole 

/'•' screen should be handled as a special case. First the word 

/* should be flipped, or swapped. It would not be necessary to 

/'•' check for the word boundary since we are sure that the number 

/* of bits left is less than 16. 
/'''================================================================= 

cmprs_lastbits(word,bitcontr,color) 

unsigned 

bitcontr ; 

color ; 

word; /'•' Last word. 

/" Counter of bits left 

/* Last color. 

register 

unsigned 

int 

{ 

struct bits 
{ 

unsigned rest :15; 

unsigned bitl6 :1 ; 
} ; 

union 
{ 
struct bits b; 

unsigned w; 

} wordbitsl; 

union REGS inregs; 

int bitcolor; 

register int bitpos; 

flip(word) 

bitpos=0; 

whileCcolor < ENDBITS) 
{ 

wordbitsl.w=word; /* Last word. 

/'> Loop until either "color" 

/* changes or all bits are 
/" processed. 

while( (wordbitsl.b.bitlô == color) && 

(bitpos < lastbits) ) 
{ 

bitcontr++; 

bitpos++; 

/* Get the next bit. 
wordbitsl.w = word = word « 1; 

} 
if(bitpos < lastbits) 

{ /* The color changed, hence 

/'•' update the compressed buffer 
update_cmprsdblk(bitcontr,color); 
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I* Let "color" = new color. */ 

color=wordbitsl.b.bitl6; 

I* Start looking for a new run. */ 
bitcontr=0; 

} 
else 

{ I* All bits were processed, */ 

/'• update the compressed buffer 

I* and exit the main loop. */ 
update_cmprsdblk(bitcontr,color); 
color=ENDBITS; 

} 
/it END cpmrs_lastbits( ) -/ 

/'•'====================== init_lastbits( ) ==========================vc/ 

/* Initialize "lastbits" to the no. of bits in last word of the 

/* uncompressed line. */ 
/,'C======:===========================================================,V/ 

void init_lastbits(lastcont) 

unsigned lastcont; 

{ 
lastbits=lastcont; 
} 
/,v END init_lastbits( ) */ 

I* END clast.c */ 

13.5. File Dcmprsln.c 

//include <stdio.h> 

//include <io.h> 

//include "colordef.h" 

int update_cmprs(int); 

int uncmprs_blak(), uncmprs_white(); 

int match_blak(int *,int *), match_white(int int '•); 

int update_dcmprs_blakmk(int), update_dcmprs_whitemk(int); 

int update_dcmprs_blakreg(int), update_dcmprs_whitereg(int); 

/* This function decompresses or decodes one horizontal line using ''f/ 

/* the CCITT one-dimensional coding standard. The function •>''/ 

/* consists of a while loop to process all the codes in a line. */ 

void dcmprs_line_ld() 
{ 

/* Each line is assumed to begin*/ 
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/* with a black run, if it does */ 

/* not, then the code of zero '•/ 

/* black run was inserted before*/ 

/* the compressed code of the ''•/ 

/* line at the compression time.*/ 

/* Decode the compressed buffer */ 

/* until the end of line is */ 

/* encountered. */ 

whileC uncmprs_blak() && uncmprs_white() ) 

} 
/* END DCMPRSLNO */ 

/* When either a make-up or a terminating black code is processed, */ 

/* both of the compressed and decompressed buffer are updated. The */ 

/* latter is updated by sending the corresponding number of bits */ 

/* to that buffer. */ 
/ yc=================================================================,v/ 

uncmprs_blak() 

{ 
int clrbits,codebits; 

register int *clrbitsptr=&clrbits; 

register int *codebitsptr=&codebits; 

match_blak(clrbitsptr,codebitsptr); 

/* In case "clrbit" is */ 

/* smaller than 0 then a */ 

/* make-up code was encount- */ 

/* ered as a first code, so */ 

/* updated compression and */ 

/* decompression buffers. */ 
if(*clrbitsptr<0) 

{ 
*clrbitsptr=-*clrbitsptr; 

update_cmprs(*codebitsptr); 

update_dcmprs_blakmk(*clrbitsptr); 

/* Find new clrbits & codebits */ 
match_blak(clrbitsptr,codebitsptr); 
} 

/* Update "cmprsbufr" with the */ 

/* first terminating code */ 

/* length encountered. */ 
update_cmprs(*codebitsptr); 

/* Put "clrbits" black pels */ 

/* in the decompression buffer. */ 

/* If the line ended return 1 */ 

/* else return 0. */ 
return( update_dcmprs_blakreg(*clrbitsptr)); 
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} 
/* END UNCMPRS_BLK() */ 

/vt====================== UNCMPRS_WHITE( ) ==========================Vc 

/* When either a make-up or a terminating white code is processed, * 

I* both of compression and decompression buffer are updated. The * 

/* latter is updated by sending the corresponding number of bits * 

/* to that buffer. * 
/,V=================================================================)V 

uncmprs_white() 
{ 

int clrbits,codebits; 

register int '•'clrbitsptr=&clrbits ; 

register int '•codebitsptr=&codebits ; 

match_white(clrbitsptr,codebitsptr); 

/* Refer to the comments in */ 
if(*clrbitsptr<0) /'• function uncmprs_blak. */ 

{ 
*clrbitsptr=-*clrbitsptr; 

update_cmprs(*codebitsptr); 

update_dcmprs_whitemk(*clrbitsptr); 

match_white(clrbitsptr,codebitsptr); 
} 

update_cmprs(*codebitsptr); 

returnC update_dcmprs_whitereg(*clrbitsptr)); 
} 
/A END UNCMPRS_WHITE( ) */ 

/•it END dcmprsln.c 

13.6. File Dupdtc.c 

/A 

STATIC VARIABLES : 

cbitsremain : 
is 

* currentword : 

* nextwordptr : 
is 

nextword : 

rightbitsword 

leftbitsword 

Bits remained in a given word, initial value is 

16 bits. 

Holds the current word to be decoded. 

Points to the next word to be processed after the 

current word. 

It is set to the contents of word pointed to by 

"nextwordptr". After each code match, "nextword" is 

masked so that it will contain the unused portion, 

it is right justified. 

The rest of it is filled with zeros. 

: Masks to get 1st bit, 1st and 2nd bits and so on. 

: Masks to get 16th bit, 16th and 15th bits and so on. 
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;;==============================================:===================== 

*/ 

static unsigned currentword; 
static unsigned nextword,''<nextwordptr; 
static unsigned cbitsremain; 
static unsigned rightbitswordC]={0,0x0001,0x0003,0x0007, 

OxOOOf.OxOOlf,0x003f, 
0x007f.OxOOff.OxOlff, 
OxOSff,0x07ff.OxOfff, 
Oxlfff,0x3fff,0x7fff, 
Oxffff}; 

unsigned leftbitsword []={0,0x8000,OxcOOO.OxeOOO, 
Oxf000,Oxf800,OxfcOO, 
OxfeOO.OxffOOiOxffSO, 
OxffcO,OxffeO,OxfffO, 
Oxfff8,Oxfffc,Oxfffe, 
Oxffff}; 

/ i'c======================== UPDATE_CMPRS( ) =========================V;/ 

/* This function updates "currentword", which is a window into the -/ 
/* compressed buffer. */ 
/"'•================================================================='''/ 

update_cmprs(codelngth) 
int codelngth; 

{ /* Variable "tempword" is not 
/* necessary, it is used to 
/* speed processing. 

register unsigned tempword; 
register int difference; 

tempword = currentword; 
tempword <<= codelngth; /••'' Get rid of this code. -/ 

/* Can the vacant place in ••'/ 
/* "currentword" be filled from »/ 
/'•' what is left in nextword? */ 

if((difference = cbitsremain-codelngth) > 0) 
{ /* Yes, "bitsremain" is big ••'/ 

/* enough. •''/ 

/* Copy the new bits of the code*/ 
/* into the places vacant due to*/ 
/* the mathed code. */ 

tempword |= nextword»(difference); 
} 

else 
{ /* No, the code bits remaining */ 

/* in "nextword" can't fill the */ 
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/* places vacated due to the * 
/* matched code. 

/* Correct "difference". * 
difference =- difference; 

/* Copy all the code bits in •'< 
/vc "nextword" to their correct * 
/* positions in "tempword". * 

tempword 1= nextword << (difference); 
/iv Advance "nextwordptr" and * 
/•:< copy its content to '• 
/'•« "nextword". • * 

nextword = '•(++nextwordptr) ; 
/* Adjust "difference" then use * 
/* it to copy the necessary * 
/* part from the new "nextword" 
/" into "tempword". * 

tempword |= nextword >> (difference=(16- (difference)) ); 
} 

/* Mask the used part to zeros. * 
nextword &= rightbitswordCdifference]; 
cbitsremain = difference; /•' Update "cbitsremain". * 
currentword = tempword; /* Update "currentword". * 
} 
/* END UPDATE_CMPRS * 

/ vt======================== init_cmprs 

init_cmprs(cmprsbfrptr) 
unsigned *cmprsbfrptr; 

{ 
cbitsremain = 16; 
currentword = *(cmprsbfrptr); 
nextword = *(nextwordptr=cmprsbfrptr+l); 
} 
/" End init_cmprs ''«/ 

/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 

======================= MATCH_BLAK ==============================)'t 

It looks at the content of "currentword"(currentword is a window* 
that slides on the "cmprsdbfr") from left to right ( up to bit * 
9 ) and tries to match the first four bits with a code of black * 
runs whose length is four bits. If no match is found it tries * 
to match the first 5 bits and so on until it finds a match. The * 
last bits to be looked at are the first 8 bits. It is assumed * 
that a match should be found otherwise an error message is sent * 
to the screen and the program is halted. * 
It returns the length of the matched code and the length of * 
the corresponding run in locations pointed to by "codebitsptr" * 
and"clrbitsptr" respectively. * 
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match_blak(clrbitsptrjcodebitsptr) 
register int '''clrbitsptr ; 
int *codebitsptr; 

{ 
/* Huffman table for the black */ 
/* codes. It is read from */ 
/* right to left with the 'V 
/* vacant bits filled with */ 
/•>'! zeros in every word. */ 

static unsigned BLK_CODES[] = 
{ 

/* BARRAY_4 bits. */ 
0x7000,0x8000,OxbOOO,OxcOOO,OxeOOO, 
OxfOOO, 

/* BARRAY_5 bits. */ 
0x9800,OxaOOO,0x3800,0x4000,OxdSOO, 
0x9000, 

/* BARRAY_6 bits. */ 
OxlcOO,0x2000,OxOcOO,OxdOOO,0xd400, 
OxaSOO,OxacOO,OxScOO, 

/'•- BARRAY_7 bits. */ 
0x4e00,0x1800,0x1000,0x2e00,0x0600, 
0x0800,0x5000,0x5600,0x2600,0x4800, 
0x3000,0x6e00, 

/* BARRAY_8 bits. */ 
0x3500,0x0200,0x0300,OxlaOO,0x1bOO, 
0x1200,0x1300,0x1400,0x1500,0x1600, 
0x1700,0x2800,0x2900,0x2a00,0x2b00, 
0x2c00,0x2d00,0x0400,0x0500,OxOaOO, 
OxObOO,0x5200,0x5300,0x5400,0x5500, 
0x2400,0x2500,0x5800,0x5900,0x5a00, 
0x5b00,0x4a00,OxAbOO,0x3200,0x3300, 
0x3400,0x3600,0x3700,0x6400,0x6500, 
0x6800,0x6700 

/* Run-lengths corresponding '•/ 
/* to the codes in "BLK_CODES". ''•/ 
1* Make-up runs are stored as '•/ 
/* negative values to */ 
/* distinguish them from */ 
/* the terminating runs. */ 

static int BLK_RUNS[] = 
{ /* BC0DE_4 bits, */ 

* /  

'V/ 

/'•' BCODE 4 bits. 
2 ,3 ,4 ,5 ,6 ,7 , 

/'•' BCODE 5 bits. 
8 ,9 .10 ,11 ,-64 , ,-128 

/'•' BCODE 6 bits. 
1, 12, 13, 14, 15, 16, 17, -192 

/* BC0DE_7 bits. 



www.manaraa.com

292 

18, 19, 20, 21, 22, 23, 24, 25, 26, 
27, 28, -256, 

BC0DE_8 bits. */ 
0, 29, 30, 31, 32, 33, 34, 35, 36, 
37 , 38, 39, 40, 41, 42, 43, 44, 45, 
46, 47, 48, 49, 50, 51, 52, 53, 54, 
55, 56, 57, 58, 59, 60, 61, 62, 63, 
-320, -384, -448, -512, -576, 640 

} ;  
h' The black codes are grouped '•/ 
/* in the "BLK_CODES" array *! 
/" according to their length. -V 
/* Their corresponding runs are */ 
/* stored in "BLK_RUNS" array. '•/ 
/* The first element in ••/ 
/* "BGROUPS" is equal to the no.*/ 
/" of the pairs. First no. in ••/ 
/" each pair is the length of ''•/ 
/* the code in bits. Second no. ''•/ 
/* is the number of codes with ••/ 
/* this length. 

static int BGROUPSl]={5, 4,6, 5,6, 6,8, 7,12, 8,42 }; 
register word; 

word = currentword; 
switch (1) 

{ 
case 1: 
{ /* Find the first part of "word"*/ 

/'• that can be matched to a code*/ 
/* of a black run. When a match */ 
/* occurs return the "clrbits" */ 
/* and "codebits". */ 

if( match_all_bits(word,BLK_CODES,BLK_RUNS,BGROUPS, 
clrbitsptr,codebitsptr) ) 

break; 
} 
default : { 

printfC"Wrong code encountered in 'match_blak'\n"); 
exit(O) ; 
} 

} 
} 
/* END MATCH_BLAK */ 

/ )':======================= MATCH_WHITE =============================V« 
/* Codes of length =2, 3, 4, 5, 6, 7, 8, 9 are processed in a * 
/* tree data structure in order to find a match for them with the * 
/* first 2, 3,...9 left bits of "currentword". Whenever a match is * 
/* found we exit from the tree. If no match is found in the tree, * 
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the function looks at the content of currentword (current word 
is a window that slides on the "cmprsdbfr") from left to right 
(up to bit 4) and tries to match the first ten bits with a code 
of white runs whose length is ten bits. If no match is found 
it tries to match the first 11 bits and so on until it finds a 
match. The last bits to be looked at are the first 13 bits. It 
is assumed that a match should be found otherwise an error 
message is sent to the screen the and program is halted. 
The function returns the length of the matched code and the 
length of the corresponding run in locations pointed to by 
"codebitsptr" and "clrbitsptr" respectively. 

match_white(clrbitsptr,codebitsptr) 
int ''«clrbitsptr, ̂codebitsptr ; 

{ 

static unsigned 

static int 

1; 

WHITE_RUNS[] = 
{ 

/* See comment for "BLK_CODES". 
WHITE_CODES[] = 
{ 

/* Codebits = 10. 
OxOScO, 0x0600, 0x0200, 0x03c0, 
OxOdcO, 

/* WARRAY_11 bits. 
OxOceO, OxOdOO, OxOdSO, 0x06e0, 
0x0500, 0x02e0, 0x0300, 

/•>'< WARRAY_12 bits. 
OxOcaO, OxOcbO, OxOccO, OxOcdO, 
0x0680, 0x0690, 0x06a0, 0x06b0, 
0x0d20, 0x0d30, OxOdSO, OxOdôO, 
0x0d70, 0x06c0, 0x06d0, OxOdaO, 
OxOdbO, 0x0540, 0x0550, 0x0560, 
0x0570, 0x0640, 0x0650, 0x0520, 
0x0530, 0x0240, 0x0370, 0x0380, 
0x0270, 0x0280, 0x0580, 0x0590, 
0x02b0, 0x02c0, 0x05a0, 0x0660, 
0x0670, 0x0c80, 0x0c90, 0x05b0, 
0x0330, 0x0340, 0x0350, 

/* WARRAY_13 bits. 
0x0360, 0x0368, 0x0250 

'•7 

V 

/* See comment for "BLK_RUNS". */ 

/* WCODE_10 BITS. */ 
16, 17, 18, -64, 0, 

/* WC0DE_11 bits. */ 
19, 20, 21, 22, 23, 24, 25, 

/* WC0DE_12 bits. •>'</ 
26, 27, 28, 29, 30, 31, 32, 33, 
34, 35, 36, 37, 38, 39, 40, 41, 
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}; 

42, 43, 44, 45, 46, 47, 48, 49, 
50, 51, 52, 53, 54, 55, 56, 57, 
58, 59, 60, 61, 62, 63, -128, -192, 
-256, -320, -384, -448, 

/* WC0DE_13 bits. * 
-512, -576, 640 

static unsigned WGROUPS[]={4, 10,5, 11,7, 12,44, 13,3 }; 
register unsigned tmpword,word; 

word = currentword; 
switch (l) 

{ 
case 1; 
{ 
if(word & 0x8000) 

{ 
if(word & 0x4000) 

*clrbitsptr = 2; 
else 

*clrbitsptr = 3; 
*codebitsptr = 2; 
break; 
} 

if(word & 0x4000) 
{ 
if(word & 0x2000) 

*clrbitsptr=4; 
else 

*clrbitsptr=l; 
'•codebitsptr=3 ; 
break; 
} 

if(word & 0x2000) 
{ 
if(word & 0x1000) 

*clrbitsptr=5; 
else 

'•clrbitsptr=6; 
*codebitsptr=4; 
break; 
} 

if(word & 0x1000) 
{ 
if(word & 0x0800) 

{ 
*clrbitsptr=7; 
*codebitsptr=5; 
break; 
} 

Bit 16 = 1. 

Bit 15 = 1 hence code=2.* 

Bit 15 = 0. 

Code length = 2. 

Bit 15 = 1. 

Bit 14 = 1. 
Code = 4 . 
Bit 14 = 0. 
Code = 4. 
Code length = 3. 

Bit 14 = 1. 

Bit 13 = 1. 
Code = 5. 
Bit 13 = 0. 
Code = 6. 
Code length = 4, 

Bit 13 = 1. 

Bit 12 = 1. 

Code = 7. 
Code length = 5. 
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{ /* Bit 11 = 1. 
if(word & 0x0400) 

/* Code = 8. ,v/ 
Aclrbitsptr=8 ; 

else /* Bit 11 = 0. 
/* Code = 9. 

*clrbitsptr=9 ; 
*codebitsptr=6; /* Code length = 6. 

{ *codebitsptr=7 

*clrbitsptr=10; break; } 

*clrbitsptr=ll; break; } 

break; 
} 

} 
/* By reaching this points it */ 
/* means that only 4 zero bits '''/ 
/* were found. */ 

/•:• mask with 1111 1110 00... ''7 
/* to handle runs 10, 11, 12 */ 

if((tmpword=(word&0xfe00)) == 0x0800) 
{ *codebitsptr=7 

if(tmpword==0x0a00) 
{ *codebitsptr=7 

if(tmpword==0x0e00) 
*clrbitsptr=12; break; } 

/* */ 
/* mask with 1111 1111 00... ='/ 
/'•' to handle runs 13, 14, 15 */ 

if((tmpword=(word&0xff00)) == 0x0400) 
{ *codebitsptr=8; ''«clrbitsptr=13; break; } 

if(tmpword==0x0700) 
{ *codebitsptr=8; '•clrbitsptr=14; break; } 

if((word&Oxff80)==0x0c00) 
{ *clrbitsptr=15; *codebitsptr=9; break; } 

/* 
/'•' find the first part of 
/* "word" that can be matched 
/* to a code of a white run. 
/'•' When a match occurs return 
/" the "clrbits" and "codebits" 

if( mateh_a1l_bi ts(word,WHITE_CODES,WHITE_RUNS,WGROUPS, 
clrbitsptr.codebitsptr) ) 

break; 
} 
default : { 

printf( 
" Wrong code encountered in 'match_white'\n"); 

exit(O) ; 
} 
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/* END MATCH_WHITE() ''=/ 
/,v END dupdtc.c */ 

13.7. File Dupdtd.c 

* STATIC VARIABLES : 
it 

dbitsremain : Bits remaining in a given byte, initial value is 
* 8 bits. 
* xsize : Horizontal dimension of the block = length of 
* each line. 
* xlength : Counter for number of bits processed in the 
* current line. 
* linestart : Points to the start byte of every line in 
* compressed buffer. 
" currentbyteptr : Points to the current byte, in the decompression 
* buffer, to be filled. 
* currentbyte : Equals the contents of byte pointed to by 
* "currentbyteptr". 
* leftbitsbyte ; An array of masks to get the 16th bit, the 16th 
* and 15th bits, and so on. 
rightbitsbyte : An array of masks to get the 1st bit, the 1st 

* and 2nd bits, and so on. 

*/ 

//include <memory.h> 
//define uchar unsigned char 

static int dbitsremain; 
static int xsize, xlength; 
static char "linestart; 
static uchar -currentbyteptr, currentbyte; 
static uchar rightbitsbyte[]= 

{0,0x01,0x03,0x07,0x0f,0x1f,0x3f,0x7f,Oxff}; 
static uchar leftbitsbytei] = 

{0,0x80,0xc0,0xe0,0xf0,Oxf8,0xfc,Oxfe,Oxff}; 

/* Put into the decompression buffer "dcmprsbufr" the exact number */ 
/* of white bits that equals the passed run length. */ 

update_dcmprs_whitereg(cIrbits) 
/* Number of white bits to be */ 

register int clrbits; /* added to the buffer. -/ 

{ 



www.manaraa.com

297 

register int difference; 
unsigned nmbrbytes; 

difference = clrbits-dbitsremain; 
if( clrbits >= (dbitsremain+8) ) /''• Can we use memsetO ? * 

{ /* YES we can, hence set the '• 
/* remaining bits of the current* 
/* byte to I's. * 

*currentbyteptr |= rightbitsbyte[dbitsremain]; 
/'• Divide by 8 to get the number* 

nmbrbytes=(difference)»3; /* of bytes that need to be * 
/* updated. * 
/* Set "nmbrbytes" bytes to ones* 

memset(++currentbyteptr,Oxff.nmbrbytes); 
currentbyteptr +=nmbrbytes; /* Advance the pointer position* 

/* If the difference was not * 
/* divisible by 8 then there * 
/* are some bits to be set * 
/* to ones in the next byte. * 

if((difference=difference &0x7) !=0) 
*currentbyteptr=leftbitsbyte[(difference)]; 

dbitsremain=8-(difference); 
} 

else /* No we can not use memsetO. */ 
{ 
if(difference < 0) 

{ /* Only few bits need to be set * 
/* to one within the current * 
/* byte, hence OR contents of * 
/* "currentbyteptr" with the * 
/* mask that is shifted left by * 
/* the negated difference. * 

*(currentbyteptr) 1= ( rightbitsbyte[clrbits] « 
(dbitsremain-clrbits) ); 

dbitsremain -=clrbits; 
} 

else /* There are some bits in the * 
/* current and next byte to be * 
/* set to one . * 

{ 
/* Set those bits left in * 
/* the current byte to I's * 

'•'currentbyteptr | =rightbitsbyte[dbitsremain] ; 
/* Set the required bits of the * 
/* next byte to one. * 

*(++currentbyteptr) =leftbitsbyte[difference]; 
dbitsremain = 8 - (difference); 

} 
/* If the end of the line is * 
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if( (xlength+=clrbits) >= xsize ) 

{ 
xlength=0; 

/* 
/* 

if(dbitsremain!=8) 
{ 
dbitsremain=8; 
++currentbyteptr; 
} 

linestart=currentbyteptr; 
return(O); 
} 

reached then initialize the */ 
variables to process the next*/ 
line. '•/ 

If "dbitsremin"=8 this means */ 
that "currentbyteptr" is '•/ 
pointing to the first byte of*/ 
the next line and, of course,*/ 
"dbitsremain" is correct. */ 
So start a new line. */ 

else 
return(1); /* Line did not end yet. 

END UPDATE_DCMPRS_WHITEREG() 

* /  

-* /  

)V==================== update_dcmprs_blakreg ===================== 

* Put into the decompression buffer "dcmprsbufr" the exact number 
* to black bits that equals the passed run length. Since initially 
* every bit in the buffer is set to zero, it is enough to advance 
* the pointer by the run length. 

update_dcmprs_blakreg(clrbits) 
register int clrbits; 

{ 
register 
unsigned 

int difference; 
nmbrbytes; 

difference=clrbits-dbitsremain; 
ifCclrbits >= (dbitsremain+8) ) 

{ 
/* Update more than two bytes. */ 

/* No need to set the remaining */ 
/* bits of the current byte */ 
/* to O's since the buffer is */ 
/* initialized to zero's. */ 

/* Divide by 8 to get the number*/ 
nmbrbytes=(difference)»3; /* of bytes to be updated. */ 

/* Advance the pointer position.*/ 
currentbyteptr +=nmbrbytes+l; 

/* By ANDING "difference" with*/ 
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/* 0000 0111 we get the bit */ 
/* position to start with in*/ 
/* the next process. */ 

dbitsremain=8-(difference &0x7 ); 
} 

else /* Update one or two bytes. */ 
{ 
if(difference<0) 

/* Only few bits need to be ••/ 
/* set to zero within the */ 
/* current byte, hence advance */ 
/'• "dbitsremain" by "clrbits", */ 
/* thus bits = run-length are */ 
/* set to zero in the current ••/ 
/* byte. '•/ 

dbitsremain -=clrbits; 
else 

{ 
/'• Advance "dbitsremain" by */ 
/* "clrbits", thus bits = run- */ 
/* length are set to zero in */ 

++currentbyteptr; /* the current and next byte. */ 
dbitsremain=8- (difference); 
} 

} 
/* If the end of line is reached*/ 
/* then initialize the variables*/ 

if( (xlength+=clrbits) >= xsize ) /* to process the next line. */ 
{ 
xlength=0; 

/* If "dbitsremin"=8 this means */ 
/* that "currentbyteptr" is */ 
/* pointing to first byte of */ 
/* the next line and, of course,*/ 
/* "dbitsremain" is correct. */ 

if(dbitsremain!=8) /* So start a new line. */ 
{ 
dbitsremain=8; 
++currentbyteptr; 
} 

linestart=currentbyteptr; 
return(O); 
} 

else 
return(l); /* Line did not end yet. */ 

} 
/* END UPDATE_DCMPRS_BLAKREG() */ 

/ vc==================== update_dcmprs_whitemk ======================)V/ 

update_dcmprs_whitemk(clrbits) 
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int clrbits; 

{ 
register int difference; 
register unsigned nmbrbytes; 

/* Refer to the comments in the '•/ 
/* function update_dcmprs_Mhitereg.'''/ 

difference=clrbits-dbitsremain; 
*currentbyteptr |= rightbitsbyte[dbitsremain]; 
nmbrbytes=(dif f erence)»3; 
memset(++currentbyteptr,Oxff,nmbrbytes); 
currentbyteptr +=nmbrbytes; 
if((difference=difference &0x7) !=0) 

'•currentbyteptr=leftbitsbyte[(difference)]; 

dbitsremain=8-(difference); 
xlength +=clrbits; 
return(1); 
} 
/,v END UPDATE_DCMPRS_WHITEMK( ) 'V 

/ 5V==================== update_dcmprs_blakmk =======================!'t/ 

update_dcmprs_blakmk(clrbits) 
register int clrbits; 

{ 
register int difference; 
unsigned nmbrbytes; 

/* Refer to comments in function •-/ 
/'•' update_dcmprs_blakreg. '•</ 

difference=clrbits-dbitsremain; 
nmbrbytes=(diff erence )»3; 
currentbyteptr +=nmbrbytes+l; 
dbitsremain=8-(difference &0x7); 
xlength +=clrbits; 
return(l); 
} 
/,v END UPDATE_DCMPRS_BLAKMK( ) */ 

/* Even number of bytes only. */ 
/* If the line length is odd do */ 

static unsigned bytelinelngth; /* not process the last byte. */ 

/A======================== init_dcmprsbfr =========================:v/ 

init_dcmprsbfr(dcmprsbfrptr,sizexbits) 
unsigned char *dcmprsbfrptr; 
int sizexbits; 
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{ 
linestart=currentbyteptr=dcmprsbfrptr; 
bytelinelngth= ( ( ((xsize=sizexbits)/8) /2)*2); 
xlength=0; 
dbitsremain=8; 
} 
/,v END INIT_DCMPRSBFR() — -V 

I* swap every pair of bytes in every word of the current line. */ 
/,•:=================================================================,•t/ 

adjst_line() 
{ 
swapbytsClinestart,linestart,bytelineIngth); 
} 
/,v END ADJST_LINE() '••/ 
/" END dupdtd.c */ 

13.8. File Initscrn.c 

//include <stdio.h> 
//include <memory.h> 
//include <dos.h> 
//include <io.h> 
//include <fcntl.h> 
//include <malloc.h> 
//define LINT_ARGS 
//define SCREENSIZE 
//define HI_RES 
//define TEXT„MODE 

extern int 

extern char 

16384 
6 
3 

/* window coordinates. 
xl,yl,x2,y2; 

/figure input file, 
datafile[]; 

=•'/ 

it ======================== INIT_SCREEN ======================== 

* init_screen(value) : Function to initialize the whole screen. 
It takes its input interactively. If "value" is equal to one 

* then the input file was entered at the command line. 
it ============================================================= 

init_screen(value) 
int value; 

V 
'•7 

{ 
char 
int 
char 

char 

*screenbufr; /* Temporary buffer. */ 
fhl,bytesread.modeval,loop=l; 
flag.c; 

/,v "src" is a far pointer '>/ 
far *src; /* initialized to "screenbufr". */ 
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if( value <= 1 ) 
{ 

while(loop) 
{ 

printfC"enter name of data file \n"); 
getsCdatafile); 
printf("your data file is %s \n",datafile); 
printf("Are the values entered correct ?\n"); 
printf("enter Y or N 
flag=getchar(); 
whileC ((flag!='y')&&(flag!='n')) ) 
{ 

flag=getchar(); 
printf("enter y or n "); 
flag=getchar(); 

} 
while((c=getchar()) !='\n') 

if(flag=='y') 
loop=0; 

} 
} 
setscmode(HI_RES); 

I* do the first bank (even) by */ 
I* allocating the half total '-/ 
/" size. '•/ 

screenbufr=malloc(SCREENSIZE/2); 
fhl = 0pen(datafile,0_RD0NLY|0_5INARY); 

/* read the first bank. */ 
bytesread=read(fhi,screenbufr,SCREENSIZE/2); 
src=(char far *)(screenbufr+7); 

/* The screen format has the first byte */ 
/* of the 1st bank at offset 8000 of the*/ 
/* screen segment. Move the data from */ 
/* the file to that segment. Note that */ 
/* in the screen segment the bytes */ 
/* starting at offset 8000 till (8192-7)*/ 
/* will be filled with whatever the file*/ 
/* has. This part is not from the */ 
/* physical screen. 

movedata(FP_SEG(src),FP_0FF(srC),OxbSOO,0x0000, 
(SCREENSIZE/2)-7); 

bytesread=read(fhl,screenbufr,SCREENSIZE/2); 
src=(char far *)(screenbufr); 

/* The 1st seven bytes of the 2nd half */ 
/* of the file are a continuation of the*/ 
/* (192-7) bytes that BASIC took from */ 
/* the screen memory and dumped it to */ 
/* the file. So the second half of the */ 
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movedata(FP_SEG(src 

close(fhl); 
freeCscreenbufr); 

* screen starts after 7 bytes of the 
* 2nd part of the file. By copying the 
* second half of the file into offset 
* (0x2000-7) we will fill the 7 bytes 
* at (0x2000-7) then the 2nd half of 
* the screen will be copied to offset 
* (0x2000). This fills the odd part of 
* the screen. The remaining (192-7) of 
* the file will fill offset 
* (0x2000+8000) till offset 
* (0x2000+8000+(192-7)). 
,FP_OFF(src),OxbSOO,(0x2000-7), 

SCREENSIZE/2); 

END INIT_SCREEN 

* Sets the screen to the desired video mode. V =,•:/ 
nt setscmode(mode) 
nt mode; 

/'•' set the video mode function. 

{ 
union REGS inregs; 
union REGS outregs; 

int ret_code,int_no; 

/* return the code and the »/ 
/" interrupt for function '•/ 
/* "gdosint". "/ 

/* "set video mode" BIOS */ 
/* function call. */ 

inregs.h.ah=0; 
inregs.h.al=mode; 
ret_code = int86(0xl0,&inregs,&outregs); 

/* return the code to check for ''</ 
/* any errors. */ 

return(ret_code); 
} 
/it END SETSCMODE -
/,v END initscrn.c 

-Vc/  

* /  

13.9. File Gttime.c 

//include <dos.h> 
//define LINT_ARGS 
//define INT_TIME Oxla 
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/,•:========================== GTTIME ===============================yc 

/* It returns the current time, only the seconds and the hundredths* 
/* of a second. The return value is the addition of the two, in * 
/* hundredths of a second. * 
/5V============== === ==== = = ======================= = = = ======= ==== ==== = 5'C 

unsigned gttimeO 

{ 
union REGS inregs; 
union REGS outregs; 
unsigned tc; 

inregs.h.ah=0x2c; 
intdosC&inregs,&outregs); 
tc = (outregs.h.dl) + (100 * outregs.h.dh); 
return(tc); 
} 
/,v END GTTIME () */ 
/•' END gttime.c */ 

13.10 File Print.c 

//include <io.h> 
//include <stdio.h> 

/* Print the results to the output file. The data to be printed out* 
/* are the compression time, the decompression time and the * 
/* compression factor. * 
/a=================================================================,V 

print_results(thefile.xl,yl,x2,y2,cmprstime,dcmprstime,avgfactor ) 
char thef ile[41 ]•; 
unsigned xl,yl,x2,y2; 
unsigned cmprstime,dcmprstime; 
float avgfactor; 
{ 
FILE *outfile; 

printf(" Compression factor is %f \n", avgfactor) ; 
printf( 
"Compression time is %u in l/lOO of a second \n", cmprstime ); 

printf( 
"Decompression time is %u in 1/100 of a second \n", dcmprstime ); 

/* Send data to table.dat file. */ 
if( (outfile = fopen( "table.dat", "r" )) == NULL ) 
{ 

/* Open the file for writing. */ 
/* Print the table heading too. */ 

outfile = fopen( "table.dat", "w" ) ; 
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fprintf(outfile, 
"File name xl yl x2 y2 cmprs cmprs "); 

fprintfCoutfile,"dcprs \n" ); 
fprintf(outfile, 

" fetor time "); 
fprintf(outfile,"time \n" ); 
fprintf(outfile, 

" II ). 

fprintf (outf ile, " \n") ; 
} 

else 
{ /'•' Appending. */ 
outfile = fopen( "table.dat", "a" ) ; 
} 

/'•' Output formats. '•/ 
fprintf (outf ile, "%-20s %3u %3u %3u %3u 7.6.2f %4u %5u\n", 

thefile, xl, yl, x2, y2, avgfactor, cmprstime, dcmprstime ); 
fclose(outfile); 
} 
/* END PRINT_RESULTS() */ 
f* END print.c */ 

13.11. File Geth.asm 

NAME 
TITLE 

_TEXT 
_TEXT 
CONST 
CONST 
_BSS 
_BSS 
_DATA 
_DATA 
DGROUP 

.DATA 
EXTRN 
MASK2 

SEGMENT 
ENDS 
SEGMENT 
ENDS 
SEGMENT 
ENDS 
SEGMENT 
ENDS 
GROUP 
ASSUME 

GET 
GET GRAPHIC SCREEN GETH 

BYTE PUBLIC 'CODE' 

WORD PUBLIC 'CONST' 

WORD PUBLIC 'BSS' 

WORD PUBLIC 'DATA' 

CONST, _BSS, _DATA 
CS: _TEXT, DS: DGROUP, SS: DGROUP, ES: DGROUP 

GTSETMOD 
_DATA ENDS 
PUBLIC 

BUFFER 
YO 
Y2 

SEGMENT WORD PUBLIC 'DATA' 
_CHKSTK:NEAR 
DB OFFH 
DB 080H,OCOH,OEOH,0 FOH,0 F8H,0 FCH,0 FEH 
DB 0 

_get,MASK2 

EQU [BP+12] 
EQU [BP+6] 
EQU [BP+10] 

INPUTS ; 
POINTER TO MEMORY BUFFER. 
Y OF UPPER LEFT CORNER. 
Y OF LOWER RIGHT CORNER. 
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INXO EQU [BP+4] 
INX2 EQU [BP+8] 

XO EQU [BP-2] 

SORC_INC EQU [BP-4] 

S0RC_INDX2 EQU [BP-6] 

DEST_INDX2 EQU [BP-8] 
SHFT_RGT EQU [BP-IQ] 
LINE_CNTR EQU [BP-12] 
PXLENGTH EQU [BP-14] 

ODDORG = 02000H 

WORK VARIABLES : 
X OF THE BYTE IN WHICH IS 
THE UPPER LEFT CORNER OF 
THE BLOCK 
0 <= XO <= 79 BYTES. 

SOURCE INCREMENT AFTER 
EACH LINE MOVE. DEST_INC = 
DX, IT ISN'T DEFINED HERE 
BUT WE NEED IT TO SKIP 
LINES OF THE OTHER BANK. 
SOURCE ( SCREEN ) OFFSET 
OF THE FIRST BYTE. 
DESTINATION (BUFFER) OFFSET 
OF THE FIRST BYTE IN THE 
2ND BANK. SEE FINDPARAM 
NO. OF LINES IN EACH BANK. 

_BSS SEGMENT word public 'BSS' 
EVEN 

; "LAST_MASK" IS A VARIABLE TO BE 
; INITIALIZED FROM THE VALUES IN 
; "MASKl". "LAST_MASK" IS USED IN 
; "BLOKX" AND "XBLOK". IT IS OF BYTE 
; SIZE. IN FUNCTION PUT() "BLOKX" 
; WILL HAVE "RIGHT_MASK" OF SIZE 
; BYTE AND "XBLOK" WILL HAVE 
; "LAST_MASK" OF SIZE WORD, SO IT IS 

LAST_MASK DB ? ; DIFFERENT FROM THIS "LAST_MASK". 
EVEN 

LTl DB ? 
RTl DB ? 
BITl DW ? 
_BSS ENDS 

GET PROC NEAR 
PUSH BP 
MOV BP.SP 
MOV AX,14 
CALL chkstk 
PUSH DI 
PUSH SI 
PUSH ES 
PUSH DS 
PUSH DX 
PUSH CX 
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PUSH BX 
PUSH AX 

GET_SMODE: 
MOV 
INT 
CMP 
JNE 
MOV 
MOV 
MOV 
JMP 

HIGH_RES: 
CMP 
JNE 
MOV 
MOV 
MOV 
JMP 

NOT_GRAPH: 
JMP GT_DONE 

FIND_PARAMS : 
CALL FINDPARAM 

COMMENT A 
FIND_PARAMS WILL RETURN "DX = XLENGTH" (CASEL AND CASE3_B) OR 
"XLENGTH-1" (FOR CASE 2 AND CASE3_A) WHERE "XLENGTH"= NO. OF BYTES 
NEEDED TO STORE EACH LINE. 
BX = COUNTER FOR Y LINES= NO. OF LINES IN THE FIRST BANK. 
CX = KIND OF BLOCK. 

AH, 15 
16 
AL,4 
HIGH_RES 
RT1,2 
LT1,1 
WORD PTR BIT1,3 
FIND_PARAMS 

AL,6 
NOT_GRAPH 
RTL ,3 
WORD PTR BIT1,7 
LTL ,0 
FIND_PARAMS 

INIT_BUFFER: 
MOV 
MOV 
MOV 

MOV 
STOSW 
MOV 
SUB 
INC 

STOSW 
MOVE_SETUP: 

MOV 
SUB 
MOV 
MOV 
SHR 

MOV 
MOV 

AX.DS 
ES,AX 
DI,BUFFER 

AX,PXLENGTH 

AX,Y2 
AX,YD 
AX 

AX,80 
AX,DX 
SORC_INC,AX 
AX.YO 
AX,1 

SI.DX 
BL,80 

LET ES = DS. 

DI = ADDRESS OF THE 1ST BYTE IN 
THE BUFFER. STORE "XLENGTH" IN THE 
1ST WORD OF THE BUFFER. 
"XLENGTH" IS IN PELS. 

AX = Y2-Y0 + 1. 
STORE "YLENGTH" IN THE 2ND WORD OF 
THE BUFFER. 

"SORC_INC" = 80 - SIZE. 

AX = NUMBER OF THE 1ST LINE ON THE 
SCREEN. 
STORE "DX" IN "SI". 
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MUL 
MOV 
ADD 
MOV 
AND 
JZ 

ADD 

MOV 
ORG_EVEN: 

MOV 
ADD 
MOV 
MOV 
ADD 
ADD 
MOV 

MOV 
SUB 
INC 

MOV 
SHR 

MOV 
AND 
ADD 

CMP 
JBE 

MOV 
MOV 
CLD 

CHOOSE: JCXZ 
CMP 
JNZ 

RIGH_TBAD: 
CALL 
JMP 

LEFT_BAD: 
CMP 
JNZ 
CALL 
JMP 

BL 
DX.SI 
AX,XO 
BX,YO 
BX,1 
ORG_EVEN 

AX.ODDORG 

BX,80 

; RESTORE "DX". 
; AX = (YO/2) * 80 + XO. 

; IF BL = 1 THEN YO IS ODD. 
; IF BL = 0 THEN YO IS EVEN. 
; YO IS ODD SO ADD THE ORIGIN OFFSET 
; OF THE ODD BANK INTO THE SCREEN 
; SEGMENT. 

SI,AX 
AX,BX 
S0RC_INDX2,AX 
AX,BUFFER 
AX,4 
AX,DX 
DEST_INDX2,AX 

AX,Y2 
AX,YO 
AX 

BX,AX 
AX,1 

LINE_CNTR,AX 
BX,1 
BX.AX 

BX,0 
Y_ERROR 

AX,0B800H 
DS,AX 

ALLJOK 
CX,1 
LEFT_BAD 

SI = SOURCE INDEX OF THE FIRST BANK 
IF YO IS ODD THEN S0RC_INDX2 = 
SOURCE INDEXI + 80. 
DEST_INDX1 WAS ALREADY INITIALIZED 
TO 4 AFTER WE FILLED THE FIRST TWO 
WORDS OF THE BUFFER. 
DEST_INDX2 = BUFFER + 4 (DUE FIRST 
TWO WORDS) + DX (DUE TO THE FIRST 
LINE) 

; BX = AX = Y2-Y0 + 1 = "YLENGTH" 
; IN PELS. 
; AX = NO. OF LINES IN THE SECOND 
; BANK. 
; SO STORE IT IN THE LINE COUNTER. 
; IF "YLENGTH" IN PELS WAS ODD THEN 
; BX = 1, HENCE ADD IT TO THE LINE 
; COUNTER. 
; STORE THE RESULT IN BX, WHICH WE 
; USE AS Y LINES COUNTER. 
; IF BX (i.e. NO. OF Y LINES IN THE 
; FIRST BANK) <= 0 THEN Y VALUES 
; WERE WRONG) 
; LET DS = B800 = SCREEN SEGMENT. 

; JUST TO MAKE SURE. 

GTBLKX 
GT_DONE 

CX,2 
X_ERROR 
GTXBLKX 
GT_DONE 
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MOV 
JMP 

MOV 
JMP 
CALL 

POP 
POP 
POP 
POP 
POP 
POP 
POP 
POP 
MOV 
POP 
RET 
ENDP 

FINDPARAM 
MOV 
MOV 
MOV 

SHR 

MOV 
MOV 
SUB 
INC 

MOV 
MOV 
SHR 
AND 
JNZ 

LEFT_OK: 
AND 

JNZ 
SUB 

RET 
RIGHT_X: 

X_ERROR: 

Y_ERROR; 

ALL_OK: 
GT_DONE: 

GET 

AX,1 
GT_DONE 

AX,1 
GT_DONE 
GTBLK 

AX 
BX 
CX 
DX 
DS 
ES 
SI 
DI 
SP,BP 
BP 

PROC NEAR 
AX.INXO 
BX,AX 
CL.RTL 

AX,CL 

XO,AX 
DX,INX2 
DX,BX 
DX 

SI,DX 
PXLENGTH.DX 
DX.CL 
BX.BITL 
LEFT_X 

SI.BITL 

RIGHT_X 
CX.CX 

; STORE "XLEFT" (PELS) IN AX AND BX 

BITS 0,1 SPECIFY ONE PEL OUT OF 4 
GET RID OF THEM TO GET THE BYTE 
COORDINATES 
STORE THE RESULT IN XO. XO = THE 
BYTE IN WHICH "XLEFT" (PELS) LIES 
DX = "XRIGHT" (PELS). 

SI = DX = XRIGHT - XLEFT + 1 
XLENGTH (PELS). 

DX = XLENGTH IN BYTES. 

XLEFT IS AT THE BYTE BOUNDARY, SEE 
IF XRIGHT IS AT THE BYTE BOUNDARY 
TOO 
IF XRIGHT IS NOT AT THE BYTE 
BOUNDARY 
GO TO RIGHT_X. 
THE BLOCK IS AT THE BYTE BOUNDARY 
50 CX = 0. 
DX IS EXACT. 

51 = NO. OF PELS IN THE LAST BYTE. 
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MOV 
SHL 
MOV 
MOV 

INC 
MOV 
RET 

LEFT_X: 
MOV 
INC 
SUB 
MOV 
SHL 

MOV 

AND 
JZ 

INC 

SET_LST_MSK: 
MOV 
SHL 
MOV 
MOV 
MOV 
RET 

FINDPARAM 

; SI = 1,2,3 (=0 IS A PREVIOUS CASE). 
CL,LT1 
SI,CL 
AL,[SI+MASK2] 
LAST_MASK,AL 

; DX = NO. OF BYTES NEEDED IN 
DX ; THE ARRAY. 
CX,1 

AX,BIT1 
AL 
AL,BL 
CL,LT1 
AL,CL 

WE USE SHFT_RGT TO SHIFT THE WORD 
IN WHICH A PEL (OTHER THAN ZERO) 
IS THE START OF EACH LINE. 

BYTE PTR SHFT_RGT,AL 
THE SCREEN BYTE THAT WE WANT TO 
TRANSFER TO THE BUFFER . 
WE SHIFT THE WORD TILL THE DESIRED 
BYTE FITS INTO AL. 
FOR THE LAST BYTE WE NEED ONLY PART 
OF THE BYTE SO WE ZERO THE EXTRA 
PELS USING LAST_MASK. 

SI,BIT1 ; IF SI = 0 WE HAVE NO EXTRA PELS, 
SET_LST_MSK ; HENCE THE LAST BYTE IS COUNTED IN 

DX. 
DX ; INCREMENT DX TO TAKE THE LAST BYTE 

OUT OF DX. 
SINCE SI WAS CALCULATED FROM 
XLENGTH IT INCORPORATED THE EFFECT 
OF XO AND X2 IN THE LAST BYTE OF 
THE BUFFER. LAST_MASK TAKES CARE OF 
THE EXTRA PELS IN THE LAST BYTE. 
THE DIFFERENCE BETWEEN "GET" AND 
"PUT" FUNCTIONS IS THAT IN "PUT" WE 
WANT TO PRESERVE THE OLD CONTENT OF 
THE SCREEN (i.e. THE EXTRA PELS IN 
THE LAST BYTE). BUT IN "GET" WE 
ZERO THE EXTRA PELS BY LAST MASK. 

CL.LTl 
SI,CL 
AL,MASK2 [SI] 
LAST_MASK,AL 
CX,2 

SI = NO. OF PELS IN THE LAST BYTE. 
SI = 0,1,2,3 

ENDP 
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GTBLK 

LOOPL: 

PROC 
MOV 

PUSH 
LOOP2: MOV 

MOV 
SHR 
REPZ 
SHR 
JNB 
LODSB 
STOSB 

NEXT_LINE: 
ADD 
ADD 
DEC 
JNZ 

NEXT_BANK: 

MOV 
POP 
CMP 

NEAR 
CX,2 

CX 
CX,DX 
AX.DX 
CX,1 
MOVSW 
AX.l 
NEXT LINE 

SI,SORC_INC 
DI,DX 
BX 
LOOP 2 

BX,LINE_CNTR 
CX 
BX,0 

JBE GTBLK DONE 

MOV 

MOV 

CHANG_ORIGN; 

XOR 
LOOP 

GTBLK_DONE: 
GTBLK 

SI,S0RC_INDX2 

DI,DEST_INDX2 

SI,02000H 
LOOPl 
RET 
ENDP 

INITIALIZE THE OUTSIDE COUNTER. 

STORE THE OUTSIDE COUNTER. 
INITIALIZE THE BYTES COUNTER. 
STORE IT IN AX ALSO. 
CX = CX/2 = NO. OF WORDS. 
MOVE AS WORDS. 
IF THE NO. OF BYTES WAS EVEN 
THEN GO TO DO THE NEXT LINE. 
NO. OF BYTES WAS ODD SO WE HAVE 
TO MOVE THE LAST BYTE. 

INCREMENT SI AND DI BY SORC_INC. 

IF THEIR IS MORE LINES START AGAIN. 

REINITIALIZE BX TO THE NO. OF Y 
LINES IN THE SECOND BANK. 
RESTORE THE ROUND COUNTER. 
DOES THE SECOND BANK HAVE ANY 
LINES ? 
IF NOT, THEN THE BLOCK HAS ONLY 
ONE Y LINE AND WE ARE DONE. 
ELSE, THE 2ND BANK HAS LINES SO 
CONTINUE. 
SI POINTS TO THE OFFSET IN THE 
SECOND BANK. 
DI POINTS TO THE 2ND LINE IN THE 
BUFFER 

CHANGE FROM EVEN TO ODD BANK 
OR VICE VERSA. 

GTBLKX 

LOOP IX: 

L00P2X: 

PROC 
MOV 

PUSH 
MOV 
DEC 
MOV 
SHR 
REPZ 
SHR 
JNB 

NEAR 
CX,2 

CX 
CX,DX 
CX 
AX,CX 
CX,1 
MOVSW 
AX,1 
ADJUST LAST 

DX DID NOT INCLUDE THE LAST BYTE 
SO DO THE LAST BYTE OF ADJUST_LAST. 
AX = CX = DX = XLENGTH. 
CX = XLENGTH/2 (- O/l BYTE). 

IF XLENGTH WAS EVEN THEN MOVING 
DX BYTES IS DONE, GO TO ADJUST_LAST 
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LODSB 
STOSB 

ADJUST_LAST: 
LODSB 
MOV 
AND 

STOSB 
NEXT_LINEX; 

ADD 
ADD 
DEC 
JNZ 

NEXT_BANKX: 
MOV 
POP 
CMP 
JBE 
MOV 
MOV 

CHANG_ORGX: 
XOR 
LOOP 

GTBLKX_DONE: 
GTBLKX 

GTXBLKX PROC 

MOV 
XLOOPl: 

PUSH 
MOV 

XL00P2: MOV 
DEC 

JZ 
XL00P3: LODSW 

XCHG 

SHR 
STOSB 

CL,ES:LAST_MASK 
AL,CL 

DX WAS ODD SO WE STILL HAVE TO MOVE 
ONE MORE BYTE. 

LOAD THE LAST BYTE FROM THE SCREEN. 
SET TO 0 THE BITS WE DO NOT WANT. 
COPY THE BITS, FILL FROM LEFT TO 
RIGHT. 
STORE THE RESULT IN THE LAST BYTE 
OF THIS LINE. 

SI,SORC_INC 
DI.DX 
BX 
L00P2X 

BX,LINE_CNTR 
CX 
BX,0 
GTBLKX_DONE 
SI,S0RC_INDX2 
DI,DEST_INDX2 

SI,02000H 
LOOP IX 
RET 
ENDP 

NEAR 

CX,2 

BEFORE INCREMENTING DL WE HAVE 
DX = THE NO. OF BYTES EXCEPT 
THE LAST BYTE 0 <= ( DX = XLENGTH ) 
<= 79 SO DL = DX = XLENGTH - 1. 
NOW WE HAVE DL = XLENGTH + 1, 
DL = 1 IF ONLY THE LAST BYTE TO BE 
PROCESSED. ( 1 <= DL <= 80. ) 

CX 
CL,SHFT_RGT 
CH,DL 
CH 

XLAST_BYTE 

AH,AL 

AX.CL 

IF DX WAS ORIGINALLY 0 (i. e .  WE 
HAVE ONLY ONE BYTE, WHICH IS THE 
LAST ONE) THEN WE HAVE TO MOVE ONLY 
THIS LAST BYTE SO GO TO LAST_BYTE. 

LOAD A WORD FROM THE SCREEN. 

SHIFT IT TO THE RIGHT TILL THE 
DESIRED BYTE FITS INTO AL. 
STORE THIS BYTE INTO THE BUFFER. 
SI WAS INCREMENTED BY 2 TO GET 
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DEC 
DEC 
JNZ 

XLAST_BYTE: 
LODSW 
XCHG 
SHR 
AND 
STOSB 
DEC 

XNEXT_LINE: 
ADD 
ADD 
DEC 
JNZ 

XNEXT_BANK; 
MOV 
POP 
CMP 
JBE 
MOV 
MOV 

CHNG_XORG: 
XOR 
LOOP 

GTXBLK_DONE: 
GTXBLKX 
_TEXT 
END 
/,v 

SI 
CH 
XL00P3 

AH.AL 
AX.CL 
AL,ES:LAST_MASK 

SI 

SI,SORC_INC 
DI.DX 
BX 
XL00P2 

BX,LINE_CNTR 
CX 
BX,0 
GTXBLK_DONE 
SI,S0RC_INDX2 
DI,DEST_INDX2 

SI,02000H 
XLOOPl 
RET 
ENDP 
ENDS 

BYTES 3,4 (i.e. WE GOT 1,2). 
SO DECREMENT SI 
IF THE BLOCKS ARE DONE THEN END 
THE LOOP, IF NOT LOOP AGAIN. 

END geth.asm 

13.12. File Puth.asm 

PUBLIC MASK1,_PUT,FIND_PARAMS_P 
DGROUP GROUP _BSS,_DATA 

ASSUME DS:DGROUP 
EXTRN CHKSTK:NEAR 
_DATA SEGMENT word public 
MASKl DB ? 

DB 
EVEN 

MASK3 DW 
DW 
DW 
DW 
DW 
DW 
DW 

'DATA' 

07FH,03FH,01FH,OOFH,007H,003H,001H 

07F80H,0FFBFH,0FF9FH,0FF8FH,0FF87H,0FF83H 
OFF81H,OFF80H,03FCOH,OFFDFH,OFFCFH,OFFC7H 
0FFC3H,OFFClH,0FFC0H,O7FC0H,01FE0H,0FFEFH 
0FFE7H,0FFE3H,OFFEIH,OFFEOH,07FE0H,03FE0H 
00FF0H,0FFF7H,0FFF3H,0FFF1H,0FFF0H,07FF0H 
03FF0H,01FFOH,007F8H,0 FFFBH,0FFF9H,0FFF8H 
07 FF8H,03FF8H,01FF8H,00FF8H,003FCH,OFFFDH 
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DW 
DW 
DW 
EVEN 

PTMODSET DB 
DATA ENDS 

OFFFCH,07FFCH,03FFCH,OlFFCH,OOFFCH,007FCH 
001FEH,OFFFEH,07 FFEH,03FFEH,01FFEH,OOFFEH 
007FEH,003FEH 

_BSS SEGMENT 
EVEN 

word public 'ESS' 

DW ? 

LAST_MASK 
DW 7 

RIGHT_MASK 
DB 7 

LT2 DB 1 
LT3 DB 7 
BITl DW 7 
RTl DB ? 
ADJSTl DB 7 
LT4 DB 7 
_BSS ENDS 

IXO EQU [BP+4] 
YO EQU [BP+6] 
BUFFER EQU [BP+8] 
DEST_INC EQU [BP-2] 
S0RC_INDX2 EQU [BP-4] 
DEST_INDX2 EQU [BP-6] 
LINE_CNTR_P EQU [BP-8] 
SHFT_LFT EQU [BP-IO] 
BANK EQU [BP-12] 
XO EQU [BP-14] 

STRNG_MASK AND LAST_MASK ARE 
INITIALIZED IN "FINDPARAMS" 
FROM THE VALUES IN MASK3 
RESPECTIVELY. 
THEY ARE USED IN THE XBLOCK CASE. 
TO BE INITIALIZED IN 
"FINDPARAM", FOR THE CASE OF 
"BLOCKX", FROM VALUES IN "MASKl". 

BANKS COUNTER. 

TEXT 

_PUT 

ODDORG=02000H 
SEGMENT BYTE PUBLIC 'CODE' 
ASSUME CS:_TEXT 
PROC NEAR 
PUSH BP 
MOV BP.SP 
MOV AX,14 
CALL chkstk 
PUSH DI 
PUSH SI 
PUSH ES 
PUSH DS 
PUSH AX 
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PUSH BX 
PUSH CX 
PUSH DX 

GETSC_MODE: 
MOV AH, 15 
INT 16 
CMP AL,4 
JNE HIGH_RES_P 
MOV RT1,2 
MOV LT2,1 
MOV LT3,5 
MOV BIT1,3 
MOV ADJSTl,16 
MOV LT4,2 
JMP FIND_PARAMS_P 

HIGH_RES_P: 
CMP AL,6 
JNE NOT_GRAPH_P 
MOV RT1,3 
MOV LT2,0 
MOV LT3,4 
MOV BIT1,7 
MOV ADJSTl,0 
MOV LTA,1 
JMP FIND_PARAMS_P 

NOT_GRAPH_P: 
JMP PUT_DONE 

FIND_PARAMS_P: 
CALL FINDPARAM_P 

MOVE_SETUP_P: 
MOV AX,80 
SUB AX,DX 
MOV DEST_INC,AX 
MOV AX,YO 
SHR AX,1 
MOV BL,80 
MOV DI,DX 
MUL BL 
MOV DX,DI 
ADD AX,XO 
MOV BX,YO 
AND BX,1 
JZ ORG_EVEN_P 
ADD AX.ODDORG 
MOV BX,80 

ORG_EVEN_P: MOV DI.AX 
ADD AX.BX 
MOV DEST_INDX2,AX 
MOV AX,SI 
ADD AX,DX 

DEST_INC = 80-SIZE ( = SCREEN_INC.) 

BX = 0 OR 80. 
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MOV 
MOV 
MOV 
SHR 
MOV 
AND 
ADD 

CMP 
JBE 
MOV 
MOV 
MOV 

CHOOSE_P: 
JCXZ 
CMP 
JNZ 

G_RIGHT_BAD_P; 
CALL 
JMP 

G_LEFT_BAD_P: 
CMP 
JNZ 
CALL 
JMP 

X_ERR0R_P: 
JMP 

Y_ERR0R_P: 
JMP 

G_ALL_OK_P: 
CALL 

PUT_D0NE: 
POP 
POP 
POP 
POP 
POP 
POP 
POP 
POP 
MOV 
POP 
RET 

_PUT ENDP 

S0RC_INDX2,AX 
AX,LINE_CNTR_P 
BX,AX 
AX,1 
LINE_CNTR_P,AX 
BX,1 
BX,AX 

BX,0 
Y_ERROR_P 
BYTE PTE BANK,2 
AX,OB800H 
ES,AX 

G_ALL_OK_P 
CX,1 
G_LEFT_BAD_P 

PUTBLKX 
PUT_D0NE 

CX,2 
X_ERROR_P 
PUTXBLKX 
PUT_D0NE 

PUT_DONE 

PUT_D0NE 

PUTBLK 

DX 
CX 
BX 
AX 
DS 
ES 
SI 
DI 
SP.BP 
BP 

AX = NO. OF Y LINES IN THE SECOND 
BANK. STORE IT IN THE LINE COUNTER. 
IF "YLENGTH" WAS ODD THEN BX = 1, 
HENCE THE FIRST BANK HAS ONE MORE 
LINE THAN THE SECOND. 

INITIALIZE THE BANKS COUNTER. 

FINDPARAM_P PROC NEAR 
MOV SI,BUFFER 
LODSW 
MOV DI.AX 

SI POINTS TO THE BUFFER. 

DI HERE IS USED AS A GENERAL 
REGISTER. LET DI="XLENGTH" (PELS), 
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LODSW 

MOV LINE_CNTRJ 
MOV DX,DI 
MOV CL,RT1 

SHR DX,CL 
MOV AX,IX0 
SHR AX,CL 
MOV X0,AX 
MOV BX,IX0 
AND BX,BIT1 

JNZ LEFT_BAD_P 

AND DI,BIT1 
JNZ RIGHTX_P 
SUB CX,CX 
RET 

RIGHTX P; 
MOV 
SHL 
MOV 

MOV 
INC 
MOV 
RET 

LEFT_BAD_P: 

MOV 
INC 
SUB 
MOV 
SHL 
MOV 
AND 
JZ 

CL,LT2 
DI,CL 
AL.MASKl [DI] 

RIGHT_MASK,AL 
DX 
CX,1 

AX.BITl 
AL 
AL.BL 
CL,LT2 
AL,CL 
SHFT_LFT,AL 
DI.BITl 
SET LST MSKP 

LET "LINE_CNTR" HOLD THE TOTAL NO. 
OF Y LINES, i.e. "YLENGTH". 
DX = "XLENGTH" (PELS). 

LAST TWO BITS SPECIFY THE EXTRA 
PELS. GET RID OF THEM. 
DX = "XLENGTH" (-1 IF WE HAD 
EXTRA PELS.) 

BX PELS OF XO (i.e. BX = 0,1,2,3.) 
IF THE BLOCK DID NOT START AT PEL 0 
(i.e. WITHIN BYTE) GO TO LEFT_BAD_P 
DI = NO. OF EXTRA PELS 
(0,1,2 OR 3 PELS.) 
EXTRA PELS ? IF SO, GO TO RIGHTX_P. 
NO EXTRA PELS ( DI=0. ) 

NOTE THAT RIGHT_MASK IS A BYTE, BUT 
LAST_MASK IS A WORD ( THIS 
LAST_MASK DIFFERS FROM THE ONE USED 
IN "GET" FUNCTION. ) 

SHFT_LEFT SHIFTS A BYTE FROM THE 
BUFFER IN AX TILL IT STARTS AT THE 
PEL WERE XO ( OR THE BLOCK ) 
STARTS. STRNG_MASK WILL ZERO THE 
BITS OF A COPY OF THE SCREEN 
CORRESPONDING TO THIS BYTE. 
"ORING" AX AND THE MASKED WORD 
GIVES US THE CORRECT WORD TO 
PUT ON THE SCREEN. 
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INC 
SET_LST_MSK_P: 

DEC 
MOV 
SHL 

ADD 
MOV 
SHL 
MOV 

MOV 
MOV 
MOV 
MOV 

END_FIND_P: 
FINDPARAM_P 

PUTBLK 
LOOPl: 
L00P2_P: MOV 

MOV 
SHR 
REPZ 
SHR 
JNB 
LODSB 
STOSB 

NEXT_LINE_P: 
ADD 
ADD 
DEC 
JNZ 

NEXT_BANK_P: 
MOV 
CMP 
JZ 
MOV 
MOV 

CHNG_ORG_P: 
XOR 
DEC 
JNZ 

PUTBLK_DONE: 
PUTBLK 

PUTBLKX 
LOOP1X_P: 

DX 

BX 
CL,LT3 
BX.CL 

BL.ADJSTl 
CL,LT4 
DI.CL 
AX,MASKS[BX+DI] 

LAST_MASK,AX 
AX,MASK3 [BX] 
STRNG_MASK,AX 
CX,2 
RET 
ENDP 

BX <= 7*16 =112 SO WE CAN USE BL 
INSTEAD OF BX. 

THE LAST_MASK HAS ZERO BITS 
STARTING AT THE PEL OF XO 
( DEFINED BY BX. ) AND CONTINUES 
FOR THE NO. OF EXTRA BITS 
( DEFINED BY DI. ) 

PROC NEAR 

CX,DX 
AX.DX 
CX,1 
MOVSW 
AX,1 
NEXT_LINE_P 

DI,DEST_INC 
SI,DX 
BX 
L00P2_P 

BX,LINE_CNTR_P 
BX,0 
PUTBLK_DONE 
DI,DEST_INDX2 
SI,S0RC_INDX2 

DI,02000H 
BYTE PTR BANK 
LOOPl 
RET 
ENDP 

PROC NEAR 
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L00P2X_P: 
MOV 
DEC 
JZ 
MOV 
SHR 
REPZ 
SHR 
JNB 
LODSB 
STOSB 

ADJST_LASTX_P: 

LODSB 
MOV 
AND 
OR 
STOSB 

NEXT_LINEX_P: 
ADD 
ADD 
DEC 
JNZ 

NEXT_BANKX_P: 
MOV 
CMP 
JZ 
MOV 
MOV 

CHNG_ORGX_P: 
XOR 
DEC 
JNZ 

PUTBLKX_DONE: 
PUTBLKX 
PUTXBLKX 

MOV 
XL00P1_P: 

MOV 
PUSH 
DEC 

JZ 
XL00P2_P; 

CX,DX 
CX 
ADJST_LASTX_P 
AX,CX 
CX,1 
MOVSW 
AX,1 
ADJST_LASTX_P 

; WE DO NOT CHECK IF LAST BYTE IS 
; FULL BECAUSE THAT CASE IS HANDLED 
; IN "BLOCK" AND NOT "BLOCKX". 

AH.ES:[DI] 
AH,RIGHT_MASK 
AL,AH 

DI,DEST_INC 
SI,DX 
BX 
L00P2X_P 

BX,LINE_CNTR_P 
BX,0 
PUTBLKX_DONE 
DI,DEST_INDX2 
SI,S0RC_INDX2 

DI,02000H 
BYTE PTR BANK 
L00P1X_P 
RET 
ENDP 
PROC NEAR 
CL,SHFT_LFT 

WE DID NOT NEED THIS IN "BLOCKX" 
BECAUSE REP_STRING WILL TAKE CARE 
OF IT AS FOLLOWS : DX=0 SO "REPZ" 
WILL NOT MOVE ANYTHING. SINCE ZERO 
IS AN EVEN NUMBER THE PROGRAM WILL 
JUMP TO THE NEXT LINE WITHOUT 
MOVING AN EXTRA BYTE. 

CH.DL 
DX 
CH 

XLAST BYTE P 



www.manaraa.com

320 

XOR AH,AH 
LODSB 
SHL AX,CL 
XCHG AH,AL 
MOV DX,ES:[DI] 
AND DX,STRNG_MASK 
OR AX.DX 
STOSW 
DEC DI 
DEC CH 
JNZ XL00P2_P 

XLAST_BYTE_P: 
XOR AH,AH ; FILL AH WITH ZEROS. 
LODSB ; AL = BYTE FROM THE BUFFER THAT NEED 

; TO BE PUT ON THE SCREEN STARTING AT 
; THE PEL XO. 

SHL AX,CL ; THE SHIFT WILL PUT IT IN AX AT 
XCHG AH,AL ; THE SAME PLACE. THE OTHER BITS IN 

; AX WILL BE ZEROS. 
MOV DX,ES;[DI] 
AND DX,LAST_MASK ; DX = ZEROS IN THAT PART OF THE 

; BYTE, OTHER BITS ARE SET TO ONES. 
OR AX,DX ; AX = NEW SCREEN WORD. PUT IN 

; PLACE WITHOUT CHANGING OTHER BITS. 
STOSW ; PUT THE WORD ON THE SCREEN. 
DEC DI ; ADJUST DI TO PUT THE NEXT BYTE. 

; ( SAY DO WORD 1+1/2 INSTEAD OF 
; WORD 2. ) 

NEXT_XLINE_P: 
ADD DI,DEST_INC 
POP DX 
ADD SI,DX 
DEC BX 
JNZ XL00P1_P 

XNEXT_BANK_P: 
MOV BX,LINE_CNTR_P 
CMP BX,0 
JZ PUTXBLK_DONE 
MOV DI,DEST_INDX2 
MOV SI,S0RC_INDX2 

CHNG_XORG_P: 
XOR DI,02000H 
DEC BYTE PTR BANK 
JNZ XL00P1_P 

PUTXBLK_D0NE: RET 
PUTXBLKX ENDP 
_TEXT ENDS 

END 
/is END puth.asm '•'/ 
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13.13. File Swap.asm 

; SWAP LOW AND HIGH BYTES IN EACH WORD 
NAME SWAP 
TITLE SWAP BYTES IN EACH WORD 
DGROUP GROUP CONST, _BSS, _DATA 

ASSUME CS; _TEXT, DS: DGROUP, SS: DGROUP, ES: DGROUP 
PUBLIC _swapbyts 
FROMADDRS EQU [BP+4] ; PARAMETERS PASSED. 
TOADDRS EQU [BP+6] 
WORDCONT EQU [BP+8] 
_TEXT SEGMENT 

_swapbyts PROC NEAR 
PUSH BP ; SAVE REGISTERS. 
MOV BP,SP 
PUSH DI 
PUSH SI 

; PUT THE NUMBER OF WORDS TO BE 
MOV CX,WORDCONT ; SWAPPED IN CX. 
MOV SI,FROMADDRS ; SOURCE OPERAND IS ADDRESSED BY SI 

; DESTINATION OPERAND IS 
MOV DI,TOADDRS ; ADDRESSED BY DI. 

; LOOP UNTIL THE NUMBER OF WORDS 
LOOPl: ; IN CX BECOMES ZERO. 

; TRANSFER A WORD FROM THE 
; SOURCE [( Si)] TO AX, THEN 

LODSW ; LET SI=SI+2. 
XCHG AH,AL ; SWAP THE LOW AND HIGH BYTES 

; TRANSFER A WORD OPERAND FROM 
; AX TO DESTINATION ( DI ) 

STOSW ; THEN LET DI=DI+2. 

; FIRST LET CX=CX-1 THEN 
LOOP LOOPl ; IF CX=0, EXIT LOOPl. 
POP SI ; RESTORE THE REGISTERS. 
POP DI 
MOV SP,BP 
POP BP 
RET 

_swapbyts ENDP 
_TEXT ENDS 
END 
/•it END swap.asm 
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13.14 File Mtchbts.asm 

NAME 
TITLE 
DGROUP 

_DATA 
EXTRN 
DATA 

MTCHBITS 
TO MATCH PASSED BITS TO A PATTERN IN APPROPRIATE ARRAYS. 
GROUP CONST, _BSS, _DATA 
ASSUME CS: _TEXT, DS: DGROUP, SS: DGROUP, ES: DGROUP 
SEGMENT WORD PUBLIC 'DATA' 
_LEFTBITSWORD: WORD 
ENDS 

PASSED PARAMETERS. 
PUBLIC _match_ .all_bits 
WORD EQU [BP+4] 
COLORARRAY EQU [BP+6] 
CODEARRAY EQU [BP+8] 
GROUPARRAY EQU [BP+10] 
CLRBITSPTR EQU [BP+12] 
CODEBITSPTR EQU [BP+14] 
GROUPCOUNT EQU [BP-2] 

_match_all_bits 
PUSH 
MOV 
PUSH 
PUSH 
PUSH 

- PUSH 
POP 
MOV 
MOV 
MOV 

LOOPl: 

ADD 

MOV 

SHL 
MOV 

AND 
ADD 

PROG 
BP 
BP,SP 
DI 
SI 
ES 
DS 
ES 
DI,COLORARRAY 
BX,GROUPARRAY 
DX,[BX] 

BX,2 

SI,[BX] 

NEAR 

SI,1 
AX,WORD 

AX,_LEFTBITSWORD[ 
BX,2 

PUT THE NUMBER OF GROUPS IN THE 
COUNTER DX. 

ADVANCE INDEX (BX) TO THE FIRST 
ELEMENT OF PAIRS IN "GROUPARRAY". 
GET THE LENGTH IN BITS OF THE 
CODES TO LOOK FOR. 
MULTIPLY BY 2 TO GET THE INDEX 
OF THE MASK IN BYTES SINCE 
MASK IS AN ARRAY OF UNSIGNED 
NUMBERS ( i.e. WORDS ) 
COPY THE WORD WE ARE LOOKING FOR. 
"LEFTBITSWORD" IS THE MASK. IF 
SI IS EQUAL TO 3 FOR EXAMPLE 
THEN ONLY THE 3 MOST LEFT 
BITS ARE NOT MASKED WHILE THE 
REMAINING BITS ARE SET TO ZEROS. 
SI] 
ADVANCE "GROUPARRAY" INDEX TO 
GET THE SECOND ELEMENT OF THE 
CURRENT PAIR WHICH TELLS THE NUMBER 
OF CODES IN "COLORARRAY" THAT 
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NO MATCH; 

MOV CX,[BX] 

REPNE SCASW 

JNE NO MATCH 

MOV AX,[BX-2] 
MOV SI.CODEBITSPTR 
MOV [SI],AX 

SUB DI.COLORARRAY 
MOV BX.CODEARRAY 
MOV AX,[BX+DI-2] 
MOV SI.CLRBITSPTR 
MOV [SI],AX 
MOV AX,1 
JMP DONE 

DEC DX 

LOOPl 
AX,AX 
ES 
SI 
DI 
SP, 
BP 

BP 

HAS THE SAME NUMBER OF BITS. 
KEEP SCANNING FOR A MATCH 
WITH THE WORD IN AX UNTIL MATCHED 
OR CX IS DECREMENTED TO ZERO. 
z=0 MEANS THAT CX WAS 
DECREMENTED TO ZERO AND THUS 
NO MATCH OCCURRED. 
BY REACHING THIS POINT THE 
z FLAG WAS NOT SET TO ZERO 
AND THUS A MATCH OCCURRED. 
SO THE LENGTH OF THE CODE IS 
RETURNED IN THE WORD POINTED 
TO BY "CODEBITSPTR". 
TO GET THE INDEX OF THE MATCHED 
PATTERN IN "COLORARRAY" SUBTRACT 
THE CURRENT POSITION FROM THE BASE 
OR THE HEAD OF THE ARRAY. 
FIND THE CODE IN "CODEARRAY" OF 
THE SAME INDEX IN "COLORARRAY". 
THE RUN LENGTH IS RETURNED IN THE 
WORD POINTED TO BY "CLRBITSPTR". 
THE RETURNED VALUE OF FUNCTION = 1. 

JNZ 
SUB 

DONE: POP 
POP 
POP 
MOV 
POP 
RET 

_match_all_bits ENDP 
_TEXT ENDS 
END 
/,'c END mtchbts .asm 

DECREMENT THE GROUPS COUNTER 
IF THERE ARE MORE GROUPS 
GO TO LOOPI TO PROCESS THEM. 
RETURNED VALUE OF FUNCTION = 0. 
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APPENDIX C. PROGRAM LISTINGS OF THE CODE OF THE 

CCITT TWO DIMENSIONAL COMPRESSION TECHNIQUE 
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The files in this listing make use of the files in the following 
sections : 

- Appendix B: 13.4. and 13.7. - 13.14. 

14.1. File Main.c 

* The heading and comments are the same 
as those in file main.c appendix B section 13.1 

*/ 

//include 
//include 
//include 
//include 
//include 
//include 
//define 
//define 
//define 
//define 
//define 
//define 
//define 

void 
unsigned 
float 
void 

<stdio.h> 
<memory.h> 
<dos.h> 
<io.h> 
<fcntl.h> 
<malloc.h> 
LINT_ARGS 
SCREENSIZE 
XMAX 
YMAX 
HI_RES 
TEXT_MODE 
ulong 

16384 
640 
200 
6 
3 
unsigned long 

get(int,int,int,int,char *); 
cmprs_line(char ; 
get_avgfactor(); 
print_results( char *, unsigned, unsigned, unsigned, 

unsigned, unsigned, unsigned, float); 

static 

static 
static 
static 

main(argc,argv) 
int argc; 
char *argv[]; 
{ 
unsigned 

int 
char 
char 
unsigned 
char 

xl,yl,x2,y2; 
datafile[41]; 
serf ilebufr[4+(XMAX/8)'KYMAX) ] ; 
cmprsbufr[XMAX][(YMAX+32)/l6]; 
'•'uncmprsbufr ; 

register 

if( argc 
{ 

unsigned 
xsizeinbytes,xsize; 
i.ysize; 

< 6 ) 

printfCenter xl yl x2 y2 \n"); 
scanf("%d %d %d %d",&xl,&yi,&x2,&y2); 
while((getchar())!='\n') 
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} 
else 
{ 

xl=atoi(argv[2]); yl=atoi(argv[3]); 
x2=atoi(argv[4]); y2=atoi(argv[5]); 

} 
if( argc > 1 ) 

strcpyC datafile, argvEl] ); 
I* Read the data from the input */ 

init_screen(argc); /* file and dump it to the */ 
!'•' screen. */ 

uncmprsbufr= serfilebufr; 
uncmprsbufr+=4; /* Skip over "xsize" and "ysize"*/ 
get(xl ,yl ,x2,y2, (char '"Oscrf ilebufr ) ; 
for(i=0;i<=2000;i++) ; /* A delay loop. */ 
setscmode(TEXT_MODE); 
ysize=y2-yl+l; 
xsize=x2-xl+l; 
xsizeinbytes= (xsize/8)+((xsize%8)>0) ; 

/'• First two numbers in the */ 
''«(unsigned '"Oscrfilebufr=xsize; /"screenfilebufr" represent 'V 

/'• the width and the height of */ 
/''• the block. *! 

''Kunsigned *)(scrfilebufr+2)=ysize; 
printf("starting to compress "); 
init_cmprsdblk((unsigned ''Ocmprsbufr); 
init_uncmprsdblk((serfilebufr+4),xsize,ysize); 
init_line_parm(xsize); 
cmprs_blk_2d(); 
memset((serfilebufr+4),'\0',16000); 
printf(" starting to decompress \n"); 
init_dcmprsbfr((serfilebufr+4),xsize); 
init_cmprs(cmprsbufr); 
init_dcmprs_blk_2d(xsize,ysize,serfilebufr+4); 
dcmprs_blk_2d(); 

/'( If no argument was entered 'V 
if( argc < 2 ) /* at the command line then '«/ 
{ /* display the data to the 

/screen. */ 
setscmode(HI_RES); 
put(xl,yl,serfilebufr); 
getchar(); 
setscmode(TEXT_MODE); 

} 
print_results( datafile, xl, yl, x2, y2, get_cmprstime(), 

get_dcmprstime(), get_avgfactor() ); 
} 
/,v END MAIN 'V 
I* END main.c 'V 
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14.2. File Cmprs2d.c 

/* 
* Refer to file "cmprsln.c" in appendix B section 13.2 
* for comments on functions and variables. 
*/ 

^include 
//include 
//include 
//include 

//define 
//define 
//define 
//define 
//define 
//define 

unsigned 
float 
unsigned 
unsigned 
void 
void 
void 
void 

<stdio.h> 
<v2tov3.h> 
<malioc.h> 
<memory.h> 

"KFACTOR" 
of lines 

1 = maximum number */ 
coded in the 2-d */ 

code after coding in the 1-d.*/ 
KFACTOR 2 
BLACKCHAR '0' 
WHITECHAR '1' 
BLACK 0 
WHITE 1 
switch_aO_al_colors {tmpcolorchar=aOcolorchar;\ 

aOcolorchar=alCOlorchar;\ 
alcolorchar=tmpcolorchar ;} 

gttimeC); 
get_avgfactor(); 
get_cmprs_reslt(); 
cmprs_line_ld(); 
set_cmprscontr_to_zero(); 
init_uncmprsdblk(char *, unsigned, unsigned); 
update_cmprsdblk(unsigned,int); 
updt_cmprsblk_code(unsigned,int); 

static unsigned 
static unsigned 
static unsigned 
static unsigned 
static char 
static unsigned long 

•«uncmprsdwordptr ; 
nmbrlines,xsize.xmaxplsl; 
evenxsize.xsizeinbytes; 
cmprstime; 
"prvslinestart; 
totalcmprsbits = 0; 

î't ======================= CMPRS_BLK_2D ========================== 

* This function compresses a block of the screen using MREAD 
* standard. For complete description of the details of MREAD see 
* section 4.3. Each line is assumed to be from pel 1 to pel 
* "xsize". Pel 0 is an imaginary pel before the line. Pel 
* "xmaxplsl" is an imaginary pel after the line. 
* Black changing element means first black pel after a run of 
* white pels. 
* aO : The reference or starting changing element in the coding 
* line. At the start of the coding line, aO is initialized 
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to an imaginary black changing element at pel 0. 
al : The next changing element to the right of aO on the coding 

line. This has an opposite color of aO. 
a2 ; The next changing element to the right of al on the coding 

line. 
bl : The next changing element on the reference line to the 

right of aO and having the same color as al. 
b2 : The next changing element on the reference line to the 

right of bl. 
If any of the coding elements al, a2, bl, b2 is not detected 
at any time during the coding of the line, then it is set to 
pel "xmaxplsl". 

void cmprs_blk_2d() 
*/ 

{ 
unsigned 
char 
char 
char 
register 
unsigned 
unsigned 
unsigned 
int 
char 

i,j; /" Loop counters. 
*refrenceline; 
'•code line; 
"tmpptr; 
unsigned aO,al; 
bl,b2,k; 
a2,a0al,ala2; 
tstart.tend; 
aOcolor,alcolor,tmpcolor; 
aOcolorchar,alcolorchar,tmpcolorchar; 

*/ 

tstart=gttime(); 
refrenceline=malloc(xsize+2); 
codeline=malloc(xsize+2); 

k=0; 

refrenceline[0]=BLACKCHAR; 

L++) 

'• k should be set to zero * 
* before we enter the loop » 

and thus the first line 
* ( reference line ) would " 
* be One-Dimensionally coded. * 

* This initialization is needed* 
* so that the first search for " 

bl works correctly. " 
* Keep looping until all the •< 
* lines in the page or the -
* screen are processed. * 
* Is this line to be 2-d coded?* 
* Line should be 2-d coded. * 

for(i=l; i <= nmbrlines; 
{ 
if(k != 0) 

{ 
set_cmprscontr_to_zero(); 
swapbits_to_string(uncmprsdwordptr,codeline+1,xsize); 
swapbits_to_string(prvslinestart,refrenceline+1,xsize); 
aO = 0; 
aOcolorchar=BLACKCHAR; 

/I'c Loop while not end of line 
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while( aO < xmaxplsl ) 
{ I* Detect "alcolor". */ 
alcolorchar = ( aOcolorchar == WHITECHAR ? 

BLACKCHAR : WHITECHAR); 
/* Detect al. */ 
I* To detect al, a2, bl, and b2 */ 
/* we equate the number of bytes*/ 
/''< we search to ( "xmaxplsl" - ='«/ 
I* index of the 1st byte to be */ 
/* searched.) This is equivalent*/ 
/* to [(xsize-index of 1st byte */ 
/* to be searched ) + 1 ]. */ 

if (tmpptr=memchr(&icodeline[a0+l ],alcolorchar, 
xmaxplsl-aO)) 

al=tmpptr-codeline; 
else 

al=xmaxplsl; 
whileCl) 

{ 
/* Detect bl. */ 

if( refrenceline[aO] == alcolorchar ) 
{ 

/* Pel refrencelinetaO] has */ 
/* the same color as al then pel*/ 
/* refrenceline[aO+l] can't */ 
/* be a changing element of */ 
/* "alcolor". Hence : */ 
/* (1) search for the first */ 
/* changing element of "aOcolor"*/ 

if (tmpptr=memchr(&irefrenceline[aO+l ], 
aOcolorchar,xmaxpls 1-aO)) 

{ 
/* (2) search for the first */ 
/* changing element of "alcolor"*/ 
/* after "tmpptr". */ 

bl=tmpptr-refrenceline; 
if(tmpptr=memchr(tmpptr+l,alcolorchar, 

xmaxpls1-bl)) 
bl=tmpptr-refrenceline; 

else 
bl=xmaxplsl ; 

} 
else 

bl=xraaxplsl; 
} 

else 
{ 

/* Pel refrenceline[aO] has the */ 
/* same color as aO, then pel */ 
/* refrenceline[aO+1] can be a */ 
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I* changing element of "alcolor"*/ 
I* Hence find it. */ 

f(tmpptr=memchr(&refrenceline[aO+l], 
alcolorchar,xmaxplsl-aO)) 

bl=tmpptr-refrenceline; 
Ise 

bl=xmaxplsl; 

I* Detect b2. */ 
f(tmpptr=memchr(&refrenceline[bl+l], 

aOcolorchar ,xtnaxplsl-bl ) ) 
b2=tmpptr-refrenceline; 

Ise 
b2=xmaxplsl; 

I* If b2 < al then we have to 
/* do pass mode coding. Thus 
/'•' this mode is identified when 
I* the position of b2 lies to 
/'•' the left of al. The purpose 
/* of this mode is to identify 
I* the white or black runs on 
/* the reference line which are 

not adjacent to the corres-
I* ponding white or black runs 
/* on the coding line. 

f( b2 < al ) 
{ updt_cmprsblk_code(0xl,4); aO=b2;} 

Ise 
{ 
if(abs((int)al-(int)bl)<=3) 

{ /* Vertical mode coding : when '•/ 
/* this mode is identified, the "••/ 
/* position of al is coded '•'! 
I* relative to the the position */ 
/* of bl. The relative distance *! 
/* albl can take one of seven 'V 
/* values each of which is »/ 
/* represented by a separate »/ 
/* codeword. */ 

switchC(int)(al-bl)) 
{ 

/'•' al to the left of b2 by '>/ 
/''f 3 bits. "/ 

case -3:{ 
updt_cinprsblk_code(0x2,7) ; 
break; 
} 

/* al to the left of b2 by ••/ 
/* 2 bits. */ 

case -2:{ 
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updt_cmprsblk_code(0x2,6); 
break; 
} 

/* al to the left of '•/ 
I* b2 by 1 bits. */ 

case -1:{ 
updt_cmprsblk_code(0x2,3) ; 
break; 
} 

/* al just under bl. */ 
case 0:{ 

updt_cmprsblk_code(Oxl,1); 
break; 
} 

/" al to the right of '•/ 
/b2 by 1 bit. */ 

case 1:{ 
updt_cmprsblk_code(0x3,3); 
break; 
} 

I* al to the right of =•/ 
/* b2 by 2 bits. */ 

case 2:{ 
updt_cmprsblk_code(0x3,6); 
break; 
} 

I* al to the right of -/ 
/" b2 by 3 bits. */ 

case 3:{ 
updt_cmprsblk_code(0x3,7); 
break; 
} 

default:printf( 
"error in vertical \n"); 

} 
aO=al; 

switch_aO_al_colors / * MACRO '•'! 
} 

else 
{ /'•> Horizontal Mode Coding : »/ 

/* If the vertical mode coding »/ 
/* can't be used to code the :'V 
I* position of al, then its 
/* position must be coded by */ 
/* the horizontal mode coding. '•/ 
/* Detect a2. */ 

if(tmpptr=memchr(&codeline[al+l], 
aOcolorchar,xmaxplsl-al)) 

a2=tmpptr-codeline; 
else 
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a2=xmaxplsl; 
aOal=al-aO; 

/'•c If the horizontal mode coding*/ 
/Vc is used to code the first */ 
/,V element on the coding line, */ 
/:'( then the value of aOal is */ 
/ *  replaced by aOal-1 to ensure */ 
/'•< that the correct run-length */ 

value is transmitted, because */ 
/'V the first element was not */ 
/'•' real but an imaginary black */ 
/ ' •  changing element. */ 

if( aO == 0 ) 
aOal -=1; 
I* Flag "codeword" of the '•/ 
I* horizontal mode = '0001'. */ 

updt_cmprsblk_code(Oxl,3); 
update_cmprsdblk(aOal, 

aOcolorchar-BLACKCHAR); 
update_cmprsdblk(a2-al, 

alcolorchar-BLACKCHAR); 
a0=a2; 

} 
break; 

} 
} 
k— ; 
totalcmprsbits+=get_cmprs_reslt(); 
uncmprsdwordptr = (unsigned *) 

((char ''Ouncmprsdwordptr + xsizeinbytes) ; 

else 
{ /* k = 0, so the current line */ 

I* should be coded by the '•'! 
I* One-Dimensional coding "/ 
/* algorithm. */ 

totalcmprsbits+=cmprs_line_ld(); 
k = KFACTOR-1; 

} 
/'•« Update "prvslinestart" to ••/ 
/* point to the start of the '•'/ 
/* next line. */ 

prvslinestart += xsizeinbytes ; 
} 
free(refrenceline); 
free(codeline); 
tend=gttime(); 
if(tend>tstart) 

cmprstime=tend-tstart; 
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else 

} 
/,v -

cmprstime=(6000-tstart)+tend; 

END CMPRS_2D() */ 

/)V ======A============= init_uncmprsdblk 

!* initialize local variables. 
/* ================ 

//include 
//define 
//define 
//define 
//define 

unsigned 
void 
void 
void 
void 
void 

<dos.h> 
LINT_ARGS 
BLACKBIT 
WHITEBIT 
ENDBITS 

0 
1 
2 

static unsigned 

get_cmprs_reslt(); 
init_lastbits(unsigned) ; 
init_cinprsdblk(unsigned *) ; 
update_cmpr'sdblk(unsigned, int) ; 
cmprs_lastbits(unsigned,unsigned,int); 
swapbytsCunsigned unsigned *,unsigned); 

lastbits,nmbrwords; 

*/ 
void init_uncmprsdblk(blockstart.xsizein,ysizein) 
char *biockstart; 
unsigned ysizein,xsizein; 

{ 
xsize=xsizein; 
uncmprsdwordptr=(unsigned *) blockstart; 
xsizeinbytes=(xsize/8)+((xsize%8)>0); 
prvslinestart=blockstart - xsizeinbytes ; 
nmbrlines=ysizein; 
xmaxplsl=xsize+l; 

/* The part of the line that ''•/ 
/'•' corresponds to words given */ 

evenxsize=( ( (xsize/8) /2) *2); /- in bytes. */ 
} 
/it END init_uncmprsdblk */ 

========= cmprs_line() == 

cmprs_line (oldlineptr) 
'•'oldlineptr ; 

/*==========: 

unsigned 
char 

{ 
extern unsigned *uncmprsdwordptr; 
unsigned *currentword; 
int wordcount; 
int color,lastcolor,bitcolor; 
unsigned bitcontr=0; 

=Vc/ 
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register unsigned word.bitpos; 

/* Initialize the variables. '•/ wordcount=nmbrwords; 
set_cmprscontr_to_zero(); 
swapbytsC uncmprsdwordptr, uncmprsdwordptr, nmbrwords); 
word=''«uncmpr sdwordptr ; 
if ((word)&0x8000) /* Is bit 16 in "word" white ? '•/ 

{ 
update_cmprsdblk(0,BLACKBIT); 
color=WHITEBIT; 
} 

/* Yes, bit 16 was white. 

else 
{ 
color=BLACKBIT; 

word=~word; 
} 

bitpos=16; 
while(color<ENDBITS) 

{ 

/'• Bit 16 was black. 

/* Negate the word so we can 
/* check for the new color. 

I* We assume xsize >= 16, to 
/* take care of xsize < 16. We 
/* have to modify the code here.*/ 

'•••I 

V 

/* While not end of line. 

/* While color is the same and 
I* we are still inside the 
/'« current word. 

while( (word&0x8000) && (bitpos > 0) ) 
{ 
bitcontr++; 
bitpos — ; /* Bit position in a word. 
word=word«l; /* Get the next bit in bit 16. 
} 

if(bitpos > 0) /* Still inside current word ? 
{ 
update_cmprsdblk(bitcontr.color); 
word=~word; 

1; 

*/ 

color=(color) ? 0 
bitcontr=0; 
} 

else 
/* Done with all bits in 
/* current word. 

/* Start again with bit 16 

{ 
bitpos=16; 
uncmprsdwordptr++; /* of the next word. 

/'•' If the color is black then * 
/* negate the word pointed to by'' 
/* "uncmprsdwordptr" to check * 
/'•' for the color later. * 

word=(color) ? ^uncmprsdwordptr : 
~('"'uncmprsdwordptr) ; 
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/* Test for the end of the line ''</ 
/* marker. */ 

if(—wordcount == 0) 
{ /'•' Save the last color in this '•/ 

/* line. '•</ 
lastcolor=color; 

/'•' Signal eol to the outer loop.*/ 
color=ENDBITS; 
} 

} 
} 

if(lastbits == 0) /* Does the line fit in the word*/ 
/* boundary ? */ 

update_cmprsdblk(bitcontr,lastcolor); 
else 

cmprs_lastbits(*uncmprsdwordptr,bitcontr,lastcolor); 
if(color>ENDBITS) 

printfC ****** error in color, color=%d /n",color); 
/* Return the number of bits */ 

return(get_cmprs_reslt()); /* in that compressed line. */ 
} 
/* END cmprs_line() */ 

/ )'c====================== init_line_param( ) ========================5't/ 

/* Initialize some static variables to the appropriate values. */ 
/*==================================================================*/ 

void init_line_parm(xsize) 
unsigned xsize; 

{ 
nmbrwords=xs ize/16; 
lastbits=xsize & OxOOOf; /* Let lastbits = xsize % 16. */ 
init_lastbits(lastbits); 
} 
/* END init_line_param( ) */ 

/* ===================== get_cmprstime() ========================== */ 

unsigned get_cmprstime() 
{ 
return (cmprstime) ; 
} 
/* END get_cmprstime( ) */ 

/* ===================== get_avgfactor() ========================= */ 

float get_avgfactor() 
{ 
return ((float) ( (float) xsize* (float) nmbrlines/totalcmprsbits )); 
} 
/* END get_avgfactor( ) */ 
/* END cmprsZd.c */ 
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14.3. File Cupdt.c 

/,v 
;•:================================================================ 

A STATIC VARIABLES : 
* 

* bitsleft : Number of bits still vacant in "cmprsword", it 
* starts with 16 bits left in the word. 
* cmprscounter : Count number of the bits in the compressed block 
* which is filled from left to right. 
* cmprsdwordptr: Pointer to the current word position in the 
* compressed block. 
JV================================================================^ 

*/ 

static int bitsleft; 
static unsigned cmprscounter; 
static unsigned '''cmprsdwordptr; 

/ A================:====== UPDATE_CMPRSDBLK( ) =======================5V 

/* This is the function update_cmprsdblk( bitcounter, color), * 
/* where "bitcounter" is the number of consecutive bits of the * 
/* current color. '• 
/ 5'c = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =S = = = = = = = =! = = = = = = = = = = = = = = = = =5 = = = = = = = = = = yt 

void update_cmprsdblk(uncmprsdbitscont.color) 
unsigned uncmprsdbitscont; 
register int color; 

struct FAXDATA 
{ 

} ;  

/* Code for a sequence of bits '''/ 
/'•• of type color and the run- */ 
/* length = the no. of the -/ 
/* uncompressed bits. */ 

unsigned bits; 
/* Length of the code in the */ 
/* bits. */ 

int length; 

/* Initialize FAX. FAX[0][] == */ 
/it black data , FAX[1][] == */ 
/* white data. */ 

static struct FAXDATA FAX[2][74]={ { 
0x35,8, 0x7,6, 0x7,4, 0x8,4, 0xb,4, 0xc,4, 0xe,4, 
0xf,4, 0x13,5, 0x14,5, 0x7,5, 0x8,5, 0x8,6, 0x3,6, 
0x34,6, 0x35,6, 0x2a,6, 0x2b,6, 0x27,7, Oxc,7, 0x8,7, 
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0x17,7, 0x3,7, 0x4,7, 0x28,7, 0x2b,7, 0x13,7, 0x24,7, 
0x18,7, 0x2,8, 0x3,8, 0xla,8, 0xlb,8, 0x12,8, 0x13,8, 
0x14,8, 0x15,8, 0x16,8, 0x17,8, 0x28,8, 0x29,8, 0x2a,8, 
0x2b,8, 0x2c,8, Ox2d,8, 0x4,8, 0x5,8, Oxa,8, 0xb,8, 
0x52,8, 0x53,8, 0x54,8, 0x55,8, 0x24,8, 0x25,8, 0x58,8, 
0x59,8, 0x5a,8, 0x5b,8, 0x4a,8, 0x4b,8, 0x32,8, 0x33,8, 
0x34,8, 0x1b,5, 0x12,5, 0x17,6, 0x37,7, 0x36,8, 0x37,8, 
0x64,8, 0x65,8, 0x68,8, 0x67,8} , { 

0x37,10, 0x2,3, 0x3,2, 0x2,2, 0x3,3, 0x3,4, 
0x2,4, 0x3,5, 0x5,6, 0x4,6, 0x4,7, 0x5,7, 
0x7,7, 0x4,8, 0x7,8, 0x18,9, 0x17,10, 0x18,10, 
0x8,10, 0x67,11, 0x68,11, 0x6c,ll, 0x37,11, 0x28,11, 
0x17,11, 0x18,11, 0xca,12, 0xcb,12, 0xcc,12, 0xcd,12, 
0x68,12, 0x69,12, 0x6a,12, 0x6b,12, 0xd2,12, 0xd3,12, 
0xd4,12, 0xd5,12, 0xd6,12, 0xd7,12, 0x6c,12, 0x6d,12, 
0xda,12, 0xdb,12, 0x54,12, 0x55,12, 0x56,12, 0x57,12, 
0x64,12, 0x65,12, 0x52,12, 0x53,12, 0x24,12, 0x37,12, 
0x38,12, 0x27,12, 0x28,12, 0x58,12, 0x59,12, 0x2b,12, 
0x2c,12, 0x5a,12, 0x66,12, 0x67,12, 0xf,10, 0xc8,12, 
0xc9,12, 0x5b,12, 0x33,12, 0x34,12, 0x35,12, 0x6c,13, 
0x6d,13, 0x4a,13} } ; 

register unsigned code; 
int length; 
unsigned multiple; 
unsigned bitcont; 

static unsigned maskl=0x003f; 

/* Code of the run of the pels. »/ 
/* Length of the above code '•/ 
/* = "uncmprsdbitscont" / 64. */ 
/••' Local run-length. '•/ 

/* To get the least significant */ 
/* 6 bits. '••/ 

/* Is uncmprsdbitscont a */ 
/* multiple of 64 ? */ 

if ( (multiple=(uncmprsdbitscont»6) )>0) 
{ 

/* Compress the multiple of 
bitcont=multiple+63; /'• 64 part. 
code=FAX[color][bitcont].bits; 
length=FAX[color][bitcont].length; 
cmprscounter=cmprscounter+length; 

/* Is old bitsleft > length 
if ((bitsleft=bitsleft-length)>0) 

/* Put the new code at the 
/* current compressed word, 
/''« using the new bitsleft to put*/ 
/* it in the correct position . */ 

(*cmprsdwordptr) | =code«(bitsleft) ; 
else /* The old bitsleft <= length. */ 

{ /* Negate bitsleft and put part */ 
/* of the code that fills the */ 

*/ 
*/ 

*/ 

*/ 
*/ 
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/* word in the compressed word. */ 
(-'cmprsdwordptr) I =(code) » (-bitsleft); 

/* Move to a new word and put '•/ 
/* the rest of the code in a */ 
/* new compressed word, filling */ 
/* from the left to the right. */ 

*(++cmprsdwordptr)=(code) « 
(bitsleft = (16 + bitsleft)); 

} 
/* Now compress the part that */ 
/'•' is less than 64 bits. •*/ 
/'• If the no. of bits = 640 we */ 

if(multiple<10) /•' skip putting the zero part. -</ 
{ 

/* bitcont is the remainder of "/ 
/'• dividing uncmprsdbitscont by '•/ 
/" 64. "/ 

bitcont=uncmprsdbitscont & maskl; 
/* Get the corresponding code ••••/ 
/* and the code-length. '"•/ 

code=FAX[color][bitcont].bits ; 
length=FAX[color][bitcont].length; 

/* Update cmprscounter by the '•/ 
/'•' code-length. */ 

cmprscounter=cmprscounter+length; 
/''• If there are still more '•/ 
/'> unprocessed bits in the '•/ 
/" current word then put the '•/ 
/* compressed bits in the '•/ 
/" corresponding part of the */ 
/'•' word in the compressed buffer*/ 

if(( bitsleft=bitsleft-length)>0 ) 
(*cmprsdwordptr) |=code«(bitsleft) ; 

else 
{ • /" Otherwise split the code '•/ 

/* among the current and the '•/ 
/* next words of the compressed '•/ 
/* buffer. 

(("Cmprsdwordptr))|=(code) » (-bitsleft); 
(î't++cmprsdwordptr)=(code) « 

(bitsleft = (16 + bitsleft)); 
} 

/* Run-length was less than */ 
else /''« 64 bits. */ 

/* Get the corresponding number */ 
/* of bits and run-length '•/ 
/* then update "cmprscounter". */ 
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code=FAX[color][uncmprsdbitscont].bits; 
length=FAX[color][uncmprsdbitscont].length; 
cmprscounter=craprscounter+length; 

Same case as before. •«/ 
if ((bitsleft=bitsleft-length)>0) 

(*cmprsdwordptr)|=code<<(bitsleft); 
else 

{ 
((''«cmprsdwordptr)) |=(code) » (-bitsleft); 
(vc++cmprsdwordptr)=(code) « 

(bitsleft = (16 + bitsleft)); 
} 

} 
} 
/,v UPDATE_CMPRSDBLK( ) */ 

/"====================== INIT_CMPRSDBLK() =========================iV/ 

/'•< Initializes the compression buffer pointer to the first word of ••/ 
/'• space allocated, sets the compression counter to zero and starts*/ 
/* with the most left bit of the first word in the compressed 
/* buffer. 
/'''=================================================================i>/ 

void init_craprsdblk(newblkptr) 
unsigned *newblkptr; 

{ 
cmprsdwordptr=newblkptr; 
bitsleft=16; 
cmprscounter=0; 

} 
/,V END INIT_CMPRSDBLK( ) 

/i< Updates the compression buffer 'cmprsblk' by going to the next '•'/ 
/* code after the passed 'code' with 'length' of bits. */ 
/,V========================================================^== ======;V/ 

void updt_craprsblk_code(code,length) 
register unsigned code; 
register int length; 

{ 
cmprscounter=cmprscounter+length; /* Update "cmprscounter". 
if ((bitsleft=bit5left-length)>0) /* If old bitsleft > length, 

/* then put the new code at the 
/* current cmprsdword, using a 
/* new bitsleft. 

(*cmprsdwordptr) | =code«(bitsleft) ; 
else /•>'' Old bitsleft <= length. 

{ /* Negate bitsleft and put part 
/* of the code that fills the 
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/* word in the "word". */ 
('•'cmprsdwordptr) I =(code) » (-bitsleft); 

/* Move to a new word and put '•/ 
/* the rest of the code, */ 
/'•« filling from the left. */ 

*(++cmprsdwordptr)=(code) « (bitsleft=(16 + bitsleft)); 
} 

/i< End updt_cmprsblk_code */ 

/A==================== get_cmprs_reslt() ==========================A/ 
/* This function returns the number of compressed bits since the */ 
/'•« last initialization of cmprscounter. •••/ 
/5't=================================================================;V/ 

unsigned get_cmprs_reslt() 

returnCcmprscounter) ; 

/* END get_cmprs_reslt() */ 

/ 3't================= set_cmprscontr_to_zero( ) ======================!'t/ 

/* Set_cmprscontr_to_zero() : it sets cmprscounter to zero. Uses it */ 
/* if you are compressing a block and want to get cmprscounter for */ 
/* each line alone. */ 
/,':=================================================================,'c/ 

void set_cmprscontr_to_zero() 

cmprscounter=0; 

/•k END set_cmprscontr_to_zero( ) '•/ 
/* END cupdt.c */ 

14.4. File Dcmprs2d.c 

//include 
//include 
//define 

//def ine 

//def i ine 

//define 
//define 

<memory.h> 
<malloc.h> 
findtime(tl) {if(tend>tstart) tl=tend-tstart;\ 

else tl=6000-tstart+tend;} 
update_dcmprs_code(Icolor,llength) \ 

{{if(lcolor) \ 
update_dcmprs_whitereg(1length);\ 

else \ 
update_dcmprs_blakreg(llength);}} 

switchcolor {tmpcolar=aOcolor;\ 
aOcolor=alcolor; \ 
alcolor=tmpcolor;} 

KFACTOR 2 
BLACKCHAR '0' 
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//define 
#define 
//define 
/* 
* prvsLinestart 
* currentword 
* dcmprstime 
* xsize, ysize 
it 

* xmaxplsl 
* ymaxplsl 
* xsizeinbytes 

WHITECHAR 
BLACK 
WHITE 

' 1 '  

0 
1 

A/ 
char 
static 
static 
unsigned 

unsigned 
unsigned 

Points to the head of the previous line. 
Current word of the cmprsdbufr. 
Decompression time. 
Horizontal and vertical dimensions, in bits, 
of the screen block. 
xsize + 1. 
ysize + 1. 
Horizontal dimension, in bytes, 
of the screen block. 

*prvslinestart; 
dcmprstime,ysize,ymaxplsl; 
xsize,xmaxplsl,xsizeinbytes; 
currentword; 

* ====================== dcmprs_blk_2d ========================== 

* In this function the first line is One-Dimensionally decoded. 
* The reference line is set to point to that line, then the 
* following k-1 lines are Two-Dimensionally decoded with respect 
* to the reference line which is updated to point to the previous 
* line every time a line is decoded. 
A =============================================================== 

void dcmprs_blk_2d() 

{ 
register 
unsigned 
char 

int i,k; 
tstart,tend; 
''«refrenceline; 

refrenceline=malloc(xmaxplsl+l); 
tstart=gttirae(); 

prvslinestart -=xsizeinbytes; 

for(i=l; i < ymaxplsl; ) 
{ 
dcmprs_line_ld(); 
i++; 

* The reference line is the 
* line just before the coding 
* line. 

* Pointer to the previous line. 
* It is updated at the 
* beginning of the loop 
* and thus it will be set to 
* point to an imaginary line 
* before the first line in 
i'< the screen. 
* Loop until all lines are 
* processed. The first line 
* of k lines is 1-d decoded. 

/it One-dimensional decoding. */ 
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k = KFACTOR-1; 
/* Point to the previous line. '•/ 

prvslinestart +=xsizeinbytes; 
/* Decode k-1 lines, after the */ 
/* previously Id decoded line, */ 
/* the using Two-Dimensional */ 
I* decoding algorithm. */ 

whileC k— && i < ymaxplsl ) 
{ 
swapbits_to_string(prvslinestart, 

refrenceline+1, xsize); 
/'•« Two-Dimensional decoding. '•/ 

dcmprs_line_2d(refrenceline); 
/'•' Point to the previous line. */ 

prvslinestart +=xsizeinbytes; 
i++; 
} 

} 
end=gttime(); 
indtime(dcmprstime) /* MACRO 
reeCrefrenceline); /* Free allocated memory. 

END dcmprs_blk_2d 

it ======================= dcmprs_line_2d ======================== * 

* With respect to the reference line ( previous line ) the current* 
* line is decoded. The relative positions of aO, al, a2, on the -
* coding line, and bl, b2, on the reference line, determine 
* whether the decoding mode is the pass, horizontal or vertical '• 
* mode. The decoded line is updated as each mode is realized until* 
* the end of line is reached. * 
* Before updating the decompression buffer with the run of bits we* 
* must note the following point: Since aO, at the start of every * 
* line, was set to an imaginary black changing element, then the * 
* first black run length should not count this imaginary pel. * 
i< =============================================================== it 

dcmprs_line_2d(refrenceline) 
char *refrenceline; 

{ 
register unsigned aO; 
unsigned al,a2,a0al,ala2; 
unsigned bl,b2; 
int aOcolor,alcolor,tmpcolor; 
char *tmpptr; 
static int blackbits,wtbits; 
static int *blackbitsptr=&blackbits,*wtbitsptr=&wtbits; 

a0=0; /* First pixel in the decoding */ 
/* line. */ 
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refrenceline[aO] = BLACKCHAR ; 
aOcolor=BLACK; 
alcolor=WHITE; 
whileC aO < xmaxplsl ) 
{ /* Refer to the comments in file*/ 

/* cmprs2d.c for explanation */ 
/'•' about the code and how to */ 
/* detect al, a2, bl, and b2. */ 

/* Detect bl. */ 
if( refrencelineEaO] == (alcolor+BLACKCHAR) ) 
{ 

if(tmpptr=memchr(&refrenceline[aO+l], aOcolor+BLACKCHAR, 
xmaxplsl-aO)) 

{ 
bl=tmpptr-refrenceline; 
if(tmpptr=memchr(tmpptr+1,a1color+BLACKCHAR,xmaxpls 1-bl)) 

bl=tmpptr-refrenceline; 
else 

bl=xmaxplsl; 
} 
else 

bl=xmaxplsl; 
} 
else 
{ 

if(tmpptr=memchr(&refrenceline[aO+1],alcolor+BLACKCHAR, 
xmaxplsl-aO)) 

bl=tmpptr-refrenceline; 
else 

bl=xmaxplsl; 
} 

Detect b2. */ 
if(tmpptr=memchr(&refrenceline[bl+l],aOcolor+BLACKCHAR, 

xmaxplsl-bl)) 
b2=tmpptr-refrenceline; 

else 
b2=xmaxplsl; 

if( currentword & 0x8000 ) /* Get "bitl" of "currentword". */ 
{ !'•' Vertical mode(O). '•/ 
if( a0==0 ) /* Update the decompression */ 

I* buffer. */ 
update_dcmprs_code(aOcolor,bl-(aO+l)) 

else 
update_dcmprs_code(aOcolor,bl-aO) 

aO=bl; 
switchcolor 
update_cmprs(1); /* Codeword = 1. */ 
} 

else 
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{ 
if( currentword & 0x4000 ) Bitl = 0, get bit2. */ 

{ /* Bitl,2 = 01, get bits. 'V 
if( currentword & 0x2000 ) 
{ /'• Vertical raode(l). al to the '''/ 
if( a0==0 ) /" right of bl by 1 bit. */ 

update_dcmprs_code(aOcolor,bl+l-(a0+l)) 
else 

update_dcraprs_code(aOcolor,bl+l-aO) 
aO=bl+l; 
switchcolor 
update_craprs(3) ; /'• Codeword = Oil. */ 
} 

else 
{ /'• Vertical mode(-l). al to the 
if(a0==0) /* left of bl by 1 bit. */ 

update_dcmprs_code(aOcolor,bl-l-(a0+l) ) 
else 

update_dcmprs_code(aOcolor,bl-l-aO) 
aO=bl-l; 
switchcolor 
update_cmprs(3); /* Codeword = 010. -/ 
} 

} 
else 

{ /* Bitl,2 = 00, get bit3. */ 
if( currentword & 0x2000 ) 
{ /* Horizontal mode. */ 
update_cmprs(3) ; /* Codeword = 001. '•/ 

/* Decode the following two »/ 
/* codes using One-Dimensional '•/ 
/* decoding scheme according */ 

if( aOcolor ) /•• to the aO color. ''•/ 
{ /'•' White code followed by a '•/ 

/* black one. */ 
uncmprs_white(wtbitsptr); 
uncmprs_blak(blackbitsptr); 
} 

else 
{ /" Black code followed by a */ 

/* white one. */ 
uncmprs_blak(blackbitsptr); 
uncmprs_white(wtbitsptr); 
} 

if( a0==0 ) blackbits++; 
/* Bypass the last two hori- */ 
/* zontal codes. */ 

aO += blackbits + wtbits; 
} 
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else 
{ /'•' Bitl,2,3 = 000, get bit4. */ 
if( currentword & 0x1000 ) 

{ /* Pass mode. Codeword=0001. ••/ 
if(a0==0) 

update_dcmprs_code(aOcolor,b2-(a0+l)) 
else 

update_dcmprs_code(aOcolor,b2-a0) 
a0=b2; 

update_cmprs(4); /* Update the buffer with 4 bits.*/ 

else 
{ 

/* Bitl,2,3,4=0000, get bit5. */ 
if( currentword & 0x0800 ) 

{ 
/* Bitl,2,3,4,5 = 00001, */ 
/* get bit6. */ 

if( currentword & 0x0400 ) 
{ /* Vertical mode(2). al to the -/ 

I* right of bl by 2 bits. */ 
if(a0==0) 

update_dcmprs_code(aOcolor, 
bl+2-(a0+l)) 

else 
update_dcmprs_code(aOcolor,bl+2-aO) 
a0=bl+2; 
switchcolor 

I* Codeword = 000011. ••/ 
update_cmprs(6) ; 

} 
else 

{ /* Vertical mode(-2). al to the */ 
/* left of bl by 2 bits. */ 

if(a0==0) 

update_dcmprs_code(aOcolor, 
bl-2-(a0+l)) 

else 
update_dcmprs_code(aOcolor,bl-2-aO) 
a0=bl-2; 
switchcolor 
I* Codeword = 000010. */ 

update_cmprs(6) ; 

} 
else 

{ /'•' Bitl,2,3,4,5 = 00000, '•</ 
/* get bit6. 

if( currentword & 0x0400 ) 
{ /* Bitl,2,3,4,5,6 = 000001, */ 
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I* get bit6. "/ 
if( currentword & 0x0200 ) 

{ /* Vertical mode(3). al to the '•/ 
I* right of bl by 3 bits. '•/ 

if(a0==0) 

update_dcinprs_code(aOcolor, 
bl+3-(a0+l)) 

else 
update_dcmprs_code(aOcolor, 

bl+3-aO) 
a0=bl+3; 
switchcolor 

I* Codeword = 0000011. */ 
update_cmprs(7); 
} 

else 
{ /" Vertical mode(-3). al to the -/ 
I* left of bl by 3 bits. '•/ 

if(a0==0) 

update_dcmprs_code(aOcolor, 
bl-3-(aO+l)) 

else 
update_dcmprs_code(aOcolor, 

bl-3-aO) 
a0=bl-3; 
switchcolor 

/'•' Codeword = 0000010. '•/ 
update_cmpr s(7); 
} 

} 
else 

{ /'•• Bit pattern = 000000 should ••/ 
/* never happen unless there are*/ 
I* some errors. */ 

printfC"extra code \n"); 
exit(); 
} 

} 
} 

} 
} 

} 
jit END dcmprs_line_2d '•/ 

I* =================== init_dcmprs_blk_2d ======================== */ 

/* Initialize local variables to this file. */ / i, =============================================================== */ 
void init_dcmprs_blk_2d(xsizein,ysizein,dcmprsbuffere) 
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unsigned xsizein.ysizein; 
char '''dcmprsbuf fere; 
{ 
ysize=ysizein; 
xmaxplsl=xsizein+l; 
xsizeinbytes=(xsizein/8)+(xsizein%8>0) ; 
prvslinestart=dcniprsbuf fere ; 
xsize=xsizein; 
ymaxplsl=ysizein+l; 
} 
/* END init_dcmprs_blk_2d '•/ 

/* Refer to the comments in file */ 
/" dupdtc.c in appendix B section */ 
/" 13.6 for all the coming code. */ 

static unsigned currentword; 
static unsigned nextword,"nextwordptr; 
static unsigned cbitsremain; 
static unsigned rightbitsword[]={0,0x0001,0x0003,0x0007, 

OxOOOf.OxOOlf,0x003f, 
0x007f.OxOOff.OxOlff, 
0x03ff,0x07ff,OxOfff, 
Oxlfff,0x3fff,0x7fff, 
Oxffff}; 

unsigned leftbitsword [ ]={0,0x8000,OxcOOO,OxeOOO, 
Oxf000,Oxf800,OxfcOO, 
OxfeOO,Oxff00,Oxf f80, 
OxffcO,OxffeO,OxfffO, 
Oxfff8,0xfffc,Oxfffe, 
Oxffff}; 

/)'c======================== UPATE_CMPRS( ) ==========================)'c/ 

/* This function updates "currentword", which is a window into the ''•/ 
/* compressed buffer. */ 
/ Vt===== = === === = = = ==== === = = = ======= = = = = = ========= ===== = = = = = = = = = = = = ==!V/ 

update_cmprs(codelngth) 
int codelngth; 

{ 
register unsigned tempword; 
register int difference; 

tempword = currentword; 
tempword <<= codelngth; 
if((difference = cbitsremain-codelngth) > 0) 

tempword |= nextword»(difference); 
else 

{ 
difference =- difference; 
tempword |= nextword << (difference); 
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nextword = *(++nextwordptr); 
tempword |= nextword » (difference=(16- (difference)) ); 
1 

nextword &= rightbitsword[difference]; 
cbitsremain = difference; /* Update cbitsremain. '•/ 
currentword = tempword; /* Update current word. */ 
returnC tempword ); 
} 
/,v END UPDATE_CMPRS */ 

/ îV======================== init_cmprs =============================v:/ 

init_cmprs(cmprsbfrptr) 
unsigned '-cmprsbfrptr ; 

{ 
cbitsremain = 16; 
currentword = -(cmprsbfrptr); 
nextword = "(nextwordptr=cmprsbfrptr+1) ; 
} 
/,'c End init_cmprs »/ 

/,•.======================= MATCH_BLAK ==============================>•:/ 

match_blak(clrbitsptr.codebitsptr) 
register int *clrbitsptr; 
int ''«codebitsptr; 

{ 
static unsigned BLK_CODES[] = 

{ 
/'V BARRAY_4 bits. */ 

0x7000,0x8000,OxbOOO,OxcOOO,OxeOOO, 
OxfODO, 

/'V BARRAY_5 bits. */ 
0x9800,OxaOOO,0x3800,0x4000,0xd800, 
0x9000, 

/* BARRAY_6 bits. */ 
OxlcOO,0x2000,OxOcOO,OxdOOO,0xd400, 
0xa800,OxacOO,0x5c00, 

/* BARRAY_7 bits. */ 
0x4e00,0x1800,0x1000,0x2e00,0x0600, 
0x0800,0x5000,0x5600,0x2600,0x4800, 
0x3000,0x6e00, 

/'•' BARRAY_8 bits. */ 
0x3500,0x0200,0x0300,OxlaOO,0x1bOO, 
0x1200,0x1300,0x1400,0x1500,0x1600, 
0x1700,0x2800,0x2900,0x2a00,0x2b00, 
0x2c00,0x2d00,0x0400,0x0500,OxOaOO, 
OxObOO,0x5200,0x5300,0x5400,0x5500, 
0x2400,0x2500,0x5800,0x5900,0x5a00, 
OxSbOO,0x4a00,0x4b00,0x3200,0x3300, 
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static int BLK_RUNS[] = 
{ 

0x3400,0x3600,0x3700,0x6400,0x6500, 
0x6800,0x6700 

}; 
static int BGROUPS[]={5, 
register word; 

/* BC0DE_4 bits. 
2 ,3 ,4 ,5 ,6 ,7 , 

/* BC0DE_5 bits. 
8 ,9 ,10 ,11 ,-64 ,-128 , 

/* BC0DE_6 bits. * 
1, 12, 13, 14, 15, 16, 17, -192 , 

/* BC0DE_7 bits. 
18, 19, 20, 21, 22, 23, 24, 25, 26, 
27, 28, -256, 

/* BC0DE_8 bits. ''' 
0, 29, 30, 31, 32, 33, 34, 35, 36, 
37 , 38, 39, 40, 41, 42, 43, 44, 45, 
46, 47, 48, 49, 50, 51, 52, 53, 54, 
55, 56, 57, 58, 59, 60, 61, 62, 63, 
-320, -384, -448, -512, -576, 640 

4,6, 5,6, 6,8, 7,12, 8,42 }; 

word = currentword; 
switch (1) 

{ 
case 1: 
{ 
if( match_all_bits(word,BLK_CODES,BLK_RUNS,BGROUPS, 

clrbitsptr,codebitsptr) ) 
break; 

} 
default : { 

printfC"Wrong code encountered in 'match_blak'\n"); 
exit(O) ; 
} 

} 

END MATCH BLAK 

/ yc======================= MATCH_WHITE ==== 

match_white(clrbitsptr,codebitsptr) 
int '''Clrbitsptr, '''codebitsptr ; 

{ 

static unsigned 
/ S e e  t h e  c o m m e n t  f o r  B L K _ C O D E S * /  

WHITE_CODES[] = 
{ 

/'•' Codebits = 10. '•'/ 
0x05c0, 0x0600, 0x0200, 0x03c0, 
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OxOdcO, 
/* WARRAY_11 

OxOceO, OxOdOO, 
0x0500, 0x02e0, 

/* WARRAY_12 
OxOcaO, OxOcbO, 
0x0680, 0x0690, 
0x0d20, OxOdSO, 
0x0d70, 0x06c0, 
OxOdbO, 0x0540, 
0x0570, 0x0640, 
0x0530, 0x0240, 
0x0270, 0x0280, 
0x02b0, 0x02c0, 
0x0670, OxOcBO, 
0x0330, 0x0340, 

/* WARRAY_13 
0x0360, 0x0368, 

bits. 
OxOdSO, 0x06e0, 
0x0300, 
bits. 
OxOccO, OxOcdO, 
0x06a0, 0x06b0, 
0x0d50, 0x0d60, 
0x06d0, OxOdaO, 
0x0550, 0x0560, 
0x0650, 0x0520, 
0x0370, 0x0380, 
0x0580, 0x0590, 
0x05a0, 0x0660, 
0x0c90, 0x05b0, 
0x0350, 
bits. 
0x0250 

/* See the comment for BLK_RUNS."/ 
static int WHITE_RUNS[] = 

{ 
/* WCODE_10 BITS. 

16, 17, 18, -64, 0, 
/•>'< WC0DE_11 bits. 

19, 20, 21, 22, 23, 24, 25, 
/* WC0DE_12 bits. 

26, 27, 28, 29, 30, 31, 32, 33, 
34, 35, 36, 37, 38, 39, 40, 41, 
42, 43, 44, 45, 46, 47, 48, 49, 
50, 51, 52, 53, 54, 55, 56, 57, 
58, 59, 60, 61, 62, 63, -128, -192, 
-256, -320, -384, -448, 

/* WC0DE_13 bits. */ 
-512, -576, 640 

}; 
static unsigned WGROUPS[]={4, 10,5, 11,7, 12,44, 13,3 }; 
register unsigned tmpword,word ; 

word = currentword; 
switch (1) 

{ 
case 1: 
{ 
if(word & 0x8000) 

{ 
if(word & 0x4000) 

*clrbitsptr 
else 

/* Bit 16 = 1. •:</ 

/" Bit 15 = 1 then code=2. */ 
= 2; 

Bit 15 = 0. 'V 
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'•'cirbitsptr = 3; 
*codebitsptr = 2; I* Code length = 2. 
break; 
} 

if(word & 0x4000) /* 
{ 
if(word & 0x2000) /* 

*clrbitsptr=4; /* 
else /* 

*clrbitsptr=l; /* 
*codebitsptr=3; /* 
break; 
} 

if(word & 0x2000) /* 
{ 
if (word & 0x1000) /'• 

"Clrbitsptr=5 ; /'• 
else /* 

''*clrbitsptr=6; /* 
*codebitsptr=4; /* 
break; 
} 

if(word & 0x1000) /* 
{ 
if(word & 0x0800) /* 

{ 
"Clrbitsptr=7; /* 
*codebitsptr=5; /* 
break; 
} 

else /* 
{ /* 
if(word & 0x0400) 

/A 
'•clrbitsptr=8; 

else /* Bit 11 = 0. 
I* Code = 9. 

*clrbitsptr=9; 
*codebitsptr=6; /* Code length = 6. 
break; 
} 

} 
if((tmpword=(word&0xfe00)) == 0x0800) 

{ *codebitsptr=7; *clrbitsptr=10; break; } 
if(tmpword==OxOaOO) 

{ *codebitsptr=7; *clrbitsptr=ll; break; } 
if(tmpword==OxOeOO) 

{ *codebitsptr=7; *clrbitsptr=12; break; } 
if((tmpword=(word&OxffOO)) == 0x0400) 

{ >-codebitsptr=8; *clrbitsptr=13; break; } 

Bit 15 = 1. 

Bit 14 = 1. 
Code = 4 . 
Bit 14 = 0. 
Code = 4. 
Code length = 3, 

Bit 14 = 1. 

Bit 13 = 1. 
Code = 5. 
Bit 13 = 0. 
Code = 6. 
Code length = 4. 

Bit 13 = 1. 

Bit 12 = 1. 

Code = 7. 
Code length = 5, 

Bit 12 = 0. 
Bit 11 = 1. 

Code = 8. 
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if(tmpword==0x0700) 
{ *codebitsptr=8; *clrbitsptr=14; break; } 

if((word&Oxff80)==0x0c00) 
{ *clrbitsptr=15; '•'codebitsptr=9; break; } 

if( match_a1l_bits(word,WHITE_CODES,WHITE_RUNS,WGROUPS, 
clrbitsptrjcodebitsptr) ) 

break; 
} 
default : { 

printf( 
" Wrong code encountered in 'inatch_white'\n"); 

exit(O) ; 
} 

} 
} 
/,v END MATCH_WHITE 

/vc =================== get_dcmprstime() ========================= */ 

unsigned get_dcmprstime() 
{ 
return(dcmprstime); 
} 
lit END get_dcmprstime( ) */ 
/,'c END dcmprs2d.c */ 

14.5. File Dcmprsln.c 

^include <stdio.h> 
//include <io.h> 
//include "colordef.h" 

int update_cmprs(int); 
int uncmprs_blak(int *), uncmprs_white(int »); 
int match_blak(int *,int '"0, match_white(int *,int -); 
int update_dcinprs_blakmk(int), update_dcmprs_whitemk(int); 
int update_dcmprs_blakreg(int), update_dcmprs_whitereg(int); 

/,'c 

* Refer to the file "dcmprsln.c" in appendix B section 13.5 for 
* comments. 
*/ 

dcmprs_line_ld() 

{ 
int clrbits; 
register int *clrbitsptr=&clrbits; 
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whileC uncmprs_blak(clrbitsptr) && uncmprs_white(clrbitsptr) ) 

} 
/,v END DCMPRSLNO */ 

/A======================== UNCMPRS_BLAK() =========================Vc/ 

uncmprs_blak(nmbrblackbitsptr) 
int '''nmbrblackbitsptr ; 

{ 
int clrbits.codebits; 
register int *clrbitsptr=&clrbits; 
register int *codebitsptr=&codebits; 

''mmbrblackbitsptr = 0; 
match_blak(clrbitsptr,codebitsptr); 

if(*clrbitsptr<0) 
{ 
*clrbitsptr=-Aclrbitsptr; 
*nmbrblackbitsptr += clrbits; 
update_cmprs(*codebitsptr); 
update_dcmprs_blakmk(*clrbitsptr); 
match_bLak(clrbitsptr,codebitsptr); 
} 

update_cmprs(*codebitsptr); 
*nmbrblackbitsptr += clrbits; 
returnC update_dcmprs_blakreg(*cirbitsptr)); 
} 
/,v END UNCMPRS_BLK() i-/ 

/VT======================= UNCMPRS_WHITE( ) =========================!>/ 

uncmprs_white(nmbrwhitebitsptr) 
int *nmbrwhitebitsptr; 

{ 
int clrbits,codebits; 
register int *clrbitsptr=&clrbits; 
register int '•'codebitsptr=&codebits ; 

*nmbrwhitebitsptr = 0; 
match_white(clrbitsptr.codebitsptr); 
if(*clrbitsptr<0) 

{ 
*clrbitsptr=-*clrbitsptr; 
*nmbrwhitebitsptr += clrbits ; 
update_cmprs(*codebitsptr); 
update_dcmprs_whitemk(*clrbitsptr); 
match_white(clrbitsptr,codebitsptr); 
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update_cmprs('''codebitsptr) ; 
'•'nmbrwhitebitsptr += cirbits ; 
return( update_dcmprs_whitereg(''«clrbitsptr)) ; 
} 
/,v END UNCMPRS_WHITE() */ 

jit END dcmprsln.c */ 

14.6 File Bitsrng.asm 

NAME bitsrng 
TITLE SWAP BYTES THEN CONVERT BITS TO STRING 
PUBLIC _swapbits_to_string 
DGROUP GROUP _DATA 

ASSUME CS: _TEXT, DS: DGROUP, SS: DGROUP, ES: DGROUP 
LASTBITS EQU [BP-2] 
WORDCONT EQU [BP-4] 
EXTRN chkstkrNEAR 
_TEXT SEGMENT BYTE PUBLIC 'CODE' 

_swapbits_to_string PROC NEAR 

LOOP11 

LOOP2: 

ONE BIT: 

PUSH BP 
MOV BP,SP 
MOV AX,4 
CALL chkstk 
PUSH DI 
PUSH SI 
PUSH ES 
PUSH DS 
POP ES 
MOV SI,[BP+4] 
MOV DI,[BP+6] 
MOV AX,[BP+8] 
MOV DX,AX 
MOV CX,4 
SHR DX,CL 
MOV WORDCONT,DX 
AND AX.OOOFH 
MOV LASTBITS,AX 
MOV CX,16 
LODSW 
XCHG AH,AL 
MOV DX,AX 
MOV BX,8000H 
TEST DX.BX 
JZ ZERO_BIT 
MOV AX,'1' 
STOSB 
JMP SHIFT_MASK 
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ZERO_BIT: 
MOV 
STOSB 

SHIFT_MASK: 
SHR 
LOOP 
DEC 
JNZ 

LAST_BITS: 
CMP 

AX,'0' 

BX,1 
LOOP2 
WORD PTR WORDCONT 
LOOPl 

JZ 
MOV 
LODSW 
XCHG 
MOV 
MOV 

LOOP3: TEST 
JZ 

ONE_BIT_L: 
MOV 
STOSB 
JMP 

ZERO_BIT_L: 
MOV 
STOSB 

SHIFT_MASK_L: 
SHR 
LOOP 

BITSTRING_DONE: 
POP 
POP 
POP 
MOV 
POP 
RET 

_swapbits_to_string 
_TEXT ENDS 
END 
/,v 

BYTE PTR LASTBITS.O 
BITSTRING_CODE 
CX.LASTBITS 

AH,AL 
DX.AX 
BX,8000H 
DX.BX 
ZERO_BIT_L 

AX,'1' 

SHIFT_MASK_L 

AX,'0' 

BX,1 
LOOP 3 

ES 
SI 
DI 
SP.BP 
BP 

ENDP 

END bitsrng.asm 
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APPENDIX D. PROGRAM LIST OF METHOD LZW 
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The C programs in this appendix and the following appendices use 
the function "Indx" from C Power Packs by Software Horizons Inc. 

The files in this listing make use of the files in the following 
sections : 

- Appendix B: 13.9, 13.11, and 13.12. 

15.1. File Main.c 

h-<-

/'•c 

/'•' 
/•>' 

/'V 

/A 
/*= 

This program simulates the Lempel-Ziv-Melch approach to compress* 
data and then decompress it according to the same approach. * 
This alogrithm is adaptive in the sense that it starts with an * 
empty table of symbol strings and builds the table during both 
the compression and decompression processes. These are one-pass * 
procedures that require no prior information about the input * 
data statistics and execute in time proportional to the length 
of the message. -

//include 
^include 
//include 
//include 
//include 
//include 
//include 
//include 
//include 

//define 
//define 
//define 
//define 
//define 
//define 
//define 
//define 

<stdio.h> 
<memory.h> 
<dos.h> 
<io.h> 
<fcntl.h> 
<malloc.h> 
<sys\types.h> 
<sys\stat.h> 
<string.h> 

LINT_ARGS 

HI_RES 

TEXT_MODE ' 

ALFHABET_SIZE 

MAX_SIZE 

SCRN_SIZE 

uchar 
findtime(time) 

/* 640x200 graphics mode. */ 
/•' Text mode. ''«/ 
/* Sizes of alphabet and */ 
/" code tables. :'V 

6 
3 
256 
4096 
16004 
unsigned char 
{ tend=gttime( ) ;\ 
if(tend>tstart) time=tend-tstart;\ 
else time=(6000-tstart)+tend;} 

/* Declare variables : 
/* Strings table consists of two parts, the first one is of word ''f 
/•>'< type while the other one is of character type. This is due to * 
/* the fact that only 20 bits are needed to represent each string * 
/* so no more than 3 bytes are needed for this representation. * 

static 
static 

char far data_bufr[32000] ; 
char workbufr[SCRN_SIZE] 



www.manaraa.com

358 

I* Window coordinates. -•/ 

*/ 

int xl=0,yl=0,x2=639,y2=199 ; 
char datafile[41]; 
unsigned bufr_size ; /* Holds the screen size in bytes 

unsigned gttimeC); 
void init_screen( unsigned ); 
void decompress( char *, char far *, unsigned ) ; 
void compresse char * , char far * , unsigned * ) ; 

mainCargc, argv) 
int argc; 
char *argv[]; 

unsigned tstart,tend,cmprstime,dcmprstime, temp, i ; 
/'• Cmprsfactor = original size '••I 
/'• divided by compressed size. */ 

float cmprsfactor; 

if( argc < 6 ) /* No data was entered at the '•/ 
{ /* command line. */ 

printfC"enter xl yl x2 y2 \n"); 
scanf("%d %d %d %d",&xl,&yl,&x2,&y2); 

/'•' Get rid of extra charcaters. */ 
while((getchar())!='\n') 

} 
else 
{ 

xl=atoi(argv[2]); yl=atoi(argv[3]); 
x2=atoi(argv[4]); y2=atoi(argv[5]); 

} 
if( argc > 1 ) 

strcpyC datafile, argvEl] ); 
init_screen( argc ) ; 

I* Store the original size. */ 
cmprsfactor = ( float )bufr_size ; 
init_table() ; /* Initialize buffers and tables. '•/ 

/'•' Get the data in the screen */ 
/* memory then display it again. */ 

get( xl, yl, x2, y2, work_bufr ) ; 
for(i=0;i<=55000;i++) ; I* A delay loop. */ 
setscmode(TEXT_MODE); 
printfC" Compression is in progress \n" ) ; 
tstart=gttime(); /* Record the start of compression.*/ 

/* Compress the data in data_bufr using LZW*/ 
/* algorithm and return the compressed data*/ 
/* in the data bufr. The work bufr is used */ 
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/* for internal manipulation within 
/* compresse ) and other function it calls. '• 
/* The size of the compressed buffer is * 
/* returned in bufr_size. '•< 
/'• We used data_bufr+4 so we will not * 
/* compress the x and y sizes. * 

compresse work_bufr+4, data_bufr, &bufr_size ) ; 
findtimeC cmprstime ) I* — MACRO to find cmprstime. * 
printfC" Now decompression is in progress \n" ) ; 
init_table() ; /''« Reinitialize the tables. 
tstart=gttime( ) ; /* Record start of decompression. -• 

/* Decompress data stored at address * 
/•! data_bufr+4 and with size = bufr_size. 
/" Use the work_bufr in function decompress* 
h" for its internal use. * 

decompressC work_bufr+4, data_bufr, bufr_size ) ; 
findtimeC dcmprstime ) !'•' — MACRO to find dcmprstime. '• 

/* Display data on the screen to * 
setscmode(HI_RES); /* make sure the program is working* 
put( xl, yl, work_bufr ) ; 
for(i=0;i<=55000;i++) ; /* A delay loop. * 
setscmode(TEXT_MODE); 

/* A dummy variable. * 
passparmtrsC datafile, xl, yl, x2, y l ,  temp=0 ) ; 
printC cmprstime, dcmprstime, 

cmprsfactor = cmprsfactor/bufr_size ) ; 
} 
/,v END mainO */ 
/* END main.c */ 

15.2. File Cmprs.c 

//include 
//include 
//define 
//define 
//define 
//define 

<memory.h> 
<malloc.h> 
uchar unsigned char 
MAX_SIZE 4096 
SCRN_SIZE 16004 
update_string_table() \ 

{if( next_code < MAX_SIZE )\ 
{char_table[next_code] = string.k ;\ 
int_table[next_code] = string.w ;\ 
next_code++ ;}} 

extern unsigned 
extern uchar 
extern int 
extern unsigned 

int_table[] ; 
char_table[] 
next_code; 
extracalls ; 

/* int_table[], char_table[] */ 
/* and next_code are defined */ 
/* in tables.c */ 

void adjust_output( uchar *, uchar far *, unsigned, unsigned * ); 
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'•'======================== compresse ) ============================= 

* The LZW algorithm is organized around a translation table 
that maps strings of input symbols into a fixed length code. 

* LZW string table contains strings that have been encountered 
* previously in the message being compressed. The input string 
* is examined serially symbol-by-symbol in one pass and the 
* longest recognized input string is parsed off each time. 
*================================================================= 

compress( compress_io,compress_work, ptr_bufr_size ) 
uchar 
unsigned 

*compress_io, far *compress_work 
*ptr_bufr_size ; 

Compress_io contains data 
* needs to be compressed as an 
* input, and compressed data 
* as output. Compress_work is 
" used for work as a temporary 
* output of Izw compression 

before we pack each code word 
* into 12 bit code. Then the 
* function adjust_output takes 
* it as input and put the 
* correct 12 bit codes into 
* compress-io. 

uchar ''«input; 
unsigned far ''«output; 
char *ptr_new_output; 
unsigned bufr_size; 
unsigned newsize ; 
register int data_index=0, code; 
int out_index=0, found, *ptr_found=&found ; 
struct { 

uchar k; 
unsigned w; 

} string ; 

input=compress_io; 
output=(unsigned far ''Ocompress_work; 

/* Read the first element in */ 
/* the input. -/ 

string.w = input[data_index++] ; 
bufr_size=*ptr_bufr_size; /''« Find bufr_size. */ 

/->'< Loop while there is more "/ 
/* input. '':/ 

whileC data_index < bufr_size ) 
{ 

/ R e a d  t h e  n e x t  e l e m e n t .  * /  
string.k = input[data_index++]; 
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/* Function ScanwO scans the '•'! 
/* string and returns the code.*/ 
/* If the passed string is found*/ 
/* in that case found = 1, 
/* otherwise the returned value 
/* of found is = 0. 

code = scanwC string.w, string.k, ptr_found ); 
if( found ) 
{ 

} 
else 
{ 

/* wk exists in the table ; 
/* wk —> w i.e. code of new w= */ 

*/ 
,v/ 

,v/ 

/* code of a location in the 
/* int_table that has w and k. 

string.w = code ; 
continue ; 

*/ 

* wk is not in string table : = 
* string.w —> output i.e. send' 
code of w to the output. : 

output[out_index++] = string.w ; 
'* If the tables are not full = 
* yet then string —> string ' 
* table, i.e put w and k in ' 
* int_table and char_table ' 
* respectively at position ' 
'* next_code. ' 

if(next_code<MAX_SIZE) 
update_string_table() 

else 
extracalls++ ; 

/* string.k —> string.w. */ 
string.w = ( unsigned ) string.k ; 

/* Send the last code to the •</ 
/* output. "/ 

output[out_index] = string.w 
* Back the output codes from a 
* string of words format to a */ 
* string of 12 bits codes */ 
* format. The input to ''•/ 
* adjust_output() is compress_ */ 
* work. It sends the output */ 

in the final form in '•/ 
compress_io. '•/ 

adjust_output(compress_io ,compress_work, 
2*(out_index +1), &newsize); 

"Ptr_bufr_size= newsize; /* Send newsize in bufr_size. */ 

END COMPRESS() */ 
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END cmprs.c -*/  

15.3. File Dcmprs.c 

//include 
//include 
//include 
//define 
//define 
//define 
//define 

<memory.h> 
<stdio.h> 
<malloc.h> 
uchar 
MAX_SIZE 
ST_MAX 
SCRN_SIZE 

unsigned char 
4096 
1000 
16004 

//def ine 
/* Add the new string to the string table. 

update_string_table() \ 
{if( next_code < MAX_SIZE )\ 

{char_table[next_code]=code.k ;\ 
int_table[next_code] = oldcode;\ 
next_code++ ;}} 

//def i me 

/* Return the value of w and 
/* passed code. 

look_up() \ 
{code.w = int_table[CODE] ;\ 
code.k = char_table[CODE];} 

k for the 

extern unsigned int_table[] ; 
extern uchar char_table[] ; 

extern int next_code; 

static char *stack ; 

static unsigned stack_index=0; 

char 

void 

popO; 

int_table, char_table and • 
next_code are defined • 
globally in tables.c • 
index of the next code in the-
tables not used yet. • 
A stack to be used in the • 
abnormal case for storing • 
characters till we reach the • 
first character of the new 
s t r i n g .  
F i r s t  unused element. Stack • 
grows upward. • 

* Returns the character at the '• 
'* top of the stack. * 

readjust_input( uchar far uchar unsigned, unsigned '• ) 

/* Input is in the form of 12 bits codes stored serially. We have 
/* to readjust them to integer format so we can store them and use * 
/* them in the int_table. 
/Inputsize is the size of input in bytes. " 
/* decmprs_io = as input to decmprsO it points to compressed data 
/'• decmprs_io = as ouput of decmprsO it points to decompressed * 
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/* data 
h' decmprs_work = pointer to a temporary area. 
/'•'=============================================== 

decompress(decmprs_io, decmprs_work ,inputsize) 
char Adecmprs_io, far *decmprs_work; 
unsigned inputsize; 

{ 
unsigned 
unsigned 

unsigned 
register 
register 

char 
struct { 

} 
char 
unsigned 
char 

input_index=0; 
oldcode,incode; 

/'< The size of the compressed 
I* data, each is stored in a 
I* word, is equal to the output 

newsize ; /* size of readjust_input(). 
unsigned output_index=0; 
unsigned CODE ; 

/* Final character in the pre-
finchar ; /''' vious String decompression. 

char k; 
unsigned w; 
code; « 

*temp_ptr; 
far ''«input; 
*databufr; 

V 
V 

*/ 
*/ 

stack = mallocC ST_MAX ); /* Allocate memory for the stack-
I* Adjust the input from 12 bits-
/''• serial codes into an array of-
I* integers and put the size of -
I* the array in "newsize". -

readjust_input(decmprs_work,decmprs_io,inputsize,&newsize); 
I* Find the size of the input ^ 

inputsize=(newsize/2); /* code in words. -
input= (unsigned far ''0 decmprs_work; 
databufr=decmprs_io; 

/'•• Get the first code of the -
/''f input. 

CODE= oldcode= input[input_index++]; 
look_up() /* MACRO. '• 

/* Output the first character, 
databufr[output_index]=finchar=code.k; 

Keep looping until all codes '' 
I* are processed. '' 

whileCinput_index< inputsize ) 
{ /* Get the next input. -

CODE=incode=input[input_index++]; 
if(CODE >= next_code) 

/''« CODE is not defined in the • 
{ /* decompression table yet. • 
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push(finchar); 
CODE=oldcode; 

} 
I* Find the components w & '•/ 
/* k of CODE. */ 

look_up() 
/'•' if w = 0 then we have a code 
/" for one of the alphabets. '•/ 
/* While CODE==code(wk) separate*/ 
/* the k & w parts of code till '•/ 
/" CODE = code(k). '•/ 

while(code.wl=Oxffff) 
{ 

push(code.k); 
CODE=code.w; 
look_up() 

} 
/* String now begins with the ••'I 
/* last k, and the rest of it. '•/ 
/" (if string longer than one ••/ 
/" k) is in the stack. =•/ 

/* Send k to the output. ••/ 
databufr[++output_index]=code.k; 
finchar=code.k; /* Finchar = first k of the '••/ 

/* last string. */ 
/* While the stack is not empty '•'/ 

while(stack_index) /* send data to the output. */ 
{ 
databufr[++output_index]=pop(); 
} 

update_string_table() 
oldcode=incode; 

} 
} 
/* END decompressO •••/ 

/'" PLace an element on the stack. */ 
/''•================================================================='V/ 
push( item ) 
char item; /* Data to be pushed on the */ 

/" stack. */ 

if( stack_index >= ST_MAX ) 
{ 

printfC " stack overflow in push \n" ) ; 
return ; 

} 
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stack[stack_index++] = item ; 

} 
/* END pushO */ 

/Vt============================== pop( ) ============================:•(/ 

/* Retrieve the top element from the stack. */ 
/' ' '================================================================='•'/ 

char popO 
{ 

if( —stack_index < 0 ) 
{ 

printfC" Stack underflow in pop \n" ) ; 
return ('\0'); 

} 
return stack[stack_index]; 

} 
/,'f END pop( ) */ 
/,v END dcmprs.c */ 

15.4. File Tables.c 

//include <stdio.h> 
//include <memory.h> 
//include <malloc.h> 
//define MAX_SIZE 4096 
//define ALPHABET_SIZE 256 
//define uchar unsigned char 

/* Definition of a GLOBAL vars. '•/ 
unsigned int_table[MAX_SIZE] ; 
unsigned char char_table[MAX_SIZE] ; 
int next_code ; 
unsigned *ptr_int_table=int_table; 
unsigned char ''fptr_char_table=char_table ; 
unsigned extracalls=0 ; 

/* This function initializes every element in int_table to a com- •>'! 
/* bination that will never occur. Since the code is only 12 bits 
/* long then the 16 bits used to hold these codes are to be <= * 

Oxfff. For this reason in this program the Oxffff code is used * 
/* to solve the above problem. It should be noted that any combin-
/* ation > Oxfff should work correctly as well. Then the first 256 * 
/* character symbols are loaded into the char_table. * 

init_table() 

{ 
register int index ; 



www.manaraa.com

366 

/* Set every byte in the 'V 
/* int_table to Oxffff (i.e. '•/ 
/* every code word = Oxffff) so */ 
/* that no code will match with */ 
/* it, because actual codes are */ 
/* only 12 bits. */ 

merasetC (char *) int_table,0xff,MAX_SIZE*2); 

/* Set 1st 256 of char_table to */ 
/* be the extended ASCII codes. */ 

for( index=0; index < ALPHABET_SIZE; index++ ) 
char_table[index] = ( short ) index ; 

} 
/*-
/'•<-

next_code = ALPHABET_SIZE; 

END init_table() 
— END tables.c — 

V 
V 

15.5. File Scanw.asm 

INPUT : ( PARAMETERS PASSED BY CALLING SUBROUTINE ) 
1) CHARCODE = CHARACTER PART OF THE CODE.i.e K. 
2) INTCODE = UNSIGNED INTEGER PART OF THE CODE, i.e. W. 
3) FOUNDADRS = ADDRESS OF CODE, i.e., WHERE WE RETURN THE 

CODE WHICH HAS W AND K EQUAL TO INTCODE AND 
CHARCODE RESPECTIVELY. 

OUTPUT : 
1) BOOLEAN VARIABLE "FOUND"; HAS THE FOLLOWING RETURN VALUES 

RETURN VALUE = 1 IF A MATCH IS FOUND 
0 IF NO MATCH 

2) THE DUNCTION RETURN VALUE IS CONTAINS THE INDEX OF THE 
FOUND CODE, IF ANY. 

; IT NEEDS TO SHARE THE FOLLOWING WITH WHOEVER HAS THEM: 
; 1) _ptr_char_table = A POINTER TO 1ST ELEMENT IN CHAR TABLE. 
; 2) _ptr_int_table = A POINTER TO 1ST ELEMENT IN INT TABLE. 
; 3) next_code = NUMBER OF FIRST FREE CODE IN CHAR TABLE. 
; = NUMBER OF FIRST FREE CODE IN INT TABLE. 
NAME SCAN 
TITLE SCANNING OF THE ALTERNATE TABLE TO FIND A MATCH 
PUBLIC _scanw 

FOUND_PTR EQU [BP+8] ; PASSED PARAMETERS. 
INTCODE EQU [BP+4] 
CHARCODE EQU [BP+6] 

DGROUP GROUP CONST, _BSS, _DATA 
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ASSUME CS: _TEXT, DS: DGROUP, SS; DGROUP, ES: DGROUP 

_DATA SEGMENT 
EXTRN _ptr_char_table;WORD 
EXTRN _ptr_int_table:WORD 
EXTRN _next_code:WORD 

PTR_next_code DW 
_DATA ENDS 

scanw 

LOOPl: 

PROC 
PUSH 
MOV 
PUSH 
PUSH 
PUSH 
MOV 
MOV 

MOV 
MOV 

MOV 

MOV 
MOV 

NEAR 
BP 
BP,SP 
DI 
SI 
ES 
AX,DS 
ES,AX 

AX.INTCODE 
DL,CHARCODE 

SI,_ptr_char_table 

DI,_ptr_int_table 
CX,_next_code 

REPNE SCASW 

JNE NOMATCH 
MOV BX,DI 

SUB BX,_ptr_int_tabl 
SHR BX,1 
DEC BX 

CMP DL,[BX+SI] 

JE MATCH 

INITIALIZE THE REGISTERS TO THE 
CORRESPONDING PARAMETERS PASSED 
FROM THE CALLING PROGRAM. 

THE FOLLOWING THREE VARIABLES ARE 
DEFINED SOMEWHERE ELSE. 
POINTER TO THE TABLE HOLDING 
ELEMENTS OF CHARACTER TYPE. THIS 
TABLE HOLDS THE SECOND PART TO BE 
EXAMINED IN THE SEARCH. 

TABLE USED IN THE SEARCH. IT HOLDS 
THE INTEGER PART WE SCAN FOR. 

NEXT NUMBER NOT USED IN TABLES YET. 
SCAN THE WORD TABLE STARTING FROM 
DI UP TO CX ELEMENTS BIT ZERO IS 
ZERO. IF ZF= 0 WE FINISHED THE SCAN 
BEFORE ANY MATCH. SO GO TO NOMATCH. 
ZF=1 SO WE HAD A MATCH. STORE 
THE LENGTH OF SCANNED WORDS IN BX. 

GET THE NUMBER OF SCANNED WORDS. 
ADJUST LOOP STEP ( ONE MORE WORD ). 
SINCE WE HAD A WORD MATCH, 
SEE IF WE HAVE CHAR MATCH. 
IF YES THEN WE HAVE A COMPLETE 
MATCH. SO GO TO MATCH. 
CHAR DID NOT MATCH SO TRY AGAIN 
AS LONG AS CX (= REMAINING CODES TO 
BE SEARCHED ) NOT EQUAL TO ZERO. 
IF CX REACHED ZERO BEFORE WE HAD 
ANY MATCH THEN "JNE NOMATCH" WILL 
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JMP 
NOMATCH: 

MOV 
MOV 
JMP 

MATCH: MOV 
MOV 

SUB 
SHR 
DEC 

MOV 
SCAN_DONE: 

POP 
POP 
POP 
MOV 
POP 
RET 

_scanw ENDP 
_TEXT ENDS 
END 
/Vc 

LOOPl 

BX,FOUND_PTR 
WORD PTR [BX],0 
SCAN_DONE 
BX,FOUND_PTR 
WORD PTR [BX],1 

DI,_ptr_int_table 
DI,1 
DI 

AX.DI 

ES 
SI 
DI 
SP.BP 
BP 

DROP US TO NOMATCH: 

NO MATCH, SO STORE ZERO IN FOUND, 
WHICH IS ADDRESSED BY FOUND_PTR. 
SCAN IS DONE. 
THERE WAS A MATCH SO STORE 1 IN 
FOUND. 
MAKE DI = LENGTH OF SCANNED WORDS. 

MAKE DI = NUMBER OF SCANNED WORDS. 
ADJUST LOOP STEP (ONE MORE WORD.) 
SCAN WILL RETURN AX = CODE = NUMBER 
OF WORDS SCANNED TILL WE FOUND A 
MATCH (i.e. INDEX OF THE MATCHED 
ELEMENT IN EITHER TABLE) . 

END scanw.asm 

15.6. File Scrinit.c 

//include <stdio.h> 
//include <memory.h> 
//include <dos.h> 
//include <io.h> 
//include <fcntl.h> 
//include <malloc.h> 
//define LINT_ARGS 
//define FALSE 0 
//define TRUE 1 
//define HI_RES 6 
//define TEXT_MODE 3 
//define SCREENSIZE 16384 
//define STRERR -1 /'V 

extern int xl,yl,x2,y2; /,v 
extern char datafileU; / *  
extern unsigned bufr_size ; 

/* Sring error, not found, 

*/ 
A/ 

/)•(======================= init-screen( ) ==== 

/* This function displays figure on screen. 
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/ 5V = = = = === ===== ======= = ===== = ====== ======= === = = = = === = ===== = = = = = = ====5't/ 

init_screen( value ) 
int value; 

{ 
char *screenbufr; />'' Temporary buffer. */ 
int fhl,bytesread,loop=TRUE; 
char flag, c; 

/'•• "src" is a far pointer */ 
char far *src; /* initialized to "screenbufr". */ 
unsigned blksize; 

if( value <= 1 ) 
{ 

whileCloop) 
{ 

printfC"enter name of data file \n"); 
getsCdatafile); 
printfC'your data file is % s  \n",datafile); 

/" Give the user a chance to •'/ 
/* correct his mistakes. */ 

printf("Is the given data correct (y/n)?\n"); 
flag=getchar(); 
while( (flag!='y')&&(flag!='n') && 

(flagl='Y')&&(flagl='N') ) 
{ 

/* Read the end of line. */ 
while((c=getchar()) !='\n') 

printf("enter y or n "); 
flag=getchar(); 

} 
/* Read the end of line. */ 

while((c=getchar()) !='\n') 

if( (flag=='y')I I(flag=='Y') ) 
loop=FALSE; 

} 
} 
blksize =( ( x2-xl+l ) * (long)( y2-yl+l ) )/8 ; 
setscmode(HI_RES); 

/* Read data from the input file 
/* into the buffer, then use this 
/data to display the figure on * 
/* the screen. 
/* Both even and odd banks are 
/* read separately. If the file * 
/* extension is "cut" then just 
/* read data into array and then ''' 
/* put it to the screen. There is 
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/'•' no need to send the data to the */ 
/'• screen memory in the latter case*/ 

/* fhl = file handler of data file.*/ 
fhl = 0pen(datafile,0_RD0NLY|0_BINARY); 

/* Check if file extension = cut.*/ 
if( (lndx(".cut",datafile)) != STRERR ) 
{ 

/* Allocate 4 bytes to read x and */ 
/* y sizes. */ 

screenbuf r=maHoc(4) ; 
/* Read x and y sizes from datafile*/ 
/* into screenbufr, then put values*/ 
/* into x2 and y2 respectively. */ 

bytesread=read(fhl,screenbufr,4); 
x2=*(unsigned *)screenbufr; 
y2=*(unsigned *)(screenbufr+2); 

/* Reallocate the required size of */ 
/* memory to hold the data in */ 
/* the input file. */ 

screenbufr=realloc(screenbufr, 
blksize=4+((x2+7)/8)*(y2)); 

/* Read the data from the file. */ 
bytesread=read(fhl,screenbufr+4,blksize); 
putCxl,yl,screenbufr); 

} 
else 
{ 

/* Do the first bank (even) by */ 
/* allocating half the total size. */ 

screenbufr=malloc(SCREENSIZE/2); 
fhl = open(datafile,0_RD0NLY|0_BINARY); 

/* Read the first bank. */ 
bytesread=read(fhl,screenbufr,SCREENSIZE/2); 
src=(char far *)(screenbufr+7); 

/* Format has the first byte of the 1st */ 
/* bank at offset 8000 of the screen */ 
/* segment. Move the data from the file */ 
/* to that segment. Note that in the */ 
/* screen segment the bytes starting at */ 
/* offset 8000 till (8192-7) will be */ 
/* filled with whatever the file has. */ 
/* This part is not from the physical */ 
/* screen. */ 

movedata(FP_SEG(src),FP_0FF(src),0xb800,0x0000, 
(SCREENSIZE/2)-7); 

bytesread=read(fhl,screenbufr,SCR%&NSIZE/2); 
src=(char far *)(screenbufr); 

/* the 1st seven bytes of the 2nd half */ 
/* of the file are a continuation of the*/ 
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/* (192-7) bytes that BASIC took from */ 
/'•' the screen memory and dumped it to 
/* the file. So the 2nd half of the */ 
/* screen starts after 7 bytes of the '•/ 
/* 2nd part of the file. By copying the */ 
/* second half of the file into offset */ 
/* (0x2000-7) we will fill the 7 bytes */ 
/* at (0x2000-7) then the 2nd half of */ 
/* the screen will be copied to offset ''7 
/* (0x2000). This fills the odd part of*/ 
/* the screen. The remaining (192-7) of */ 
/* the file will fill offset */ 
/* (0x2000+8000) till offset */ 
/* (0x2000+8000+(192-7)). */ 

movedata(FP_SEG(src),FP_OFF(src),0xb800,(0x2000-7), 
SCREENSIZE/2); 

} 
close(fhl); 
free(screenbufr); 
bufr size=blksize; 

} 
/••C END INIT_SCREEN */ 

/,•:========================== SETSCMODE ============================!V/ 

I* sets the screen to the desired video mode. &/ 

int setscmode(mode) I* Function to set video mode *! 
int mode; 

{ 
union REGS inregs; 
union REGS outregs; 

I* return the code and the »/ 
/interrupt for function ••'/ 
/* gdosintO. */ 

int ret_code,int_no; 
/* "set video mode BIOS */ 
/* function call. */ 

inregs.h.ah=0; 
inregs.h.al=mode; 
ret_code = int86(0xl0,&inregs,&outregs); 

/* return the code to check for •'/ 
/* any errors. */ 

return(ret_code); 
} 
I* END setscmodeO *! 
/,v END Scrinit.c */ 
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15.7, File Print.c 

#include 

extern 
extern 

static 
static 

<stdio.h> 

int 
unsigned 

unsigned 
char 

/* Next_code and extracalls are 
/* defined in tables.c. 

next_code ; 
extracalls ; 

xl, yl, x2, y2, temp ; 
*infile; 

'V/ 

/ )'{======================== passparmtr s ( ) ========================== 

/'• This function is used only for passing parameters from the main 
/* function to this file so that they can be printed out. 
/* ===== = : 

passparmtrsC theinfile, cl,rl, c2,r2, dummy ) 
char *theinfile; 
unsigned cl,rl,c2,r2 ; 

{ 

/*-

infile = theinfile ; 
xl = cl ; yl = rl ; 
x2 = c2 ; y2 = r2 ; 
temp = dummy ; 

END passparmtrsC) 

/* Print the results to the output. The data to be printed out 
/* are the compression time, the decompression time and the 
/* compression factor. 
/* = === = = =========== ====== = = = = ==== = ==== = = = === = = = = = = = 

printC cmprstime, dcmprstime, cmprsfactor ) 
unsigned cmprstime, dcmprstime; 
float cmprsfactor; 

{ 
FILE *outfile; 

printfC" Compression factor is %f \n", cmprsfactor) ; 
printfC" Compression time is %u in l/lOO of a seconds \n", 

cmprstime ) 
printfC" decompression time is %u in l/lOO of a seconds \n", 

dcmprstime ) 
printfC" Izw table size is %u \n",next_code); 
printfC" Extra calls after tables were filled are %u \n", 

extracalls ) 

/* Send data to outlzw.dat file, 
ifC Coutfile = fopenC "outlzw.dat", "r" )) == NULL ) 

'•7 



www.manaraa.com

373 

else 

{ 
/'•' Open a file for writing and */ 
/:'( then print the table heading.*/ 

outfile = fopenC "outlzw.dat", "w" ) ; 
fprintfCoutfile, 

"File name xl yl x2 y2 cmprs cmprs "); 
fprintfCoutfile,"dcprs cont table extra \n" ); 
fprintfCoutfile, 

" fetor time "); 
fprintfCoutfile,"time smbl size calls \n" ); 
fprintfCoutfile. 

M. 

fprintfCoutfile, " \n") ; 
} 

•"); 

{ /* Append the file. */ 
outfile = fopenC "outlzw.dat", "a" ) ; 
} 

/* Formats of the output. */ 
fprintfCoutfile, 

"7.-12s %3u %3u %3u %3u %6.2f %4u %5u %4u %4u 
%4u\n", infile, xl, yl, x2, y2, cmprsfactor, cmprstime, 

dcmprstime, temp, next_code, extracalls ); 
} 

END printC) */ 
/'• END print.c -/ 

//def ine 

15.8. File Fadjst.c 

uchar unsigned char 

/:' 
/* 
/'•• 
/* 
/••' 

/it-

vo 

======================== adjust_outputC) ======================== 

This procedure takes the compressed output which is in the ' 
form of words each containing 12 bits wide code from the ' 
procedure compress C) and packs these codes sequentially in the' 
output. Thus, the last 4 bits C bits 9 thru 12 ) of the next ' 
code should fit in the 4 bits at the beginning of the current ' 
word C bits 1 thru 4 ). This is done for every couple of words.' 

id adjust_outputC temp, input, oldsize, ptr_newsize ) 

uchar 
uchar 
unsigned 

'•temp; 
far '"'input ; 
oldsize, 
*ptr_newsize /'•« Size of the adjusted output. '''/ 

register 
register 

char 
char 

*ptr2 ; 
far *ptrl ; 
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char far *lastitem ; 
unsigned quadsize ; 

/* Get the even number of 
/* elements in output buffer. */ 

quadsize = ( oldsize/4 ) * 4 ; 
lastitem = input + quadsize ; 

/* Start adjusting the bits. */ 
for( ptrl=input, ptr2=temp; ptrl<lastitem; ptrl+=4 ) 
{ 

/'• ptrl is pointing to b3 b4 bl •'>/ 
/='« hi hi b8 b5 b6 as seen in »/ 
/* memory, which in word form 
/•>• is bl b2 b3 b4 b5 b6 b7 b8. 

we want ptr2 to point to b2 •</ 
/b3 b4 b6 b7 b8 = cl c2 c3 »/ 
/where each b represents 4 »/ 
/" bits and each c represents */ 
I* one byte. -/ 

unsigned far '"0 ptrl «= 4 ; 
/* *ptrl= b2 b3 b4 0 b7 bS b5 b6*/ 
/" "ptrl= tl t2 t3 t4 (t=byte). */ 

"Ptr2++ = *(ptrl +1) ; /* cl = t2. -/ 
/* c2 = tl bitor t3. */ 

*ptr2++ = '•'( ptrl ) I *( ptrl + 3 ) ; 
"Ptr2++ = *( ptrl + 2 ) ; /* c3 = b7 b8. */ 

} 
/* If oldsize wasn't evenly 
/" divisible by 4 then process 

if( oldsize - quadsize ) /'• the last element in the 
/* output. '•/ 

{ 
"( unsigned *) ptr2 = 

( :'(( unsigned far •>'' ) lastitem ) << 4 ; 
ptr2 +=2; /* Adjust ptr2. */ 
} 

/* Return the new size of output*/ 
/* in bytes. Ptr2 will always */ 
/••• be pointing one byte after */ 
/* the last byte. */ 

*ptr_newsize = ptr2 - temp ; 
} 
/,v END adjust_output() */ 
fit END fadjst.c */ 

15.9. File Fradjst.c 

/*======================== readjust_input() =======================vt/ 

I* This function adjusts the form of the input data from strings of*/ 
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h' 12 bits codes to an array of words where each word corresponds */ 
/* to a 12 bit code. The left most 4 bits are set to zero. i.e. '•/ 
/* each word = integer value of the 12 bit code. */ 
/Vc=================================================================,V/ 

void readjust_input(temporary,input,inputsize,ptr_newsize) 
char far '''temporary,'''input ; 
uns igned inputsize,*ptr_newsize; 

/''« Input contains the input data* 
/''( before this function starts. * 
/''f It contains the adjusted data* 
/* when the function is done. * 
/* Inputsize= size (in bytes) * 
/* of data to be adjusted. * 
/* Ptr_newsize = pointer to the * 
/* size (in bytes) of the * 
/* adjusted data. * 

{ 
char char_temp; 

/* Number of the input bytes * 
unsigned trisize; /* divisible by 3. * 

!" Points to the byte after the * 
char *lastitem; /* trisize. * 
register unsigned char *ptrl; /''= Points to the input data. 
register unsigned char far *ptr2; /* Points to the adjusted data* 

trisize=(inputsize/3)*3; 
lastitem=input+trisize; 

/* Initialize ptrl and ptr2 to * 
/* point to the input start and * 
/* the adjusted area start. Loop* 
/* while we are inside the * 
/* trisize region. * 

for(ptrl= input, ptr2= temporary; ptrl< lastitem ; 
ptrl +=3, ptr2 +=4 ) 

{ 
*(ptr2 +2)= *(ptrl +2); 
*(ptr2 +3)= *(ptrl +1) & OxOf; 
char_temp=*ptr1 ; 
*(ptrl) =*(ptrl +1); 
*(ptrl+l)=char_temp; 
*( (unsigned far *) ptr2 )= *((unsigned *) ptrl) >>4; 
} 

/* If inputsize was not divisible */ 
/* by 3 then adjust the last 12 */ 

if(inputsize-trisize) /* bits (2 bytes) and store it in */ 
/* *ptr2. */ 

{ 
*( unsigned far * )(ptr2)= (* (unsigned *) ptrl) >>4; 
ptr2 += 2 ; 
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} 
/* Newsize = size (in bytes) of */ 
/* the readjusted code. */ 

*ptr_newsize=(ptr2-temporary) ; 
} 
/* END readjust_input() 
/it END fradjst.c 'V/ 
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APPENDIX E. PROGRAM LIST OF METHOD LZlfB 
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The files in this listing make use of the files in the following 
sections : 

- Appendix B: 13.9, 13.11, and 13.12. 
- Appendix D: 15.2 - 15.9. 

16.1. File Main.c 

//include <stdio.h> 
//include <memory.h> 
//include <dos.h> 
//include <io.h> 
//include <fcntl.h> 
//include <malloc.h> 
//include <sys\types.h> 
//include <sys\stat.h> 
//define LINT_ARGS 
//define FALSE 0 
//define TRUE 1 
//define HI_RES 6 640x200 graphics mode. 
//define TEXT_MODE 3 /'•' Text mode. 
//define ALPHABET_SIZE 256 /:( Size of alphabet. 
//define MAX.SIZE 4096 / *  Table size. 
//define SCRN_SIZE 16004 /Vc 4 bytes for x & y sizes 
//define uchar unsigned I char 
//define findtimeC time) { tend=gttime();\ 

if(tend>tstart) time=tend-tstart;\ 
else time=(6000-tstart)+tend;} 

static 
static 

int 
char 
unsigned 

unsigned 
unsigned 
void 
void 
void 
void 

char far data_bufr[32000] ; 
char work_bufr[27000]; 

h' Window coordinates. 
xl=0, x2=639, yl=0, y2=199 ; 
datafile[41]; 
bufr_size; /* Screen size in bytes. 

gttimeO; 
count_symbols( char char far *, unsigned) ; 
decompress( unsigned *, char far *, unsigned ) 
compresse char * , char far * , unsigned '• ) ; 
dcmprs_lzw( char far * , char * , unsigned ) ; 
swapbytsCunsigned, unsigned, unsigned , 

unsigned , unsigned ); 

*/ 

*/ 

mainCargc, argv) 
int argc; 
char *argv[]; 

{ 
unsigned blksize; 
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unsigned temp; 
unsigned tstart, tend, cmprstime, dcmprstime, i; 
float cmprsfactor; 
char far *datafarptr=data_bufr ; 
char far ''«workfarptr=work_bufr+A ; 

if( argc < 6 ) /* No data was entered at 
{ /*the command line. */ 

printf("enter xl yl x2 y2 \n"); 
scanf("%d %d %d %d",&xl,&yl,&x2,&y2); 
while((getchar())!='\n') 

} 
else 
{ 

xl=atoi(argv[2]); yl=atoi(argv[3]); 
x2=atoi(argv[4]); y2=atoi(argv[5]); 

} 
if( argc > 1 ) 

strcpyC datafile, argv[l] ); 
/'•' Read the data the from input '•< 

init_screen( argc ) ; /* file and dump'it to thescreen* 
for(i=0;i<=55000;i++ ); /* A delay loop. » 

/* Store the original block size* 
cmprsfactor = ( float )bufr_size ; 
init_table() ; /* Initialize the tables. * 

I* Get the block from the screen* 
get( xl, yl, x2, y2, work_bufr ) ; /* memory then display * 
put( xl, yl, work_bufr ) ; /* it again. We have to move and* 

/* swap the bytes of the screen * 
/* data from work_bufr to * 
/* data_bufr since the latter is* 
/* the input to both the comp- * 
/* ression and the decompression* 
/* functions. * 

swapbyts(FP_OFF(datafarptr), FP_SEG(datafarptr), 
FP_OFF(workfarptr), FP_SEG(workfarptr), bufr_size ); 

blksize=bufr_size; 
setscmode(TEXT_MODE); 
printfC" Compression is in progress \n" ) ; 
tstart=gttime(); /* Record start of compression. 

/* Count the run-lengths of black and white 
/* colors, where run-lengths are limited 
/* between 1 and 128, in the screen block 
/* addressed by data_bufr+4. Put the code 
/* for each run-length in work_bufr. The 
/* size (in bytes) of the block is passed 
/* in bufr_size. The count of the symbols 
/* is returned by count_symbols() and 
/* stored in "temp". 



www.manaraa.com

380 

temp=bufr_size = 
count_synibols( work_bufr+4, data_bufr, bufr_size); 

/Compress the data in work_bufr+4 using "/ 
/* Lempel-Zev-Welch algorithm and return '•'! 
/* the compressed data in the work_buffer. 'V 
/* The data_bufr is used for internal '•'/ 
/* manipulation within compressO and other*/ 
/* functions it calls. The size of the */ 
/* compressed buffer is returned in 
/* bufr_size. */ 

compresse work_bufr+4, data_bufr, &bufr_size ) ; 
findtimeC cmprstime ) 
printfC" Now decompression is in progress \n" ) ; 
init_table() ; 
tstart=gttime(); /* Record start of decompression*/ 

/* Decompress the block compressed by LZW */ 
/* algorithm. */ 
/* work_bufr = compressed buffer, as input,*/ 
/* and decompressed buffer, as output. */ 
/* data_buffer = work area used inside */ 
/* decompressO and the function it calls. */ 
/* bufr_size = size of block compressed by */ 
/* LZW algorithm. */ 

decompress((unsigned *)(work_bufr+4), data_bufr, bufr_size); 
/* Find the run-Lengths corresponding to */ 
/* the codes in the input work_bufr+4. Fill*/ 
/* data_bufr with the runs, temp = size of */ 
/* the symbols supplied by decompressO = */ 
/* size of the result of count_symb(). */ 

dcmprs_lzw( data_bufr, work_bufr+4, temp ) ; 
findtimeC dcmprstime ) 
movedataC FP_SEGCdatafarptr), FP_OFFCdatafarptr), 

FP_SEGCworkfarptr), FP_OFFCworkfarptr), blksize); 
setscmodeCHI_RES); /* Display data on the screen to*/ 
put( xl, yl, work_bufr ); /* make sure the program is */ 

/* working. */ 
forC i=0; i<=55000; i++ ) ; 
setscmodeCTEXT_MODE); 
passparmtrsC datafile, xl, yl, x2, y2, temp) ; 
printC cmprstime, dcmprstime, 

cmprsfactor = cmprsfactor/bufr_size ) ; 

END mainO 
END main.c 

*/ 
*/ 
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16.2. File Contsym.c 

/* 
5V=!  ===  ===  ===  =  ===  ====:==========  ===================  =  

A 

update_cmprsdblk(unsigned no of pels,int color) 
* screenbufr = pointer to uncompressed block. 
* output = pointer to output containing the symbols (byte each) 
* for the encountered run-lengths of black and white 
* pels. 
* currentword = pointer to current position, in words, in the 
* uncompressed buffer. 

nmbrwords = word length of of the uncompressed buffer. We assume 
* xsize is evenly divisible by 16, i.e. 
* xsize (in pels) is an exact number of words. 

color = color of the pel. 
* pelcolor = color of current pel (temporary storage). 

word = cuurent word in uncompressed line. 
* pelpos = { 16 for leftmost pel} {1 for rightmost pel }, 
* blocksize = size of uncounted (uncompressed) block, in bytes. 
Vc=================================================================== 

*/ 

//include <stdio.h> 
//include <dos.h> 
//define LINT_ARGS 
//define BLACKBIT 0 
//define WHITEBIT 1 
//define ENDBITS 2 
//define update_cmprsdblk(pelcontr, color) \ 

{ if(color==WHITEBIT) \ 
output[syinbolcount++]= 127+pelcontr; \ 

else output[symbolcount++]=pelcontr-l; \ 
} • 

void swapbyts( unsigned ''s unsigned *, unsigned ) ; 

/ic ===================== count_symbols() ========================= */ 

unsigned count_symbols (output, screenbufr, bloksize) 
char -output, far *screenbufr; 
unsigned bloksize ; 

{ 
unsigned far ''«currentword; 
int wordcount; 
int color,lastcolor; 
unsigned pelcontr=0, symbolcount; 
register unsigned word,pelpos; 
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symbolcount = 0 ; 
I*  Assume blocksize= 16 * constant, 

wordcount=bloksize/2 ; 
currentword=(unsigned far ''Oscreenbufr; 
word=*currentword; 

/'•' If the first pel is 1 then the 
/:'( first color is white, 
/* else 
/* first pel is zero so the 
/•« first color is black. 
/* Negate the word so our way 
I* of counting will work, 
/''f We count from left to right. 

if ((word)&0x8000) 
{ color=WHITEBIT; } 

else 
{ 
color=BLACKBIT; 
word=~word; 
} 

pelpos=16; 
while(color<ENDBITS) 

{ 
/* Do while not end of block. 
I* Do while color is the same and 
/vc current word hasn't changed. 

whileC (word&0x8000)&&(pelpos>0) ) 
{ 
pelcontr++; 

/* If max run-length =128 of color 
/* then send its symbol to the 
/vc output. 

if( pelcontr == 128 ) 
{ 
update_cmprsdblk(pelcontr.color) 

Start counting again. 
pelcontr = 0; 
} 

pelpos — ; /* Decrease the count of unscanned 
/''f pels in word. Move the next pel 
/* to pel 16. word=word«l ; 

} 
if(pelpos>0) 

{ 

*/ 

••••I 

/'•' If still inside the current word*/ 

/* Make sure the last run-length '''/ 
/* was not 128. Then output the 
/* symbol of the current '•/ 
/* run-length. '•/ 

if( pelcontr > 0 ) 
update_craprsdblk(pelcontr.color) 

word=~worcl; /* Negate the word so we can check 
/* for the new color. 
/* Flip the color to the new color. 

color=(color) ? 0 : 1; 
/* Start counting the new pels. 

pelcontr=0; 
} 

else /'•« Else, all pels in current word 
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pelpos=16; 
currentword++; 

{ /* were processed. 
/'•' Start from the left most pel of 

the next word. 
If color is black we need to 
negate word so our way of 
counting can work. 

word= (color) ? '''currentword : ~(*currentword); 
if(—wordcount==0) 

/* If end of block then output 
{ /* the symbol of the run-length. 

/'•« Make sure the last run-length 
/'•' was not 128. Then output the 
/* symbol of the current 
/'•• run-length. 

if( pelcontr > 0 ) 
{ 
update_craprsdblk(pelcontr.color) 
/'•' Signal end of block to the 
/* outer loop. 
color=ENDBITS; 
} 

} 
} 

} 

'V/ 
<• - !  

'V/ 

'V 
'V 

•••'I 

/'•' signal the user if there was 
I* an error. 

if(color>ENDBITS) 
printf("****** error in color, color=%d /n",color); 

/* Return the number of symbols 
/'•' sent to the output = size of 
/'•' "newblock". 

returnC symbolcount ) ; 
} 
jit END count_symbols( ) 
/,v END contsym.c */ 

16.3. File Dcmpsym.c 

Find the run-length for each symbol and send it to the output. '• 
size = size (in bytes ) of input = number of symbols in input.* 

* input = pointer to buffer containing symbols of run-lengths. -
* output = pointer to buffer having data ready to be put on the * 
" screen. * 
* dpelsremain = number of unfilled pels in current output byte. 
* currentbyteptr= pointer to current output byte. * 

include <memory.h> 
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//include <dos.h> 

static int dpelsremain; 
static unsigned char far *currentbyteptr; 
static unsigned char rightpelsbyte[]={0,0x01,0x03,0x07,OxOf, 

Oxlf,0x3f,0x7f,Oxff}; 
static unsigned char leftpelsbyteE]={0,0x80,OxcO,OxeO,OxfO, 

0xf8,0xfc,0xfe,0xff}; 

mmsetC unsigned, unsigned, char, unsigned ); 

/îV ========================= dcmprs_lzw ========================== */ 

dcmprs_lzw( output, input, size ) 
unsigned char far ''-output, '''input ; 
unsigned size; 
{ 

register unsigned input_index=0; 
register unsigned code; 

!" Set all output to black. ''•/ 
mmsetC FP_0FF(output), FP_SEG(output), '\0', 16000 ); 
currentbyteptr=output; 
dpelsremain=8; h' Fill bytes from left to right. 
whileC input_index < size ) /''« Do while there is more code. 

{ /''' Get the next code. 
code = input[input_index++] ; 

/•f If it is a code for a white run-*/ 
/'•' length, output the run-length. ''•/ 

if( code >= 128 ) 
update_dcmprs_white( code-127 ) ; 

/''' Else, it is for a black run. ''•/ 
/''• Output that run. */ 

else 
update_dcmprs_blak( code+1 ) ; 

} 
} 
/,•: END lzw_dcmprs ''V 

/vc ===================== update_dcmpr s_white ======================1';/ 

I* It takes runs of white pels and output them to output, i.e. ''«/ 
/* fills the output with them. 
/''( 

update_dcmprs_white(clrpels) 
/''« Number of white pels to store *! 
/* in the output. ''</ 

register int clrpels; 
{ 
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register int difference; 
/* Number of bytes we can fill */ 

unsigned nmbrbytes; /* with white completely. */ 

difference=clrpels-dpelsremain; 
/* If we can fill one or more byte */ 
/* completely then, fill the pels */ 
/* remaining in the current byte. */ 

if(clrpels >= (dpelsremain+8) ) 
{ 
*currentbyteptr |= rightpelsbyte[dpelsremain]; 

/" Find the number of bytes. We can*/ 
nmbrbytes=(difference)»3; /•• fill them completely. */ 
++currentbyteptr; 
mmsetC FP_OFF(currentbyteptr),FP_SEG(currentbyteptr), 

Oxff.nmbrbytes); 
currentbyteptr +=nmbrbytes. /'• Adjust the pointer. '•'/ 

/* If difference MOD 7 is not */ 
I* equal to zero then there are 
/* still more pels that we did not ''•/ 
/* outputed yet. So output them. */ 

if((difference=difference &0x7) !=0) 
*currentbyteptr=leftpelsbyte[(difference)]; 

/* In the new byte dpelsremain '•</ 
I* = 8- pels outputed above. '•/ 

dpelsremain=8-(difference); 
} 

/* Else, we can't fill any byte -/ 
/* completely. */ 

else 
{ /* If dpelsremain > clrpels, it */ 

/* means we can put the run inside */ 
if(difference<0) /* currentbyte. */ 

{ 
*(currentbyteptr) |= ( rightpelsbyte[clrpels] << 

(dpelsremain-clrpels) ); 
/* Adjust dpelsremain accordingly. */ 

dpelsremain -= clrpels; 
} 

/* Else, clrpels have to be */ 
/* outputted to more than one byte.*/ 
/* Fill the rest of the current */ 
/* byte. */ 

else 
{ 
'•'currentbyteptr |=rightpelsbyte[dpelsremain] ; 

/* Move to the next output byte and*/ 
/* and send to it the remaining of */ 
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/* clrpels. */ 
i'c(++currentbyteptr) =leftpelsbyte[difference] ; 

/* Account for last step. */ 
dpelsremain=8- (difference); 
} 

} 
} 
/,v END update_dcmprs_white */ 

/" It take runs of black pels and output them to the output,i.e. '•/ 
/" fill output with them. */ 
/'• It works exactly like update_dcmprs_white() except no filling */ 
/" or outputing is done because output was initialized to zero at '•/ 
/" start of dcmprs_lzw() . 
/it = = = = = = ====== = === ======= = = = === = === ==== = = = = = = === = = = = = = = = = = = = = = = = = = ,•;/ 

update_dcmprs_blak(clrpels) 
register int clrpels; 
{ 

register int difference; 
unsigned nmbrbytes; 

/'• Refer to comments above. */ 
difference=clrpels-dpelsremain; 
ifCclrpels >= (dpelsremain+8) ) 

{ 
nmbrbytes=(dif f erence)»3 ; 
currentbyteptr +=nmbrbytes+l; 
dpelsremain=8-(difference &0x7 ); 
} 

else 
{ 
if(difference<0) /* Dpelsremain > clrpels. */ 

dpelsremain -=clrpels; 
else 

{ 
++currentbyteptr; 
dpelsremain=8- (difference); 
} 

} 
} 
/* END update_dcmprs_black( ) */ 
/it END Dcmpsym.c */ 
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16.4. File Mmset.asm 

; A program to set the specified portion of memory to the given 
; initial value. This is a replacement for the "memset" function 
; provide by the run-time library of the MS C compiler. The main 
; difference is that this function can be used to initialize a 
; portion of memory out of the current segment i.e. pointed to by 
; a far pointer. 
; Inputs : 
; dest : far pointer to destination. 
; chr : character to set memory to. 
; bytecnt : number of bytes • 
NAME MMSET 
TITLE MEMORY SET OF FAR DATA ITEMS 
PUBLIC _mmset 

DEST_OFF EQU [BP+4] 
DEST_SEG EQU [BP+6] 
CHR EQU [ BP+8 ] 
BYTECONT EQU [BP+10] 

DGROUP GROUP CONST, _BSS, _DATA 
ASSUME CS: _TEXT, DS: DGROUP, SS: DGROUP, ES: DGROUP 

_TEXT SEGMENT BYTE PUBLIC 'CODE' 
ASSUME CS:_TEXT 

_mmset PROC NEAR 
PUSH BP 
MOV BP,SP 
PUSH DI 
PUSH ES 
MOV AX,DEST_SEG 
MOV ES,AX 
MOV DI,DEST_OFF 
MOV BX,DI 
MOV CX,BYTECONT 
JCXZ DONE 
MOV AL,CHR 
MOV AH,AL 
MOV DX,DI 
SHR DX,1 
JNB EVEN_OFFSET 
STOSB 
DEC CX 

EVEN OFFS 
MOV 
SHR 
REP 
SHR 
JNB 

; SAVE THE REGISTERS 

DX.CX 
CX,1 
STOSW 
DX,1 
DONE 
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DONE; 

_mmset 
_TEXT 
END 
/,v 

MOV 
MOV 

POP 
POP 
MOV 
POP 
RET 
ENDP 
ENDS 

BYTE PTR ES:[DI],AL 
AX.BX 

ES 
DI 
SP.BP 
BP 

RETURN THE POINTER TO THE 
DESTINATION. 
RETRIEVE THE REGISTERS. 

END Mmset.asm 

16.5. File Swapfar.asm 

NAME 
TITLE 

PUBLIC 
DGROUP GROUP 

SWAP 
SWAP BYTES IN EACH WORD IN SOURCE AND 
PUT THE RESULT IN DESTINATION 
_swapbyts 
CONST, _BSS, _DATA 

ASSUME CS: _TEXT, DS: DGROUP, SS: DGROUP, ES: DGROUP 

TO_OFFSET 
TO_SEGMENT 
FROMjOFFSET 
FROM_SEGMENT 
WORDCONT 

EQU [BP+4] 
EQU [BP+6] 
EQU [BP+8] 
EQU [BP+10] 
EQU [BP+12] 

_TEXT 
_swapbyts 

LOOPl; 

SEGMENT 
PROC 
PUSH 
MOV 
PUSH 
PUSH 
PUSH 
PUSH 
MOV 
MOV 
MOV 
MOV 
MOV 
MOV 
MOV 
LODSW 
XCHG 
STOSW 
LOOP 
POP 
POP 

NEAR 
BP 
BP,SP 
DI 
SI 
ES 
DS 
AX,FROM_SEGMENT 
DS,AX 
AX,TO_SEGMENT 
ES,AX 
CX,WORDCONT 
SI,FROMjOFFSET 
DI,TO_OFFSET 

AH,AL 

LOOPl 
DS 
ES 
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POP SI 
POP DI 
MOV SP,BP 
POP BP 
RET 
ENDP _swapbyts 

_TEXT ENDS 
END 
I* END Swapfar.asm 
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APPENDIX F. PROGRAM LIST OF METHOD LZWBl 
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The files in this listing make use of the files in the following 
sections : 

- Appendix B: 13.9, 13.11, and 13.12. 
- Appendix D: 15.2 - 15.9. 
- Appendix E: 16.1, 16.4, and 16.5. 

17.1. File Dcmpsym.c 

/it 

* Refer to the comments in file dcmpsym.c 
* in appendix E section 16.3. 
*/ 

//include 
//include 
//define 

static 
static 
static 

<memory.h> 
<dos.h> 
uchar unsigned char 

int dpelsremain; 
uchar far *currentbyteptr; 
uchar two_strings[]={ 

0x5, 0x9, Oxd, 0x11, 
0x6, Oxa, Ode, 0x12, 
0x7, Oxb, Oxf, 0x13}; 

static uchar three_strings []= { 

0x29, 0x2a, 0x2b, 0x2c, 
0x49, 0x4a, 0x4b, 0x4c, 
0x31, 0x51, 0x32, 0x52, 
0x39, 0x59, 0x3a, 0x5a 

uchar *ptr_two_strings= two_strings; 
uchar ''fptr_three_str ings= three_strings ; 

mmsetC unsigned, unsigned, char, unsigned ); 

dcmprs_lzw( output, input, size ) 
unsigned 
unsigned 

{ 
register 
register 
unsigned 

char far '''output, '"'input ; 
size; 

uns igned 
unsigned 
char temp; 

input_index=0; 
code; 

mmset( FP_OFF(output), FP_SEG(output),'\0', 16000 ); 
currentbyteptr=output; 
dpelsremain=8; 
whileC input_index < size ) 

code = input[input_index++] ; 
if(code<200) 

} ;  

'•7 
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{ 
if( code >= 100 ) 

update_dcmprs_white( code-99 ) ; 
else 

update_dcmprs_blak( code+1 ) ; 
} 

Ise 
{ 
ifCcode < 224) 

{ 
temp= two_strings[(code-200)%12] ; 
if (code <212) 

{ 
update_dcmprs_blak(temp>>2); 
update_dcmprs_white(temp&0x3); 
} 

else 
{ 
update_dcmprs_Mhite(temp»2) ; 
update_dcmprs_blak(temp&0x3); 
} 

} 
else 
{ 
temp= three_strings[(code-224)%16]; 
if(code<240) 
{ /A bwb */ 
update_dcmprs_blak(temp»5) ; 
update_dcmprs_white((temp»3)&0x3) ; 
update_dcmprs_blak(temp&0x7); 
} 

else 
{ 
if(code<256) 

{ /* wbw */ 
update_dcmprs_white(temp»5) ; 
update_dcmprs_blak((temp>>3)&0x3); 
update_dcmprs_white(temp&0x7); 
} 

else 
{ printfC eror in dcmpsym code > 256");} 

} 
} 

} 

END lzw_dcmprs() */ 

unsigned char rightpelsbyteL]={0,0x01,0x03,0x07,OxOf, 
0x1f,Ox3f,0x7 f,Oxf f}; 
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static unsigned char leftpelsbyteE]={0,0x80,0xc0,0xe0,0xf0, 
0xf8,0xfc,0xfe,0xff}; 

/î'c ==================== update_dcmprs_white( ) =====================!v/ 

update_dcmprs_white(clrpels) 
register int clrpels; 
{ 

register int difference; 
unsigned nmbrbytes; 

difference=clrpels-dpelsremain; 
ifCclrpels >= (dpelsreniain+8) ) 

{ 
*currentbyteptr |= rightpelsbyte[dpelsretnain]; 
nmbrbytes=(dif f erence)»3 ; 
++currentbyteptr; 
mmsetC FP_OFF(currentbyteptr),FP_SEG(currentbyteptr), 

Oxff,nmbrbytes); 
currentbyteptr +=nmbrbytes. 
if((difference=difference &0x7) !=0) 

'•'currentbyteptr=leftpelsbyte[ (difference) ] ; 
dpelsremain=8-(difference); 
} 

else 
{ 
if(difference<0) 

{ 
'•'(currentbyteptr) |= ( rightpelsbyte[clrpels ] << 

(dpelsremain-clrpels) ); 
dpelsreraain -= clrpels; 
} 

else 
{ 
''«currentbyteptr |=rightpelsbyte[dpelsremain] ; 
'V(++currentbyteptr) =leftpelsbyte[difference]; 
dpelsremain=8- (difference); 
} 

} 
} 
/'•' END update_dcmprs_white( ) '•/ 

/'• It takes runs of black pels and output them to the output, i.e. '* 
/* it fills the output with them. •>'' 
/'•' It works exactly like update_dcmprs_white() except that no * 
/* filling or outputting is done because the output was initialized* 
/•< to zero at the start of dcmprs_lzw( ). '< 
/,•< ================================================================,V 
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update_dcmprs_blak(clrpels) 
register int clrpels; 
{ 

register int difference; 
unsigned nmbrbytes; 

difference=clrpels-dpelsremain; 
ifCclrpels >= (dpelsremain+8) ) 

{ 
nmbrbytes=(difference)>>3 ; 
currentbyteptr +=nmbrbytes+l; 
dpelsremain=8-(difference &0x7 ); 
} 

else 
{ 
if (dif f erence<0) /'• dpelsremain > clrpels. */ 

dpelsremain -=clrpels; 
else 

++currentbyteptr ; 
dpelsremain=8- (difference); 
} 

} 
} 
/a END update_dcmprs_black( ) '•/ 
/'• END Dcmpsym.c */ 

17.2. File Contsym.c 

/* 
* Refer to the comments in file contsym.c 
* in appendix E section 16.2. 

//include <stdio.h> 
//include <dos.h> 
//define LINT_ARGS 
//define BLACKPEL 0 
//define WHITEPEL 1 
//define ENDPELS 2 
//define uchar unsigned char 

void init_cont_ _out(char *); 
void update_cmprsdblk(unsigned, int); 
unsigned int find_code_2(uchar) 
unsigned int find_code_3(uchar) : 
static unsigned symbolcount = 0 ; 
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unsigned count_syinbols (output, screenbufr, bloks 
char '"'output, far '-screenbufr; 
unsigned bloksize ; 

{ 
unsigned far *currentword; 
int wordcount; 
int color,iastcolor; 
unsigned pelcontr=0; 
register unsigned word,pelpos; 

init_cont_out(output); 
wordcount=bloksize/2 ; 
currentword=(unsigned far ''Oscreenbufr; 
word=*currentword; 
if ((word)&0x8000) 

{ color=WHITEPEL; } 
else 

{ 
color=BLACKPEL; 
word=~word; 
} 

pelpos=16; 
while(color<ENDPELS) 

{ 
while( (word&0x8000)&&(pelpos>0) ) 

{ 
pelcontr++; 
if( pelcontr == 100 ) 

{ 
update_cmprsdblk(pelcontr,color) 
pelcontr = 0; 
} 

pelpos—; 
word=word<<l; 
} 

if(pelpos>0) 
{ 
if( pelcontr > 0 ) 

update_cmprsdblk(pelcontr,color) 
word=~word; 
color=(color) ? 0 : 1; 
pelcontr=0; 
} 

else 
{ 
pelpos=16; 
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currentword++; 
word= (color) ? -fcurrentword : ~(*currentword); 
if(—wordcount==0) 

{ 
if( pelcontr > 0 ) 

{ 
update_cmprsdblk(pelcontr,color) 
color=ENDPELS; 
} 

} 

} 
if(color>ENDPELS) 

printf("****** error in color, color=%d /n",color); 
returnC symbolcount ) ; 
} 
/'• END count_symbols( ) */ 

//define two_strings_bw ((unsigned ) (200-1)) 
//define two_strings_wb ((unsigned ) (212-1)) 
//define three_strings_bwb ((unsigned ) (224-1)) 
//define three_strings_wbw ((unsigned ) (240-1)) 
//define start_two_strings(color ) \ 

((color== 1) ? two_strings_bw : two_strings_wb) 
//define start_three_strings(color ) \ 

(color==0 ? three_strings_bwb : three_strings_wbw) 

static char *cont_output; 
static int string_num=l; 
static unsigned sl,s2,s3; 
static uchar temp; 
static unsigned two_strings[]={ 

0x5, 0x9, Oxd, 0x11, 
0x6, Oxa, Oxe, 0x12, 
0x7, Oxb, Oxf, 0x13}; 

static unsigned three_strings []= { 
0x29, Ox2a, 0x2b, 0x2c, 
0x49, 0x4a, Ox4b, 0x4c, 
0x31, 0x51, 0x32, 0x52, 
0x39, 0x59, 0x3a, 0x5a }; 

/A===================== update_cmprsdblk()=========================vc/ 

void update_cmprsdblk(pelcontr, color) 
unsigned pelcontr; 
int color; 

{ 
unsigned code; 

switch(string_num) 
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{ 
case 1 : { 

if(color) 
cont_output[symbolcount++]= 99 + pelcontr; 

else 
cont_output[symbolcount++]= pelcontr -1; 

if(pelcontr<=4) 
{ 
string_num ++; 
sl=pelcontr; 

break; 
} 

case 2 : { 
if (pelcontr<=3) 

{ 
temp=pelcontr | (sl<<2); 
cont_output[symbolcount -1]= 
start_two_strings(color)+find_code_2(temp); 

if(sl<=2) 
{ 
s2=pelcontr; 
string_num++; 
} 

else 
string_num=l; 

} 
else 

{ 
if(color) 

cont_output[symbolcount++]= 99 + pelcontr; 
else 

cont_output[symbolcount++]= pelcontr -1; 
if(pelcontr<=4) 

{ 
sl=pelcontr; 
} 

else 
string_num=l; 

} 
break; 
} 

case 3 : { 
string_num=l; 
if( (sl+s2+pelcontr) <= 7 ) 

{ 
temp= pelcontr | (temp «3); 
if (code=find_code_3(temp)) 

cont_output[symbolcount -l]= 
code + start_three_strings(color); 
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else 
{ 
if(color) 

cont_output[symbolcount++]= 
99 + pelcontr; 

else 
cont_output[syinbolcount++] = 

pelcontr -1; 
if(pelcontr<=A) 

{ 
string_nuin =2; 
sl=pelcontr; 
} 

} 

else 
{ 
if(color) 

cont_output[syiiibolcount++]= 99 + pelcontr; 
else 

cont_output[syinbolcount++]= pelcontr -1; 
if(pelcontr<=4) 

{ 
string_num =2; 
sl=pelcontr; 
} 

} 
break; 
} 

} 
} 
/* END update_cmprsdblk( ) */ 

/)'t====================== init_cont_out( ) ==========================>•:/ 

void init_cont_out(output) 
char '-output; 
{ 
cont_output=output; 
} 
/* END init_cont_out( ) 'V 
/,v END Contsym.c */ 

17.3. File Scan2.asm 

NAME SCAN2 
TITLE SCANNING OF THE ALTERNATE TABLE TO FIND A MATCH 
PUBLIC _find_code_2 

CHARCODE EQU [BP+4] ; PASSED PARAMETER. 
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DGROUP 

_DATA 
EXTRN 
_DATA 
TEXT 

GROUP CONST, _BSS, _DATA 
ASSUME CS: _TEXT, DS: DGROUP, SS : DGROUP, ES: DGROUP 
SEGMENT 
_ptr_two_strings:WORD 
ENDS 
SEGMENT BYTE PUBLIC 'CODE' 

.find_code_2 
PUSH 
MOV 
PUSH 
PUSH 
MOV 
MOV 
MOV 

MOV 
MOV 

JNE 
MOV 

SUB 
JMP 

NOMATCH: 
XOR 

SCAN_DONE: 
POP 
POP 
MOV 
POP 
RET 

_find_code_2 
_TEXT 
END 
/ *  

PROC NEAR 
BP 
BP,SP 
DI 
ES 
AX,DS 
ES,AX 
AX.CHARCODE 

DI,_ptr_two_s 
CX,12 

REPNE SCASB 

NOMATCH 
AX,DI 

AX,_ptr_two_s 
SCAN_DONE 

AX, AX 

ES 
DI 
SP.BP 
BP 

ENDP 
ENDS 

; INITIALIZE THE REGISTERS. 

; "CHARCODE" IS DEFINED IN 
; FILE DCMPSYM.C. DI = POINTER TO 
; THE TABLE HOLDING THE ELEMENTS 
; OF TYPE CHARACTER TO BE EXAMINED 
; IN THE SEARCH. 

brings 
; CX = SIZE OF TABLE. 
; SCAN THE CHAR_TABLE STARTING FROM 
; DI UP TO CX ELEMENTS. STOP WHEN 
; THE FLAG BIT ZF IS SET TO 1 
; IF ZF= 0 WE FINISHED THE SCAN 
; BEFORE ANY MATCH. SO GO TO NOMATCH. 
; ZF=1 SO WE HAD A MATCH. STORE 
; LENGTH OF SCANNED CHARACTERS IN AX. 

trings 
; SCAN IS DONE. 

; NO MATCH SO RETURN VALUE=ZERO. 

END Scan2.asm -•>'</ 

17.4. File ScanS.asm 

; REFER TO COMMENTS IN FILE SCAN2.C OF THIS APPENDIX. 
NAME SCAN3 
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TITLE 
PUBLIC 

CHARCODE 

DGROUP 

_DATA 
EXTRN 
_DATA 

SCANNING OF THE THREE STRING TABLES TO FIND A MATCH. 
_find code 3 

EQU [BP+4] ; PASSED PARAMETER. 

GROUP CONST, _BSS, _DATA 
ASSUME CS: _TEXT, DS: DGROUP, SS: DGROUP, ES: DGROUP 
SEGMENT 
_ptr_three_strings:WORD 
ENDS 

SEGMENT BYTE PUBLIC 'CODE' 
PROC NEAR 
BP 
BP,SP 
DI 
ES 
AX,DS 
ES,AX 
AX,CHARCODE 

DI,_ptr_three_str ings 
CX,16 
SCASB 
NOMATCH 
AX,DI 
AX,_ptr_three_strings 
SCAN_DONE 
AX,AX 

ES 
DI 
SP,BP 
BP 

ENDP 
ENDS 

_TEXT 
_find_code_3 

PUSH 
MOV 
PUSH 
PUSH 
MOV 
MOV 
MOV 

MOV 
MOV 
REPNE 
JNE 
MOV 
SUB 
JMP 

NOMATCH: XOR 
SCAN_DONE: 

POP 
POP 
MOV 
POP 
RET 

_find_code_3 
_TEXT 
END 
/* END Scan3.asm * /  
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APPENDIX G. PROGRAM LIST OF METHOD LZWB2 
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The files in this listing make use of the files in the following 
sections : 

- Appendix B: 13.9, 13.11, and 13.12. 
- Appendix D: 15.2 - 15.9. 
- Appendix E; 16.1 - 16.5. 

18.1. File Dcmprs.c 

" Refer to the 
in appendix A/ 

//include 
//include 
//include 
//define 
//define 
//define 
//define 
//define 
//define 

comments in file dcmprs.c 
D section 15.3. 

<memory.h> 
<stdio.h> 
<malloc.h> 
uchar 
MAX_SIZE 
ST_MAX 

SCRNzSIZE 
ALPHABET SIZE 

//defi ine 

extern unsigned 
extern uchar 
extern int 
static char 
static unsigned 

unsigned char 
4096 
1000 
16004 
256 

update_string_table() \ 
{if( next_code < MAX_SIZE )\ 

{char_table[next_code]=code.k ;\ 
int_table[next_code] = oldcode;\ 
next_code++ ;}} 

look_up() \ 
{code.w = int_table[CODE] ;\ 
code.k = char_table[CODE];} 

int_table[l ; 
char_table[] ; 
next_code; 
"Stack ; 

stack_index=0; 

char popO; 
void readjust_input(uchar far *, uchar *, unsigned, unsigned '•); 

/'•'========================== decompressC) ============== 

decompress(decmprs_io, decmprs_work ,inputsize) 
char *decmprs_io,far *decmprs_work; 
unsigned inputsize; 

{ 
unsigned 
unsigned 
unsigned 
char 
register 

input_index=0; 
oldcode,incode; 
newsize ; 
temp; 
unsigned output_index=0; 
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register 
char 
struct { 

unsigned 
finchar ; 

CODE ; 

char 
unsigned 
} code; 

w; 

char 
unsigned far 
char 

*temp_ptr; 
'''input; 
*databufr; 

stack = mallocC ST_MAX ); 
readjust_input(decmprs_work,decmprs_io,inputsize,&newsize); 
inputsize=(newsize/2); 
input= (unsigned far *) decmprs_work; 
databufr=decmprs_io; 
CODE= oldcode= input[input_index++]; 
look_up() /" — MACRO — find "code" components.*/ 
ifCCODE >= ALPHABET_SIZE) /••< First code = "w,k". */ 

{ 
if(code.w < ALPHABET_SIZE) 

databufr[output_index++]=code.w; 
else 

temp=code.k; 
CODE=code.w; 
look_up() 
databufr[output_index++]=code.w; 
databufr[output_index++]=code.k; 
code.k=temp; 
} 

} 
databufr[output_index]=finchar=code.k; 
while(input_index< inputsize ) 
{ 

CODE=incode=input[input_index++]; 
if(CODE >= next_code) 
{ 

} 
look_up() 
while(code.w!=Oxffff) 
{ 

push(code.k); 
CODE=code.w; 
look_up() 

} 
databufr[++output_index]=code.k; 
finchar=code.k; 
while(stack_index) 

push(finchar); 
CODE=oldcode; 
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{ 
databufr[++output_index]=pop() 
} 

update_string_table() 
oldcode=incode; 

} 
} 
/* END decompressC) 

/'•'============================== push( ) === 

push( item ) 
char item; 

{ 
if( stack_index >= ST_MAX ) 
{ 

printfC " stack overflow in push \n" ) 
return ; 

} 
stack[stack_index++] = item ; 

} 
/* END pushO 

/,v============================== popO ============== 

char popO 
{ 

if( —stack_index < 0 ) 
{ 

printfC" Stack underflow in pop \n" ) 
return ('\0'); 

} 
return stackCstack_index]; 

} 
/,v END popO 
/* END Dcmprs.c 

18.2. File Tables.c 

/* 
* Refer to the comments in file tables.c 
* in appendix 0 section 15.4. 
*/ 

//include <stdio.h> 
//include <memory.h> 
//include <malloc.h> 
//define MAX_SIZE 4096 
//define ALPHABET_SIZE 256 
//define uchar unsigned char 
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unsigned 
unsigned 
int 
unsigned 
unsigned 
unsigned 

char 

char 

/* Define global varriables. 
int_table[MAX_SIZE] ; 
char_table[MAX_SIZE] ; 
next_code ; 
''<ptr_int_table=int_table; 
*ptr_char_table=char_table; 
extracalls=0 ; 

*/ 

init_table() 
{ 

} 

register int index ; 
char *datafile= "etables.dat"; 
char c; 
FILE *in; 
unsigned temp,"ptr_temp=&temp; 

memsetC (char ''0 int_table,Oxff ,MAX_SIZE'-2) ; 
for( index=0; index < ALPHABET_SIZE; index++ ) 

char_table[index] = ( short ) index ; 

/'V Open file to read data from. '•/ 
if( (in=fopen(datafile,"r")) 1= NULL ) 
{ 

for( index=256; index<312; index++) 
{ 
fscanfC in, "%u%u" ,S(int_table[ index] ,ptr_temp) ; 
char_table[index]=temp; 
} 

if( ferror(in) ) 
{ /* If any error was encountered */ 

f *  while reading the data then '•/ 
/* inform us and exit. */ 

prihtfC" Error in reading tables \n"); 
exit(O); 
} 

fcloseC in); 
} 
else 

{ 
printfC ERROR 
exit(O); 
} 

next_code = index; 

/* File couldn't be opened for 
/* some reasons. 

Can't open input file"); 

END init_table() 
/* END Tables.c • i,/ 
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APPENDIX H. PROGRAM LIST OF METHOD LZWl 
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The files in this listing make use of the files in the following 
sections : 

- Appendix B: 13.9, 13.11, and 13.12. 
- Appendix D; 15.1 - 15.9. 

19.1. File Tables.c 

//include 
//include 
//include 
//define 
//define 
//define 

unsigned 
unsigned 
uchar 
unsigned 
unsigned 
uchar 
int 
unsigned 

<stdio.h> 
<memory.h> 
<malloc.h> 
MAX_SIZE 
ALPHABET_SIZE 
uchar 

4096 
256 
unsigned char 

/'• Definition of GLOBAL 
/" variables. 

wl_table[MAX_SIZE] 
w2_table[MAX_SIZE] 
w3_table[MAX_SIZE] 
"Ptr_wl_table=wl_table; 

'•ptr_w2_table=w2_table; 
"Ptr_w3_table=w3_table; 
next_code ; 
extracalls=0 ; 

h-' 
/* 
/,v 

/* /'> 
/* /'•c 
/,V 

in 

{ 

*/ 

========================== init_table() ========================= 

This function initializes every element in int_table to a com
bination that will never occur. Since the code is only 12 bits 
long then the 16 bits used to hold these codes are to be <= 
Oxfff. For this reason in this program the Oxffff code is used 
to solve the above problem. It should be noted that any combin
ation > Oxfff should work correctly as well. 
Then the first 256 symbols in w2_table are initialized to 0-255. 

it_table() 

register int index ; 
/* Set every byte in the 
/" int_table to Oxffff (i.e. 
/''• every code word = Oxffff) so 
/* that no code will match with 
/* it, because the actual codes 
/••' are only 12 bits. 

memsetC (char '0 wl_table,Oxff ,MAX_SIZE'''2) ; 
/* Set 1st 256 of char_table to 
/* be the extended ASCII codes. 

for( index=0; index < ALPHABET_SIZE; index++ ) 
w2_table[index] = index ; 
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next_code = ALPHABET_SIZE; 
} 
/,v END init_table() 
/* END Tables.: -

19.2. File Cmprs.c 

//include 
//include 
//define 
//define 
//define 
//define 

<memory.h> 
<malloc.h> 
uchar unsigned 
MAX_SIZE 4096 
SCRN_SIZE 16004 
update_tables(a,b,c) 

//def ine iook_table2(w2,codec) 

char 

{ wl_table[next_code] = a;\ 
w2_table[next_code] = b;\ 
w3_table[next_code] = c;\ 
next_code++ ;} 

{ w2=w2_table[codec]; } 

extern 
extern 
extern 
extern 
extern 
extern 
extern 

void 
void 

unsigned 
unsigned 
uchar 
int 
unsigned 
unsigned 
int 

wl_table[] 
w2_table[] 
w3_table[] 
next_code 
extracalls 
stackf]; 

st_index ; 

/" wl_table[], w2_table[], 
/* w3_table[] and next_code are 
/" defined in tables.c. 

/* Stack size. 

adjust_output( uchar *, uchar far *, unsigned, unsigned 
decompose(unsigned ); 

) 

/'•'======================== compresse) =============== 

compresse compress_io,compress_work, ptr_bufr_size ) 
uchar *compress_io, far *compress_work ; 
unsigned *ptr_bufr_size ; 

{ 
uchar 
unsigned 
char 
unsigned 
unsigned 
register 
unsigned 
struct 

uchar 
unsigned 
unsigned 

"input; 
far *output; 
"ptr_new_0utput; 
bufr_size; 
code ; 
unsigned 
out_index=0 
{ 
unsigned 
unsigned 
} string ; 
w3, first_ch; 
Li, Lj ; 
position, indexl 

data_index=0 

wl; 
w2; 
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register unsigned j ; 

input=compress_io; 
output=(unsigned far *)compress_work; 

/'• Li = first input element. */ 
Li= input[data_index++] ; 

/" Lj = second input element. »/ 
Lj= input[data_index++] ; 
first_ch = Lj ; 
output[out_index++] = Li; 
string.wl = Lj; 
w3 = Lj ; 

/" Find bufr_size. * 
buf r_s ize='>ptr_buf r_s ize ; 

/" Loop while there is mo-re input. * 
whileC data_index < bufr_size ) 
{ /" Search for the largest block in •• 

/" wl_table. * 
whileC data_index < bufr_size ) 

{ /" Get 2nd element in the new block* 
string.w2=input[data_index++] ; 

/* See if wl.w2 is in tables. -
if( scan_w2( string.wl, string.w2, &r{ide) ) 

/'•< wl.w2 is in the tables, so let 
/'• new wl = wl.w2. 

string.wl=code; 
else /* wl.w2 was not in the tables. '•< 
{ /•' First element of 2nd block = w2.* 
first_ch=string.w2 ; 

/'• Go to the second while loop and * 
/'•' search for a table entry that '• 
/" has wl and its w2 starts with w3* 

break ; 
} 

/* We already searched for two '• 
/* elements or more, so start * 

position = 256 ; /'• searching after 256. '• 
whileC data_index < bufr_size ) 

{ 
if( scan_w3(string.wl, first_ch, &code, position) ) 
{ /* Start searching after code. * 
position=code+l; 
look_table2(string.w2, code ) 

/'•' st_index points to the last * 
/* element on the stack. * 

decomposeC string.w2 ) ; 
indexl = data_index ; 
if( (bufr_size - indexl) >= st_index ) 
{ /* data_index is already pointing */ 
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to the element after w3 in the */ 
I* input so there is no need to '•/ 
I* compare it. The "for" loop will '•/ 
/* start comparing from indexl */ 
/* that should be equal to stackEl]*/ 

for(j=l;(j <= st_index) & 
(input[indexl++]==stack[j]) ; ) 

{ 
j++; 
} 

if( j == (st_index+l) ) 
{ 
string.wl=code ; 

/'( data_index === w3+li 
data_index += st_index ; 
first_ch=input[data_index++] ; 
} 

else 
{ ; 
} 

} 
} 

else 
break ; 

Lj = string.wl; 
output[out_index++] = Lj; 

/ I f  t h e  t a b l e s  a r e  n o t  f u l l  y e t ,  * /  
if(next_code<MAX_SIZE) 

I* then string —> string table, '•/ 
/'•' i.e put w and k in the wl_table »/ 
/* and w2_table respectively at the*/ 
/* position indexed by next_code, */ 

update_tables( Li, Lj, w3 ) 
else 

extracalls++ ; 
Li = Lj ; 
string.wl = first_ch ; 
w3 = first_ch ; 
} 

/'•' Make sure the last symbol was */ 
/* sent to the output. */ 

if( data_index == bufr_size ) 
{ 
output[out_index] = input[bufr_size-l] ; 
out_index++; 
} 

/* Pack the output codes from a ••/ 
I* string of words format to a */ 
I* string of 12 bits codes '•/ 
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/'• format. The input to */ 
I* ad just_output( ) is compress_ '•/ 
I* work. It sends the output in */ 
/'•' the final form in compress_io*/ 

adjust_output(compress_io ,compress_work, 
2*out_index , ptr_bufr_size ) ; 

} 
/,'t : END compresse) :'V 
/* END Cmprs.c */ 

19.3. File Dcmprs.c 

^include 
//include 
//include 
//define 
//define 
//define 
//define 
//define 

<memory.h> 
<stdio.h> 
<malloc.h> 
uchar unsigned char 
MAX_SIZE 4096 
ST_MAX 1000 
SCRN_SIZE 16004 
update_wl2_table(wl,w2) \ 

{ wl_table[next_code] 
w2_table[next_code] 
next_code++ ;} 

wl ;\ 
w2;\ 

Wl_table, w2_table and next_code ->•! 

extern unsigned wl_table[] ; /'•' are defined globally in 
extern unsigned w2_table[] ; h' tables.c. 

Index of the next code in tables V 
extern int next_code; !* not used yet. 
extern unsigned stackE]; 

/* First unused element. Stack 
extern unsigned st_index; /* grows upward. ••••/ 

void readjust. .inputCchar far char unsigned, unsigned '• ) ; 

/'> Input is in the form of 12 bits codes stored serialy. We have 
to readjust them to integer format so we can store them and use 

/'• them in the wl_table. 
/* Inputsize is size of input in bytes. 
/* decmprs_io= as input to decmprs it points to compressed data. 
/* decmprs_io= as ouput of decmprs it points to decompressed data. 
/* decmprs_work= pointer to a temporary area. 
/,'(================================================================= 

decompress(decmprs_io, decmprs_work ,inputsize) 
char *decmprs_io, far *decmprs_work; 
unsigned inputsize; 

{ 
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unsigned input_index=0; 
/* Size of the compressed data -/ 
/'• stored in a word form for each ''«/ 
/Vf code. It is equal to the size */ 

unsigned newsize ; I* of readjust_input() output. */ 
register unsigned output_index=0; 
register unsigned j ; 
unsigned wl, w2; 
unsigned far '''input; 
char 'Matabufr; 

/'• Adjust the input from 12 bits */ 
I* serial codes into an array of »/ 
I* integers and then put the size -V 
/* of the array in newsize. */ 

readjust_input(decmprs_work,decmprs_io,inputsize.&newsize); 
inputsize=(newsize/2) ; /'• Find size of input code in words''-/ 
input= (unsigned far *) decmprs_work; 
databufr=decmprs_io; 
wl = inputfinput_index++] ; 
databufr[output_index++] = wl ; 
whileC input_index < inputsize ) 

{ 
w2=input[input_index++] ; 
decomposeC w2 ) ; 
j=0 ; 

do 
{ 
databufr[output_index++] = stack[j+-^] ; 
} 

whileC J <= st_index ) ; 
if( next_code < MAX_SIZE ) 

update_wl2_table(wl,w2); 
wl = w2 ; 
} 

printf("\n") ; 
} 
/,v END decompressO ''V 
/,'c END Dcmprs.c */ 

19.4. File Dcompose.c 

//define TRUE 1 
//define FALSE 0 
//define MAX_SIZE 4096 
//define look_up_wl2(xwl ,xw2,codec) \ 

{ xwl=wl_table[codec] ; \ 
xw2=w2_table[codec] ; } 
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extern 
extern 
unsigned 
int 

unsigned wl_table[] ; 
unsigned w2_table[] ; 
stack[MAX_SIZE]; 
st_index ; /* Stack size. 

void decomposeC code ) 
unsigned code ; 

decomposeC) 

int 
register 
unsigned 

strngstk = 0 ; 
unsigned wl, w2; 
loopl,loop2 , strng[500]; 

ifCcode<256) 
{ 
stack[st_index=0]=code; 

return; 
} 

st_index = 0 ; 
do 

{ 
loopl=TRUE; 
whileC loopl) 

{ 
look_up_wl2C wl, w2, code ) 
strng[strngstk++] = w2 ; 
ifC wl < 256 ) 

{ 
stack[st_index++] = wl ; 
loopl= FALSE; 
} 

else 
code = wl ; 

} 
loop2=TRUE; 
whileC Cloop2) & Cstrngstk>0) ) 

{ 
w2 = strng[—strngstk] ; 
ifC w2 < 256 ) 

stack[st_index++] = w2 ; 
else 
{ 
code = w2 ; 
loop2=FALSE; 
} 

} 
} 
whileC strngstk > 0 | C!loop2)); 

st_index— ; 
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} 
/it END decomposeO 
f *  END Dcompose.c 

19.5. File Scanw2.asm 

INPUT : ( PARAMETERS PASSED BY CALLING SUBROUTINE ) 
1) W2_C0DE = CHARACTER PART OF THE CODE.i.e K. 
2) W1_C0DE = UNSIGNED INTEGER PART OF THE CODE, i.e. W. 
3) CODEADRS = ADDRESS OF CODE ,i.e. WHERE WE RETURN THE 

CODE WHICH HAS W AND K EQUAL TO "INTCODE" AND 
"CHARCODE" RESPECTIVELY. 

OUTPUT : 
1) THE FUNCTION RETURN VALUE = 1 IF A MATCH IS FOUND. 

0 IF NO MATCH. 

THE FUNCTION NEEDS TO SHARE THE FOLLOWING VARIABLES WITH WHOEVER 
HAS THEM; 

1) _ptr_w2_table = A POINTER TO FIRST ELEMENT IN CHAR_TABLE 
2) _ptr_wl_table = A POINTER TO FIRST ELEMENT IN INT_TABLE 
3) next_code = NUMBER OF F.IRST FREE CODE IN CHAR_TABLE. 

= NUMBER OF FIRST FREE CODE IN INT_TABLE. 
NAME SCAN 
TITLE SCANNING OF THE Wl AND W2 TABLES TO FIND A MATCH 
PUBLIC _scan. _w2 

wl EQU [BP+4] ; PASSED PARAMETERS. 
w2 EQU [BP+6] 
ptr_code EQU [BP+8] 

DGROUP GROUP CONST, . _BSS, _DATA 
ASSUME CS: _TEXT, DS: DGROUP, SS: DGROUP, ES: DGROUP 

_DATA SEGMENT 
EXTRN _ptr_w2_table:W0RD 
EXTRN _ptr_wl_table:WORD 
EXTRN _next_code:WORD 
_DATA ENDS 

PROC NEAR 
PUSH BP 
MOV BP,SP 
PUSH DI 
PUSH SI 
PUSH ES 
MOV AX,DS 
MOV ES, AX 

; INITIALIZE THE REGISTERS TO THE 
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LOOPl: 

JNE 
MOV 

SUB 

SUB 

CMP 

JE 

NOMATCH: 

MATCH: 

JMP 

MOV 
JMP 

SUB 
SHR 
DEC 

MOV 
MOV 
MOV 

SCAN_DONE : 
POP 
POP 
POP 

MOV AX,wl 
MOV DX,w2 

MOV SI,_ptr_w2_table 

MOV DI,_ptr_wl_t3ble 
MOV CX,_next_code 

REPNE SCASW 

NOMATCH 
BX,DI 

BX,_ptr_wl_table 

BX,2 

DX,[BX+SI] 

MATCH 

LOOPl 

AX.O 
SCAN DONE 

DI,_ptr_wl_table 
DI,1 
DI 

BX,ptr_code 
[BX],DI 
AX,1 

ES 
SI 
DI 

CORRESPONDING PARAMETERS PASSED 
FROM THE CALLING PROGRAM. 
SI = POINTER TO THE TABLE HOLDING 
ELEMENTS OF CHARACTER TYPE. THIS 
TABLE HOLDS THE SECOND PART TO BE 
EXAMINED IN THE SEARCH. 

DI = POINTER TO THE TABLE USED IN 
THE SEARCH. IT HOLDS THE INTEGER 
PART WE SCAN FOR. 

CX = NEXT NUMBER NOT USED IN THE 
TABLES YET. 
SACN THE WORD TABLE STARTING 
FROM DI UP TO CX ELEMENTS. 
IF ZF= 0 WE FINISHED THE SCAN 
BEFORE ANY MATCH. SO GO TO NOMATCH. 
ZF=1 SO WE HAD A MATCH. STORE THE 
LENGTH OF THE SCANNED WORDS IN BX. 

GET NUMBER OF SCANNED WORDS. 
ADJUST FOR LOOP INDEX STEPPING 
ONE MORE WORD. 
SINCE WE HAD A WORD MATCH, 
SEE IF WE HAVE CHAR MATCH. 
IF YES THEN WE HAVE A COMPLETE 
MATCH. SO GO TO MATCH. 
CHAR DID NOT MATCH SO TRY AGAIN 
AS LONG AS CX (= REMAINING CODES TO 
BE SEARCHED ) NOT EQUAL TO ZERO. 
IF CX REACHED ZERO BEFORE WE HAD 
ANY MATCH THEN "JNE NOMATCH" WILL 
DROP US TO NOMATCH: 

NO MATCH SO RETURN ZERO IN AX. 
SCAN IS DONE. 
THERE WAS A MATCH SO MAKE DI = 
LENGTH OF SCANNED WORDS. 

MAKE DI = NUMBER OF SCANNED WORDS. 
ADJUST FOR LOOP INDEX STEPPING 
ONE MORE WORD. 
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MOV SP,BP 
POP BP 
RET 

_scan_w2 ENDP 
_TEXT ENDS 
END 
/,v END Scanw2.asm 

19.6. File Scanw3.asm 

REFER TO COMMENTS IN FILE SCANW2.ASM IN THIS APPENDIX. 
NAME SCAN_W3 
TITLE SCANNING OF THE 
PUBLIC _scan_w3 

wl EQU [BP+4-]- ; PASSED 
w3 EQU [BP+6] 
ptr_code EQU [BP+8] 
position EQU [BP+10] 

DGROUP GROUP CONST, . _BSS, _DATA 
ASSUME CS: _TEXT, DS: DGROUP, SS: DGROUP, ES: DGROUP 

_DATA SEGMENT 
EXTRN _ptr_w3_table:W0RD 
EXTRN _ptr_wl_table:WORD 
EXTRN _next_code: WORD 
_DATA ENDS 

.scan_w3 

LOOPl: 

PROC NEAR 
PUSH BP 
MOV BP.SP 
PUSH DI 
PUSH SI 
PUSH ES 
MOV AX,DS 
MOV ES,AX 
MOV AX.wl 
MOV DL,w3 
MOV SI,_ptr_ .w3_table 
MOV BX,position 
MOV DI,_ptr_ .wl_table 
SHL BX,1 
ADD DI.BX 
MOV CX,_next ._code 
SUB CX,position 
JZ NOMATCH 

REPNE SCASW 
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NOMATCH; 

MATCH: 

JNE NOMATCH 
MOV BX.DI 
SUB BX,_ptr_wl_table 
SHR BX,1 
DEC BX 
CMP DL,[BX+SI] 
JE MATCH 
JMP LOOPl 

MOV AX,0 
JMP SCAN_DONE 

SUB DI,_ptr_wl_table 
SHR DI,1 
DEC DI 
MOV BX,ptr_code 
MOV CBX],DI 
MOV 

• • 
AX,1 

t • 
POP ES 
POP SI 
POP DI 
MOV SP,BP 
POP BP 
RET 

_scan_w3 
_TEXT 
END 
/,v 

ENDP 
ENDS 

END Scanw3.asm 
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APPENDIX I. PROGRAM LIST OF METHOD LZW2 
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The files in this listing make use of the files in the following 
sections : 

- Appendix B: 13.9, 13.11, and 13.12. 
- Appendix D: 15.1 - 15.9. 
- Appendix H: 19.1 and 19.3 - 15.6. 

20.1. File Cmprs.c 

//include 
//include 
//define 
//define 
//define 
//define 
//define 
//define 

<memory.h> 
<malloc.h> 
uchar 
MAX_SIZE 
SCRN_SIZE 
TRUE 
FALSE 

unsigned 
4096 
16004 
1 
0 

char 

//def i ine 

update_tables(a,b,c) 

look_table2(w2,codec) 

{ wl_table[next_code] = a;\ 
w2_table[next_code] = b;\ 
w3_table[next_code] = c;\ 
next_code++ ;} 

{ w2=w2_table[codec]; } 

extern 
extern 
extern 
extern 
extern 
extern 
extern 

void 
void 

/" wl_table[], 
/* w3_table[] 
I* defined in 

unsigned wl_table[] 
unsigned w2_table[] 
uchar w3_table[] 
int next_code 
unsigned extracalls 
unsigned stack[MAX_SIZE]; 
int st_index : /* Stack size 

w2_table[], */ 
and next_code are 
tables.c. */ 

*/ 

ad just_output( uchar ''s uchar far unsigned, unsigned » ) ; 
decomposeCunsigned ); 

/)•(======================== compresse ) =============== 

compresse compress_io,compress_work, ptr_bufr_size ) 
uchar *compress_io, far '•compress_work ; 
unsigned *ptr_bufr_size ; 

{ 
uchar 
unsigned 
char 
unsigned 
unsigned 
register 
unsigned 
struct 

'•'input; 
far ''^output; 
*ptr_new_output; 
bufr_size; 
code ; 
uns igned 
out_index=0 ; 
{ 
unsigned 
unsigned 
} string 

data_index=0 

wl; 
w2; 
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uchar w3, first_ch; 
unsigned Li, Lj ; 
unsigned Longblk, loop3 ; 
int bigstk ; 
unsigned position, indexl ; 
register unsigned j ; 

input=compress_io; 
output=(unsigned far ''Ocompress_work; 

I* Li = first input element */ 
Li= input[data_index++] ; 

/" Lj = second input element. ••/ 
Lj= input[data_index++] ; 
first_ch = Lj ; 
output[out_index++] = Li; 
string.wl = Lj; 
w3 = Lj ; 

/" Find bufr_size. * 
bufr_size=*ptr_bufr_size; 

/* Loop while there is more input. 
while( data_index < bufr_size ) 
{ /* Search for the largest block in * 

/* wl_table. " 
while( data_index < bufr_size ) 

{ /* Get 2nd element in the new block* 
string.w2=input[data_index++] ; 

/* See if wl.w2 is in tables. '• 
if( scan_w2( string.wl, string.w2, &code) ) 

/'• wl.w2 is in the tables, so let =• 
/'• new wl = wl.w2. * 

string.wl=code; 
else /:'( wl.w2 was not in the tables. 
{ /* First element of 2nd block = w2.* 
first_ch=string.w2 ; 

/'•" Go to the second while loop and •' 
/search for a table entry that =• 
h' has wl and its w2 starts with w3* 

break ; 

} 
/* We already searched for two * 
/* elements or more, so start * 

position = 256 ; I* searching after 256. * 
while( data_index < bufr_size ) 

{ 
if( scan_w3(string.wl, first_ch, &code, position) ) 
{ I* Start searching after code. */ 
longblk = string.wl ; 
bigstk = -I ; 
loop3 = TRUE ; 



www.manaraa.com

421 

whileC loop3 ) 
{ 
look_table2(string.w2, code ) 

/* st_index points to last element '''/ 
/* in stack. */ 

decomposeC string.w2 ) ; 
indexl = data_index ; 

if( ((bufr_size - indexl) >= st_index ) & 
( st_index > bigstk ) ) 

{ /* Data_index is already pointing 
/* to the element after w3 in the */ 
/'• input so no need to compare it. *! 
/'•' The for loop will start •«/ 

comparing from indexl which */ 
should be equal to stack[l], -/ 

for(j=l;(j <= st_index) & 
(input[indexl++]==stack[j]);) 

{ 
j++; 
} 

if( j == (st_index+l) ) 
{ 
bigstk = st_index ; 
longblk = code ; 
} 

} 
position = code + 1; 

if( scan_w3(string.wl, first_ch, 
&code, position) ) 

else 
loopS = FALSE ; 

} 
if( string.wl == longblk ) 

break ; 
else 
{ 
string.wl = longblk ; 
position = longblk + 1 ; 
data_index += bigstk ; 
first_ch = input[data_index++] ; 
} 

} 
else 

break ; 
} 

Lj = string.wl; 
output[out_index++] = Lj; 

/* If the tables are not full yet, '•/ 
if(next_code<MAX_SIZE) 
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} 
•/it 
h<-

/* then string —> string table, */ 
/* i.e put w and k in the wl_table */ 
/* and w2_table respectively at the*/ 
/* position indexed by next_code. 

update_tables( Li, Lj, w3 ) 
else 

extracalls++ ; 
Li = Lj ; 
string.wl = first_ch ; 
w3 = first_ch ; 
} 

/* Make sure the last symbol was 
/* sent to the output. 

decomposeC output[out_index - 1] ); 
if( data_index == bufr_size ) 

{ 
output[out_index] = inputEbufr_size-l] ; 
out_index++; 
} 

/* Pack the output codes from a 
/* string of words format to a 
/* string of 12 bits codes 
/* format. The input to 

*/ 

*/ 

*/ 

*/ 
*/ 
-•••/ 

*/ 
/* adjust_output() is compress_ */ 
/)'( work. It sends the output in */ 
/* the final form in compress_io*/ 

adjust_output(compress_io ,compress_work, 
2*out_index , ptr_bufr_size ) ; 

END compresse) 
— END Cmprs.c -

•* /  

-* /  
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APPENDIX J. PROGRAM LIST OF METHOD LZW3 
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The files in this listing make use of the files in the following 
sections : 

- Appendix B: 13,9, 13.11, and 13.12. 
- Appendix D: 15.1 - 15.9. 
- Appendix H: 19.3 and 15.4. 

21.1. File Cmprs.c 

//include <memory.h> 
//include <malloc.h> 
//define uchar unsigned char 
//define MAX_SIZE 4096 
//define SCRN_SIZE 16004 
//define TRUE 1 
//define FALSE 0 
//define update_tables(a,b,c) 

{ wl_table[next_code] = a;\ 
w2_table[next_code] = b;\ 
((char w4_table)[(2*next_code)+l! 
((char w4_table)[2*next_code] 
next_code++ ;} 

= c.second;\ 
= c.first;\ 

extern 
extern 
extern 
extern 
extern 
extern 
extern 

void 
void 

unsigned 
unsigned 
uchar 
int 
unsigned 
unsigned 
int 

wl_table[] 
w2_table[' 
w4_tableL] 
next_code 
extracalls 
stack[]; 
st_index ; 

/* wl_table[ ], 
/* w4_table[] 
/* defined in 

/* Stack size. 

w2_table[], 
and next_code 
tables.c. 

are '•7 
*/ 

decompose(unsigned ); 
adjust_output( uchar , uchar far unsigned, unsigned •' ); 

compress( compress_io,compress_work, ptr_bufr_size ) 
uchar '''compress_io, far *compress_work ; 
unsigned '••ptr_bufr_size ; 

{ 
uchar '-input; 
unsigned far *output; 
char '•fptr_new_output; 
unsigned bufr_size; 
unsigned code ; 
register unsigned 
unsigned out_index=0 ; 
struct word { 

uchar first; 
uchar second; 

data index=0 
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} Liword, Ljword; 
unsigned Li, Lj ,old_Lj ; 
unsigned longblk; 
int bigstk ; 
unsigned position, indexl ; 
register unsigned j ; 

input=compress_io; 
output=(unsigned far ''Ocompress_work; 

/* Li = first input element. 
Li= input[data_index++] ; 
output[out_index++] = Li; 
Liword.first=Li; 

h' Lj = second input element. -/ 
Lj = input[data_index++] ; 
Liword.second = Lj; 
Ljword.first = Lj; 
bufr_size=*ptr_bufr_size; /''• Find bufr_size. »/ 

/" Loop while there is more input. '•/ 
while( data_index < bufr_size ) 

{ 
Ljword.second= input[data_index]; 
position = 256; /* Start searching after 256. */ 
longblk = Lj; 
bigstk = -1 ; 
whileC data_index < bufr_size ) 

{ 
if( scan_w4(Ljword, &code, position) ) 

{ 
/'• st_index points to the last '•</ 
/* element on stack. */ 

decomposeC code ) ; 
indexl = data_index ; 
if( ((bufr_size - indexl) >= st_index ) & 

( st_index > bigstk ) ) 
{ 
for(j=l;(j <= st_index) & 

(inputE indexl++]==stack[j]);) 
{ 
j++; 
} 

if( j == (st_index+l) ) 
{ 
bigstk = st_index ; 
longblk = code ; 
} 

} 
position = code + 1; 

} 
else 
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break ; 
} 

old_Lj=Lj; 
if( Lj == longblk ) 

5 
else 

{ 
Lj = longblk ; 
data_index += bigstk ; 
} 

output[out_index++] = Lj; 
/* If the tables are not full yet, '•/ 

if(next_code<MAX_SIZE) 
/* then string —> string table, */ 
!'•' i.e put w and k in the wl_table '•/ 
/" and w2_table respectively at the*/ 
/* position indexed by next_code. */ 

update_tables( Li, Lj, w3 ) 
else 

extracalls++ ; 
Li = Lj ; 
Liword=Ljword; 
Lj = Ljword.first = input[data index++]; 
} 

/* Make sure the last symbol was */ 
/* sent to the output. */ 

if( data_index == bufr_size ) 
{ 
output[out_index] = input[bufr_size-l] ; 
out_index++; 
} 

'* Back the output codes from a */ 
* string of words format to a */ 
* string of 12 bits codes */ 
* format. The input to */ 
* adjust_output() is compress_ */ 
* work. It sends the output in */ 
* in the final form in */ 
compress_io. */ 

adjust_output(compress_io ,compress_work, 
2*out_index+l, ptr_bufr_size ) ; 

} 
/* END compresse) */ 
fit END Cmprs.c */ 

21.2. File Tables.c 

//include 
//include 

<stdio.h> 
<memory.h> 



www.manaraa.com

427 

//include 
//define 
//define 
//define 

<malloc.h> 
MAX_SIZE 
ALPHABET_SIZE 
uchar 

4096 
256 
unsigned char 

gned 
gned 
gned 
gned 
gned 

unsigned 
int 
unsigned 

uns 
uns 
uns 
uns 
uns 

/* Definition of GLOBAL 
/* variables. 

wl_table[MAX_SIZE] 
w2_table[MAX_SIZE] 
w4_table[MAX_SIZE] 
''fptr_wl_table=wl_table; 
*ptr_w2_table=w2_table; 
*ptr_w4_table=w4_table; 
next_code ; 
extracalls=0 : 

/'•' 
h-< 
/'•c 
/'V 
/'•' 
/,V 
/ *  
/,'c= 

ini 

{ 
register int index ; 

} 
/,v-
/•!<-

END init_table() 
— END Tables.c — 

*/ 
*/ 

========================= init_table() ========================= 

This function initializes every element in int_table to a com
bination that will never occur. Since the code is only 12 bits 
long then the 16 bits used to hold these codes are to be <= 
Oxfff. For this reason in this program the Oxffff code is used 
to solve the above problem. It should be noted that any combin
ation > Oxfff should work correctly as well. Then the first 256 
symbols in w2_table are initialized to 0-255. 

t_table() 

/* Set every byte in the 
/* int_table to Oxffff (i.e. 
/* every code word = Oxffff) so 
/* that no code will match with 
/* it, because the actual codes 
/* are only 12 bits. 

memsetC (char '•) w4_table,0xff ,MAX_SIZE*2) ; 
memset( (char *) wl_table,0xff,MAX_SIZE*2); 

/ S e t  1 s t  2 5 6  o f  c h a r _ t a b l e  t o  
/* be the extended ASCII codes. 

for( index=0; index < ALPHABET_SIZE; index++ ) 
w2_table[index] = index ; 

next_code = ALPHABET_SIZE; 

'V 'V/ 
'•7 

'V 

.,V/ 
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21.3. File ScanwA.asm 

NAME SCAN_W4 
TITLE SCANNING OF THE W4-TABLE 
PUBLIC _scan_w4 

LI_WORD EQU [BP+4]; PASSED PARAMETERS. 
ptr_code EQU [BP+6] 
position EQU [BP+SÎ 

DGROUP GROUP CONST, _BSS, _DATA 
ASSUME CS: _TEXT, DS: DGROUP, SS: DGROUP, ES: DGROUP 

_DATA SEGMENT 
EXTRN _ptr_w4_table:W0RD 
EXTRN _next_code: WORD 
_DATA ENDS 

.scan_w4 
PUSH 
MOV 
PUSH 
PUSH 
PUSH 
MOV 
MOV 

MOV 

LOOPl: 

NOMATCH: 

MATCH: 

MOV 
MOV 
SHL 
ADD 
MOV 

SUB 
JZ 

REPNE 

JNE 

MOV 
JMP 

PROC NEAR 
BP 
BP,SP 
DI 
SI 
ES 
AX,DS 
ES,AX 

AX,LI_WORD 

DI,_ptr_w4_table 
BX,position 
BX,1 
DI,BX 
CX,_next_code ; 

CX,position 
NOMATCH 

SCASW 

NOMATCH 

AX,0 
SCAN_DONE 

INITIALIZE REGISTERS TO THE 
CORRESPONDING PARAMETERS PASSED 
FROM THE CALLING PROGRAM. 
DI = POINTER TO THE TABLE USED IN 
THE SEARCH. IT HOLDS THE FIRST 
AND SECOND CHARACTERS FOR 
EACH CODE. 

CX = NEXT NUMBER NOT USED IN THE 
TABLES YET. 

SCAN THE WORD TABLE STARTING FROM 
DI UP TO CX ELEMENTS. BIT ZERO IS 
ZERO. IF ZF= 0 WE FINISHED THE SCAN 
BEFORE ANY MATCH. SO GO TO NOMATCH. 

NO MATCH SO RETURN ZERO IN AX 
SCAN IS DONE. 
THERE WAS A MATCH SO STORE 1 IN 
FOUND. 
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SUB 
SHR 
DEC 

MOV 
MOV 
MOV 

SCAN_DONE: 
POP 
POP 
POP 
MOV 
POP 
RET 

_scan_wA 
_TEXT 
END 
/,v 

DI,_ptr_w4_table 
DI,1 
DI 

BX,ptr_code 
[BX],DI 
AX,1 

ES 
SI 
DI 
SP.BP 
BP 

ENDP 
ENDS 

MAKE DI = LENGTH OF SCANNED WORDS. 

MAKE DI = NUMBER OF SCANNED WORDS. 
ADJUST FOR THE EFFECT OF THE ONE 
MORE WORD LOOP STEPPING. 
SCAN WILL RETURN AX = CODE = NUMBER 
OF WORDS SCANNED TILL WE FOUND A 
MATCH (i.e. INDEX OF THE MATCHED 
ELEMENT IN EITHER TABLE) . 

END Scanw4.asm 
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APPENDIX K. TABLE USED IN METHOD LZWB-2 
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Table 22.1. Extended LZW tables to be used with 
method LZWB2-B 

Symbol String w k 

256 01 0 128 
257 Oil 0 129 
258 0111 0 130 
259 01111 0 131 
260 011111 0 132 
261 0111111 0 133 
262 10 128 0 
263 110 129 0 
264 1110 130 0 
265 11110 131 0 
266 111110 132 0 
267 1111110 133 0 
268 001 1 128 
269 0011 1 129 
270 00111 1 130 
271 001111 1 131 
272 0011111 1 132 
273 00111111 1 133 
274 100 128 1 
275 1100 129 1 
276 11100 130 1 
277 111100 131 1 
278 1111100 132 1 
279 11111100 133 1 
280 0001 2 128 
281 00011 2 129 
282 000111 2 130 
283 0001111 2 131 
284 00011111 2 132 
285 000111111 2 133 
286 1000 128 2 
287 11000 129 2 
288 111000 130 2 
289 1111000 131 2 
290 11111000 132 2 
291 111111000 133 2 
292 00001 3 128 
293 000011 3 129 
294 0000111 3 130 
295 00001111 3 131 
296 000011111 3 132 
297 0000111111 3 133 
298 10000 128 3 
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Table 22.1. ( Continued ) 

Symbol String w k 

299 110000 129 3 
300 1110000 130 3 
301 11110000 131 3 
302 111110000 132 3 
303 1111110000 133 3 
304 000001 4 128 
305 0000011 4 129 
306 00000111 4 130 
307 000001111 4 131 
308 0000011111 4 132 
309 00000111111 4 133 
310 100000 128 4 
311 1100000 129 4 
312 11100000 130 4 
313 111100000 131 4 
314 1111100000 132 4 
315 11111100000 133 4 
316 0000001 5 128 
317 00000011 5 129 
318 000000111 5 130 
319 0000001111 5 131 
320 00000011111 5 132 
321 000000111111 5 133 
322 1000000 128 5 
323 11000000 129 5 
324 111000000 130 5 
325 1111000000 131 5 
326 11111000000 132 5 
327 111111000000 133 5 
328 00000001 6 128 
329 000000011 6 129 
330 0000000111 6 130 
331 00000001111 6 131 
332 000000011111 6 132 
333 0000000111111 6 133 
334 10000000 128 6 
335 110000000 129 6 
336 1110000000 130 6 
337 11110000000 131 6 
338 111110000000 132 6 
339 1111110000000 133 6 
340 010 256 0 
341 0100 256 1 
342 01000 256 2 
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343 
344 
345 
346 
347 
348 
349 
350 
351 
352 
353 
354 
355 
356 
357 
358 
359 
360 
361 
362 
363 
364 
365 
366 
367 
368 
369 
370 
371 
372 
373 
374 
375 
376 
377 
378 
379 
380 
381 
382 
383 
384 
385 
386 

433 

( Continued ) 

String w k 

010000 256 3 
0100000 256 4 
01000000 256 5 
010000000 256 6 
0010 268 0 
00100 268 1 
001000 268 2 
0010000 268 3 
00100000 268 4 
001000000 268 5 
0010000000 268 6 
00010 280 0 
000100 28U 1 
0001000 280 2 
00010000 280 3 
000100000 280 4 
OOOIOOOOOO 280 5 
OOOIOOOOOOO 280 6 
000010 292 0 
0000100 292 1 
00001000 292 2 
000010000 292 3 
0000100000 292 4 
00001000000 292 5 
000010000000 292 6 
0000010 304 0 
00000100 304 1 
000001000 304 2 
0000010000 304 3 
00000100000 304 4 
000001000000 304 5 
0000010000000 304 6 
00000010 316 0 
000000100 316 1 
0000001000 316 2 
00000010000 316 3 
000000100000 316 4 
0000001000000 316 5 
00000010000000 316 6 
000000010 328 0 
0000000100 328 1 
00000001000 328 2 
OOOOOOOIOOOO 328 3 
0000000100000 328 4 
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Table 22.1. ( Continued ) 

Symbol String w k 

387 00000001000000 328 5 
388 000000010000000 328 6 
389 0110 257 0 
390 01100 257 1 
391 011000 257 2 
392 0110000 257 3 
393 01100000 257 4 
394 011000000 257 5 
395 0110000000 257 6 
396 00110 269 0 
397 001100 269 1 
398 0011000 269 2 
399 00110000 269 3 
400 001100000 269 4 
401 0011000000 269 5 
402 00110000000 269 6 
403 000110 281 0 
404 0001100 281 1 
405 00011000 281 2 
406 000110000 281 3 
407 0001100000 281 4 
408 00011000000 281 5 
409 000110000000 281 6 
410 0000110 293 0 
411 00001100 293 1 
412 000011000 293 2 
413 0000110000 293 3 
414 00001100000 293 4 
415 OOOOIIOOOOOO 293 5 
416 0000110000000 29 3 6 
417 00000110 305 0 
418 000001100 305 1 
419 0000011000 305 2 
420 00000110000 305 3 
421 000001100000 305 4 
422 0000011000000 305 5 
423 00000110000000 305 6 
424 000000110 317 0 
425 0000001100 317 1 
426 00000011000 317 2 
427 000000110000 317 3 
428 0000001100000 317 4 
429 00000011000000 317 5 
430 000000110000000 317 6 



www.manaraa.com

435 

Table 22.1. ( Continued ) 

Symbol String w k 

431 0000000110 329 0 
432 00000001100 329 1 
433 000000011000 329 2 
434 0000000110000 329 3 
435 00000001100000 329 4 
436 000000011000000 329 5 
437 0000000110000000 329 6 
438 OHIO 258 0 
439 011100 258 1 
440 0111000 258 2 
441 01110000 258 3 
442 011100000 258 4 
443 0111000000 258 5 
444 01110000000 258 6 
445 001110 270 0 
446 0011100 270 1 
447 00111000 270 2 
448 001110000 270 3 
449 0011100000 270 4 
450 00111000000 270 5 
451 001110000000 270 6 
452 0001110 282 0 
453 00011100 282 1 
454 000111000 282 2 
455 0001110000 282 3 
456 00011100000 282 4 
457 000111000000 282 5 
458 0001110000000 282 6 
459 00001110 294 0 
460 000011100 294 1 
461 0000111000 294 2 
462 00001110000 294 3 
463 000011100000 294 4 
464 0000111000000 294 5 
465 00001110000000 294 6 
466 000001110 306 0 
467 0000011100 306 1 
468 00000111000 306 2 
469 000001110000 306 3 
470 0000011100000 306 4 
471 00000111000000 306 5 
472 000001110000000 306 6 
473 0000001110 318 0 
474 00000011100 318 1 
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Table 22.1. ( Continued } 

Symbol String w k 

475 000000111000 318 2 
476 0000001110000 318 3 
477 00000011100000 318 4 
478 000000111000000 318 5 
479 0000001110000000 318 6 
480 00000001110 330 0 
481 000000011100 330 1 
482 0000000111000 330 2 
483 00000001110000 330 3 
484 000000011100000 330 4 
485 0000000111000000 330 5 
486 00000001110000000 330 6 
487 011110 259 0 
488 0111100 259 1 
489 01111000 259 2 
490 011110000 259 3 
491 0111100000 259 4 
492 01111000000 259 5 
493 011110000000 259 6 
494 0011110 271 0 
495 00111100 271 1 
496 001111000 271 2 
497 0011110000 271 3 
498 00111100000 271 4 
499 001111000000 271 5 
500 0011110000000 271 6 
501 00011110 283 0 
502 000111100 283 1 
503 0001111000 283 2 
504 00011110000 283 3 
505 000111100000 283 4 
506 0001111000000 283 5 
507 00011110000000 283 6 
508 000011110 295 0 
509 0000111100 295 1 
510 00001111000 295 2 
511 000011110000 295 3 
512 0000111100000 295 4 
513 00001111000000 295 5 
514 000011110000000 295 6 
515 0000011110 307 0 
516 00000111100 307 1 
517 000001111000 307 2 
518 0000011110000 307 3 
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Table 22.1. ( Continued ) 

Symbol String w k 

519 00000111100000 307 4 
520 000001111000000 307 5 
521 0000011110000000 307 6 
522 00000011110 319 0 
523 000000111100 319 1 
524 0000001111000 319 2 
525 00000011110000 319 3 
526 000000111100000 319 4 
527 0000001111000000 319 5 
528 00000011110000000 319 6 
529 000000011110 331 0 
530 0000000111100 331 1 
531 00000001111000 331 2 
532 000000011110000 331 3 
533 0000000111100000 331 4 
534 00000001111000000 331 5 
535 000000011110000000 331 6 
536 000000001 7 128 
537 0000000011 7 129 
538 00000000111 7 130 
539 000000001111 7 131 
540 0000000011111 7 132 
541 00000000111111 7 133 
542 100000000 128 7 
543 1100000000 129 7 
544 11100000000 130 7 
545 111100000000 131 7 
546 1111100000000 132 7 
547 11111100000000 133 7 
548 1000000001 542 128 
549 10000000011 542 129 
550 100000000111 542 130 
551 1000000001111 542 131 
552 11000000001 543 128 
553 110000000011 543 129 
554 1100000000111 543 130 
555 11000000001111 543 131 
556 111000000001 544 128 
557 1110000000011 544 129 
558 11100000000111 544 130 
559 111000000001111 544 131 
560 1111000000001 545 128 
561 11110000000011 545 129 
562 111100000000111 545 130 
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Table 22.1. ( Continued ) 

Symbol String w k 

563 1111000000001111 545 131 
564 0000000001 8 128 
565 00000000011 8 129 
566 000000000111 8 130 
567. 0000000001111 8 131 
563 00000000011111 8 132 
569 000000000111111 8 133 
570 1000000000 128 8 
571 11000000000 129 8 
572 111000000000 130 8 
573 1111000000000 131 8 
574 11111000000000 132 8 
575 111111000000000 133 8 
576 10000000001 570 128 
577 100000000011 570 129 
578 1000000000111 570 130 
579 10000000001111 570 131 
580 110000000001 571 128 
581 1100000000011 571 129 
582 11000000000111 571 130 
583 110000000001111 571 131 
584 1110000000001 572 128 
585 11100000000011 572 129 
586 111000000000111 572 130 
587 1110000000001111 572 131 
588 11110000000001 573 128 
589 111100000000011 573 129 
590 1111000000000111 573 130 
591 11110000000001111 573 131 
592 00000000001 9 128 
593 000000000011 9 129 
594 0000000000111 9 130 
595 00000000001111 9 131 
596 000000000011111 9 132 
597 0000000000111111 9 133 
598 10000000000 128 9 
599 110000000000 129 9 
600 1110000000000 130 9 
601 11110000000000 131 9 
602 111110000000000 132 9 
603 1111110000000000 133 9 
604 100000000001 598 128 
605 1000000000011 598 129 
606 10000000000111 598 130 
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Table 22.1. ( Continued ) 

Symbol String w k 

607 100000000001111 598 131 
608 1100000000001 599 128 
609 11000000000011 599 129 
610 110000000000111 599 130 
611 1100000000001111 599 131 
612 11100000000001 600 128 
613 111000000000011 600 129 
614 1110000000000111 600 130 
615 11100000000001111 600 131 
616 111100000000001 601 128 
617 1111000000000011 601 129 
618 11110000000000111 601 130 
619 111100000000001111 601 131 
620 000000000001 10 128 
621 0000000000011 10 129 
622 00000000000111 10 130 
623 000000000001111 10 131 
624 0000000000011111 10 132 
625 00000000000111111 10 133 
626 100000000000 128 10 
627 1100000000000 129 10 
628 11100000000000 130 10 
629 111100000000000 131 10 
630 1111100000000000 132 10 
631 11111100000000000 133 10 
632 1000000000001 626 128 
633 10000000000011 626 129 
634 100000000000111 626 130 
635 1000000000001111 626 131 
636 11000000000001 627 128 
637 110000000000011 627 129 
638 1100000000000111 627 130 
639 11000000000001111 627 131 
640 111000000000001 628 128 
641 1110000000000011 628 129 
642 11100000000000111 628 130 
643 111000000000001111 628 131 
644 1111000000000001 629 128 
645 11110000000000011 629 129 
646 111100000000000111 629 130 
647 11110000000000011111 629 131 
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