
www.manaraa.com

Retrospective Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

1987

An investigation of storage and communication
codes for an electronic library
Mansour Alsulaiman
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd

Part of the Electrical and Electronics Commons, and the Library and Information Science
Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University
Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Alsulaiman, Mansour, "An investigation of storage and communication codes for an electronic library " (1987). Retrospective Theses and
Dissertations. 8608.
https://lib.dr.iastate.edu/rtd/8608

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F8608&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F8608&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F8608&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F8608&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F8608&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F8608&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=lib.dr.iastate.edu%2Frtd%2F8608&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1018?utm_source=lib.dr.iastate.edu%2Frtd%2F8608&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1018?utm_source=lib.dr.iastate.edu%2Frtd%2F8608&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd/8608?utm_source=lib.dr.iastate.edu%2Frtd%2F8608&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

www.manaraa.com

INFORMATION TO USERS

The most advanced technology has been used to photo
graph and reproduce this manuscript from the microfilm
master. UMI films the original text directly from the copy
submitted. Thus, some dissertation copies are in typewriter
face, while others may be from a computer printer.

In the unlikely event that the author did not send UMI a
complete manuscript and there are missing pages, these will
be noted. Also, if unauthorized copyrighted material had to
be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are re
produced by sectioning the original, beginning at the upper
left-hand comer and continuing from left to right in equal
sections with small overlaps. Each oversize page is available
as one exposure on a standard 35 mm slide or as a 17" x 23"
black and white photographic print for an additional charge.

Photographs included in the original manuscript have been
reproduced xerographically in this copy. 35 mm slides or
6" X 9" black and white photographic prints are available for
any photographs or illustrations appearing in this copy for
an additional charge. Contact UMI directly to order.

UMI
Accessing the World's Information since 1938

300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA

www.manaraa.com

www.manaraa.com

Order Number 8805088

An investigation of storage and communication codes for an
electronic library

Alsulaiman, Mansour, Ph.D.

Iowa State University, 1987

U M I
300 N. ZeebRd.
Ann Arbor, MI 48106

www.manaraa.com

www.manaraa.com

PLEASE NOTE:

In all cases this material has been filmed in the best possible way from the available copy.
Problems encountered with this document have been identified here with a check mark V .

1. Glossy photographs or pages

2. Colored illustrations, paper or print

5. Pages with black marks, not original copy \/^

6. Print shows through as there is text on both sides of page

7. Indistinct, broken or small print on several pages

8. Print exceeds margin requirements

9. Tightly bound copy with print lost in spine

10. Computer printout pages with indistinct print

11. Page(s/ lacking when material received, and not available from school or

3. Photographs with dark background i/

author.

12. Page(s)

13. Two pages numbered

seem to be missing in numbering only as text follows.

. Text follows.

14. Curling and wrinkled pages

15. Dissertation contains pages with print at a slant, filmed as received

16. Other

UMI

www.manaraa.com

www.manaraa.com

An investigation of storage and communication

codes for an electronic library

by

Mansour Alsulaiman

A Dissertation Submitted to the

Graduate Faculty in Partial Fulfillment of the

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

Department : Electrical Engineering
and Computer Engineering

Major: Computer Engineering

Approved :

In Charge of Major Work

For tne uraauate College

Iowa State University
Ames, Iowa

1987

Signature was redacted for privacy.

Signature was redacted for privacy.

Signature was redacted for privacy.

www.manaraa.com

il

TABLE OF CONTENTS

Page

l: INTRODUCTION 1

1.1. Statement of the Problem 1

1.2. Features and Assumptions of the Solution 1

1.3. Thesis Organization 2

2. LITERATURE REVIEW 4

2.1. Review of Facsimile Transmission 4

2.2. Review of the Lempel and Ziv Algorithm 21

3. CREATION OF THE IMAGE DATA BASE 34

3.1. Classification of the Library Informational
Material 34

3.2. Device Description 37

3.3. Procedures of the Research 38

3.4. Creation of the Image Data Base 39

3.5. Classification of the Image Data Base 40

3.6. Results to Be Analyzed 41

3.7' Implementation Considerations 41

4. FACSIMILE CODING 43

4.1. Introduction 43

4.2. One Dimensional Compression Technique 43

4.3. Two Dimensional Compression Technique 46

4.4. MREAD Implementation and Results 53

4.5. Entropy Calculation of the One Dimensional Model 68

4.6. Entropy Calculation of the Two Dimensional Model 71

www.manaraa.com

ill

Page

4.7. Analysis of the Results 82

4.8. Conclusion 101

5. APPLICATION OF THE LEMPEL-ZIV-WELCH ALGORITHM 103

5.1. Description of the Lempel-Ziv-Welch Algorithm 103

5.2. Method LZWB 104

5.3. Method LZWBl 105

5.4. Method LZIfB2 108

5.5. Results of LZW and the Above Mentioned
Modifications 109

5.6. LZW vs. FAX 120

5.7. LZyre and LZWB2 vs. LZW and FAX 120

5.8. LZWBl vs. LZWB 121

5.9. Conclusion 121

6. MODIFICATIONS TO THE LZW ALGORITHM 123

6.1. Method LZWl 125

6.2. Method LZW2 128

6.3. Method LZW3 129

6.4. Results of Compression Using LZWl,
LZW2, and LZW3 130

7. METHODS R8, R4, AND BIG 140

7.1. Method R8 140

7.2. Method R4 143

7.3. Method BIG 143

7.4. Results and Analysis of R8 and R4 144

7.5. Results and Analysis of BIG 150

www.manaraa.com

iv

Page

8. GENERAL ANALYSES 161

8.1. Building the Screen 161

8.2. Screen Division 161

8.3. The Significance of the Groups Averages 164

8.4. Using the CCITT Documents for Comparison 130

8.5. Results of Group 5 183

8.6. Results of Group 8 183

00

The Significance of "Extracalls" 185

8.8. Table Size 186

8.9. Remarks about R8 and R4 187

9. CONCLUSION 189

9.1. Suggestions for Future Work 191

10. REFERENCES 193

11. ACKNOWLEDGMENTS 197

12. APPENDIX A. IMAGES USED IN THE DATA BASE 198

13. APPENDIX B. PROGRAM LIST OF THE CCITT ONE DIMENSIONAL
COMPRESSION TECHNIQUE 273

13.1. File Main.c 274

13.2. File Cmprsln.c 277

13.3. File Cupdt.c 280

13.4. File Clast.c 284

13.5. File Dcmprsln.c 286

13.6. File Dupdtc.c 288

www.manaraa.com

V

Page

13.7. File Dupdtd.c 296

13.8. File Initscrn.c 301

13.9. File Gttime.c 303

13.10. File Print.c 304

13.11. File Geth.asm 305

13.12. File Puth.asm 313

13.13. File Swap.asm 321

13.14. File Mtchbts.asm 322

14. APPENDIX C. PROGRAM LISTINGS OF THE CODE OF
THE CCITT TITO DIMENSIONAL COMPRESSION
TECHNIQUE 324

14.1. File Main.c 325

14.2. File Cmprs2d.c 327

14.3. File Cupdt.c 336

14.4. File Dcmprs2d.c 340

14.5. File Dcmprsln.c 352

14.6. File Bitsrng.asm 354

15. APPENDIX D. PROGRAM LIST OF METHOD LZW 356

15.1. File Main.c 357

15.2. File Cmprs.c 359

15.3. File Dcmprs.c 362

15.4. File Tables.c 365

15.5. File Scanw.asm 366

15.6. File Scrinit.c 368

www.manaraa.com

vi

Page

15.7. File Print.c 372

15.8. File Fadjst.c 373

15.9. File Fradjst.c 374

16. APPENDIX E. PROGRAM LIST OF METHOD LZWB 377

16.1. File Main.c 378

16.2. File Contsym.c 381

16.3. File Dcmpsym.c 383

16.4. File Mraset.asm 387

16.5. File Swapfar.asm 388

17. APPENDIX F. PROGRAM LIST OF METHOD LZWBl 390

17.1. File Dcmpsym.c 391

17.2. File Contsym.c 394

17.3. File Scan2.asm 398

17.4. File ScanS.asm 399

18. APPENDIX G. PROGRAM LIST OF METHOD LZWB2 4U1

18.1. File Dcmprs.c 402

18.2. File Tables.c 404

19. APPENDIX H. PROGRAM LIST OF METHOD LZWl 406

19.1. File Tables.c 407

19.2. File Cmprs.c 408

19.3. File Dcmprs.c 411

19.4. File Dcorapose.c 412

19.5. File Scanw2.asm 414

19.6. File Scanw3.asm 416

www.manaraa.com

vii

Page

20. APPENDIX I. PROGRAM LIST OF METHOD LZW2 418

20.1. File Cmprs.c 419

21. APPENDIX J. PROGRAM LIST OF METHOD LZW3 423

21.1. File Cmprs.c 424

21.2. File Tables.c 426

21.3. File Scanw4.asm 428

22. APPENDIX K. TABLE USED IN METHOD LZWB-2 430

www.manaraa.com

1

1. INTRODUCTION

1.1. Statement of the Problem

The library plays an important role in the academic community and

the community at large. With advancement in electronic technology, it

is desirable to use this technology in order to make the library more

accessible to its users. It is desirable to have a library system where

the user can dial up the library and access its information. The data

sent should be a complete duplicate of the data in the library and not

part of it. This research tries to look at one aspect of this system,

namely, at the methods of compressing these data for storage and trans

mission.

1.2. Features and Assumptions of the Solution

The receiver in this electronic library system is assumed to

originate his connection from a microcomputer. The microcomputer was

chosen, instead of a dump terminal, because it provides the following

necessary services to the system:

a) The receiver has a processing power which is needed
to decompress the received data.

b) The receiver has storage facility. This allows the
sender to send more than one page to a receiver. The
receiver will work on the received data till he needs
more data. This decreases the load that the sender has
to manage and allows the system to service more receivers
than if the receiver has to ask for the data page by
page.

c) The display is of electronic form and not mechanical.
Hence, the display time will be very fast. In addition

www.manaraa.com

2

to that, it will be negligible compared to the decom
pression time. Other forms such as facsimile are great
ly affected by the mechanical requirements of the re
ceiver .

In addition to the above services, the microcomputer is widely

available. Hence, it is the best choice as the receiver in the electronic

library system.

The microcomputer chosen for this research is the IBM PC, and its

compatibles. Chapter 3 contains a description of some features of this

class of microcomputers related to this thesis. The investigation carried

out with this class of computers can be extended to other computers.

Since the sender is a big library system, we can assume that it is

more powerful than the receiver. Hence, the compression time, that we

get by simulating the compression algorithms in the microcomputer, will

not be a decision factor in choosing the algorithm, unless, of course,

all other factors are the same.

1.3. Thesis Organization

Chapter 2 is a review of some compression algorithms used in fac

simile transmission and "Lempel and Ziv" compression algorithm. From

the methods we reviewed for facsimile transmission, we chose two

methods that will be investigated in Chapter 4. Chapter 3 has a de

scription of some features of the computer this research was carried

on, some implementation considerations or difficulties, and some char

acteristics of the data the system needs to store and/or transmit.

Chapters 4, 5, 6, 7, and 8 investigate the use of some compression al

www.manaraa.com

3

gorithms to compress the computer screen. These algorithms are:

a) Two methods used for compressing documents in facsimile
transmission. These methods are investigated in Chapter
4. This investigation showed the need for another class
of algorithms. The new algorithms should be able to
detect more redundancy in the data than the two algorithms
we investigated. The next chapters contain an investi
gation of these new algorithms.

b) Lempel, Ziv, and Welch compression algorithms is inves
tigated in Chapter 5.

c) Variations of the Lempel and Ziv algorithm are investi
gated in Chapters 5, 6, and 7. These variations try to
improve both the algorithm itself and the form of using
it, and match these improvements to the data to be com
pressed.

Chapter 8 presents a general analysis of the previous methods.

Finally, Chapter 9 presents the conclusion of these investigations.

www.manaraa.com

4

2. LITERATURE REVIEW

2.1. Review of Facsimile Transmission

An investigation of the type of data that the library possesses

showed that text and graphics represent most of the data (refer to Chap

ter 3). Facsimile transmission is used to transmit such data; hence,

it is desirable to look at the research in this field and benefit from

it in solving the problem proposed in Chapter 1.

Facsimile transmission has been used since 1843 [1]. Facsimile

machines consisted of electrical and mechanical systems and did not use

any data compression techniques. Only in the beginning of the 1970s did

some machines use a form of compression. In this review of a modern

facsimile machine, we are interested only in the compression techniques

it used and not in its actual structure. For an excellent source of

facsimile history, development, and detailed implementation refer to

[1].

The following is a review of the research in facsimile transmission.

As is customary in the field, the name will be shortened to facsimile.

Sometimes, it will be abbreviated to FAX in this thesis. In this re

view, we look at the literature in a chronological order. We will not

look at all of the available literature, but we will present what we

think is a representation of the available literature from the points

of view of the content of the literature and the directions of the re

search in facsimile.

As an example of second generation facsimile machines, we look at

www.manaraa.com

5

the system described in reference [2]. The points in this paper related

to this review are the following:

1) Although there were studies made on redundancy techniques,
none of them was widely accepted. The reason was the un
availability, at that time, of economical methods to imple
ment them. Advances in digital techniques and development
of integrated circuits made implementing these techniques
economically feasible.

2) The coding method used was to send the code of the run-
length of white picture elements (pels) and send the black
pels pel by pel.

3) For the high rate it was transmitting at, 50 Kbits/s, it
took 20 microseconds to transmit a bit of information.
This time was long enough for the recorder to guarantee
sufficient exposure time for each black pel. Sending run-
length of the black pels would not give enough time for
the recorder to expose the black pels it should record.
So, the advantage of fast transmission rate was compensated
by the time increase due to sending each black pel alone.
This also decreased the compression factor.

4) The paper reported a compression factor equal to 5. It also
reported that other methods, that did not use this high
transmission rate but used a Huffman code, had a compres
sion factor equal to 5.7.

5) It took an average of 7 s to transmit an A4 size (8.5 x
11 in) page.

6) The paper used a variable scan rate that depended on the
content of the scan line. This means when the scanner
reached a black pel, it would remain 19 microseconds so
the next scan would be 20 microseconds from the beginning
of this scan. When it reached a white pel, it would scan
normally till it reached a black pel, then it would send
the run-length of the white pels.

Reference [3] gave some techniques for using the correlation be

tween pels from line to line. It did this by ordering, in a buffer,

pels or error prediction of current line based on information from cur

rent line and/or previous line. After all current line is processed.

www.manaraa.com

6

the content of the buffer is run-length coded.

The buffer filling was tried using the following methods:

1) Each pel in line i+1 is put to the left (right) of the
buffer if the same pel in the previous line is white
(black).

2) Each pel in line i+1 is predicted to be the same as the
pel in line i. The error in prediction is ordered as in
method 1, i.e., if the same pel in line i is white (black),
the error prediction is put to the left (right) of the
buffer.

3) Each pel in line i+1 is predicted depending on its state.
The state of a pel was defined as the three pels in line
i nearest to the pel plus the pel to its left in line i+1.
The prediction error is put to the left (right) if the pre
diction is good (bad). The ordered buffer is then sent
as run-length codes. A prediction is classified as a good
one if its probability is bigger than a threshold (0.8);
otherwise, it is a bad one (note that a probability is
defined to be at least 0.5).

These methods gave a compression factor that is 30-50% better than

the one of a one dimensional run-length coding. It was also shown to be

10-18% better than the compression factor of another ordering technique

suggested by Preuss (refer to discussion of reference [4]).

Reference [5] is a continuation of the work in [3] done by the

same authors. It used the ordering technique that depends on the state

of the pel as described in the discussion of [3]. It had the follow

ing enhancements;

1) It used 7 previous pels instead of 4.

2) The threshold of a good prediction was raised from 0.8
to 0.9.

3) The statistics of the prediction were averaged from the
8 standard documents suggested by the International
Telegraph and Telephone Consultative Committee, known as
CCITT.

www.manaraa.com

7

4) The first sequence of 00...01 in the buffer would not
be sent.

5) Each line was ordered from either left-to-right (forward)
or right-to-left (reverse) depending on which direction
gave better result, i.e., needed less bits.

The method was tried on all the 8 CCITT documents and an average of

41% decrease in the transmission time compared to the transmission time

obtained using the modified Huffman code was reported.

Reference [G] is an invited paper by Huang which reviewed some of

the coding methods available at its time. The paper gave three heuristic

concepts used in facsimile coding. They are the following:

1) Skipping white: Only the black elements will be sent and
the rest of the document is assumed to be white.

2) Transmitting only boundary points: It is perhaps fair to
say that the majority of the current efficient coding
schemes are based directly or indirectly on this concept.
Examples of how this is done are sending the address of
the boundary points, counter tracking these points, and
approximating boundaries by piecewise linear or polynomial
curves. Later, the paper gave more practical examples.

3) Pattern recognition.

Some mathematical models were given, corresponding entropies were

derived, and numerical examples of their values were given. The white

block skipping scheme was shown in one and two dimensions. It was also

shown how to make it adaptive. Run-length coding was discussed and a

mathematical model and experimental results were given. Two forms of

predictive differential quantization were also given. Preuss code was

presented as another form of an extension of run-length coding. Besides,

the paper noted the following general trends:

www.manaraa.com

8

1) For low resolution, 100 pels per inch (ppi), one dimen
sional coding techniques were usually preferred because
of the ease of implementation and because they gave com
pression factor comparable to the one of the two. dimen
sional coding.

2) For high resolution, greater than 200 ppi, two dimensional
coding techniques may give considerably higher compres
sion factor and be preferred in spite of their implementa
tion complexity.

Reference [4] was an attempt to compare some of the codes submitted

to CCITT for standardization of group 3 facsimile machines. It looked

at some one and two dimensional coding techniques.

The one dimensional techniques were all run-length coding tech

niques. They differed according to the code assigned for the runs. One

of these techniques that used the Modified Huffman (MH) code would be

the one dimensional standard recommended by CCITT.

The two dimensional codes were:

1) The Kalle-Infotec code: It works on a pair of consecutive
lines that are segmented into black and white runs. The
runs for both lines together are coded with an adaptive
run-length code which changes its word length between 2
and 8 bits according to the local statistics of the docu
ment.

2) The Kokusai Denshin Denwa code: It is similar in principal
to the EDIC code that we will discuss later.

3) Preuss code: Sometimes, it is referred to as the TUH
(Technical University of Hannover). In this code, each
pel is predicted from the nearest 3 pels in the previous
line and the pel to its left in the current line. These
4 pels form a state for that pel. For each pel, the code
uses its state to predict its value. Â value of 0 or 1
is inserted in its place in the current line depending on
the prediction error. For each state (16 states) the run
length between its prediction errors is coded using a
truncated Huffman table. Each state has its own table
which is constructed from statistics of type written text.

www.manaraa.com

9

Among the two dimensional techniques, the TUH had the. biggest

compression factor specially for documents filled with a lot of text.

The three one dimensional methods had almost the same compression fac

tor, but MH had the biggest one.

Two dimensional techniques yielded a considerable gain (average =

16%) over one dimensional techniques only for high resolution. For low

resolution, the difference between one dimensional and two dimensional

techniques was minimal specially for text documents.

Reference [7] discussed the features and design of a display proc

essor that can output both text and graphics to a display at the same

time. The processor consisted of two data paths that operated in paral

lel. The data from both paths were logically ORed together and output

to the display.

The first path was the character generator that changed the text

information from code (ASCII code and/or control code) to a bit map

representation of the characters. The text format was variable so dif

ferent sizes could be output. This meant that text could have sub

script, superscript, invert, and other formats. The second path was

the FAX generator that took compressed data of an image, decompressed

it, and then sent it to the display so it could be superimposed on the

output of character generator.

The display resolution was 120 pels/in horizontally and 96 lines/in

vertically. The images to be superimposed were assumed to have large

empty areas (i.e., white color) and tended to have large numbers of

www.manaraa.com

10

horizontal and vertical lines. The resolution of the scanner was the

same as the one of the screen. The main goals were to have a fast

method of decompression that could decode the compressed data without

using any image buffer to store the complete picture, and the decoding

method should be simple to be implemented. This was done by decoding

the screen part by part from top to bottom then restarting this proc

ess again. The compression/decompression method used was a combination

of block coding (refer to discussion of [8J below), simple run-length

coding, and very simple prediction. Since this method was not designed

to give an optimum compression factor, this review will not discuss it

furthermore.

Reference [9] described the Edge Difference Coding (EDIC) tech

nique. This technique looks at the current and previous line from left

to right looking for the next two color changing pels, and then defines

a state out of the following three states:

1) State SI: One transition pel is in the current line
and the other one is in the previous line.

2) State S2: Both transition pels occur in the preceding
line.

3) State S3: Both transition pels occur in the current
line.

The states are then coded as follows:

1) State 81: A code for the distance between the two pels
would be sent.

2) State S2: A code to signal that this state had happened
would be sent.

3) State S3: For each of the two transition pels, a code
of the run length that ended before it would be sent.

www.manaraa.com

11

Reference [10] is a short review of facsimile development and its

current state from the point of view of speed, technologies used, and

specific machines. It covers both analog and digital facsimile. One

example of analog facsimile decreased transmission time by bandwidth

reduction. Another analog facsimile decreased transmission time by

scanning faster, on the sender and receiver, over white areas. No re

dundancy reduction algorithm was presented.

Reference [11] discusses a system that uses a method called Combined

Symbol Matching (CSM) for facsimile compression. The system works in the

following two stages:

1) Symbol Matching: In this stage, the system tries to find
the basic symbols, e.g., alphanumeric characters, of the
document. It scans for symbols till it finds one. Then,
it will compare the found symbol with the library of sym
bols the system encountered before. The comparison uses
some symbol features as a preliminary screening before it
performs the bit map comparison. If a match is found, the
symbol number in the library will be sent with its rela
tive location from the previous symbol. If no match is
found, the symbol with its features and bit map will be
added to the library and its bit map, width, height, and
location will be sent to the receiver. Any symbol that is
sent is replaced by white space. After all symbols are
processed, the next step starts.

2) Residue Coding: By residue, it is meant the document
without the symbols sent in stage 1. This residue is
coded by a two dimensional run-length coding and sent to
the receiver.

The compression factor found by this method for compressing the

CCITT documents (resolution was 200 x 200 lines/in =8x8 pels/mm)

is a 2 to 3 times READ's (Relative Element Address Designate) compression

factor for document 5 and about the same for document 2. A pattern recog-

www.manaraa.com

12

nition was tried and resulted in compression factor greater than 250

for compressing a business letter.

We would like to make note of the following points:

1) There were some overhead bits sent whether symbols
were matched or not. No matching has higher overhead.

2) The paper allowed for small error in matching the symbols.
When it tried exact matching, a decrease of 50% in the
compression factor was reported.

3) The code was asynchronous. For each matched symbol, some
overhead (e.g., shift up or down, distance to previous
block) was needed to be sent, whereas for each non-matched
symbol its size and its distance to the previous symbol
were sent. For each line, the location of the first pel
on the line and a flag to indicate if there was a symbol
or not would be sent. These overheads complicate the cod
ing and decrease the compression factor.

Reference [12] is an invited paper that gives an overview of digital

facsimile coding techniques in Japan. The author classified the two

dimensional information preserving codes into line by line coding and

simultaneous coding of n lines. For simultaneous coding, he gave the

following three examples:

1) Mode Run Length Coding: It examines n lines at the same
time. For each horizontal pel location, a state is defined
depending upon the corresponding pels in the n lines.
The code sent is the run-length code of the state with a
variable length code for state to state transition.

2) Coding by Zig-Zag Scanning: The pels are read in a zig-zag
way (i.e., we jump from reading a pel in line i to reading
another pel in line i+1, then we go back and read a new
pel in line i, and so forth). A simple run length coding
of the encountered bits does not work well. One technique
to solve this problem is to predict the pel based on the
three pels read before it. Then, the runs of correct and
erroneous predictions are run length coded by a suitable
code for each of them.

www.manaraa.com

13

3) Cascade Division Coding: This is almost similar to the
block coding in [8J.

The author mentioned that recent trend had recognized line by line

coding as the most favorable approach for two dimensional coding. He

then gave the following examples of line by line coding:

1) Two Dimensional Prediction Coding: It is one of the
earliest proposals. Other coding methods 'such as Preuss'
or the one in [4] had this method as a step within many
steps. So, we will not discuss it.

2) Relative Address Coding (RAC): It has the same general
principals of PDQ and EDIC. The author suggested that
although PDQ was known first, RAC was one of the landmarks
in the history of facsimile. He attributed this to the
fact that PDQ was not described as a practical coding
scheme and no comparison with simultaneous coding scheme
was available. But RAC was the first method to present
the fact that line-by-line coding could, indeed, give
better compression factor than simultaneous coding. It
works by sending the code that specifies the positions
of the changing elements in each line. The position of
each changing element is sent by sending the code of the
shortest following two distances: the distance between
the current changing element and the previous one in the
same line, or the distance between the current element
and the nearest one in the line before it.

3) Edge Difference Coding (EDIC): It was explained in our
discussion of [9].

4) Coding by Rearranging Picture Elements ; This is divided
into microscopic and macroscopic rearrangements. The method
by Mounts et al. [5] is similar to but more advanced than
the microscopic method the author reviewed. The macro
scopic rearrangement is done by finding the size of the
characters and then arranging the characters of each line
at its left. The arranged image is then coded by micro
scopic coding.

5) Coding by Classified Pel (CP) Station: The basic idea is
similar to Preuss' method; hence, we will not discuss it.

6) Relative Element Address Designate (READ) Coding: It
combines features of RAC and EDIC. A modification of it,

www.manaraa.com

14

called Modified READ (MREAD), was accepted by CCITT as the
standard code for two dimensional coding (refer to dis
cussion of [13]).

Reference [13] describes the CCITT standard for one and two dimen

sional coding of documents for facsimile transmission. This standard

has been drafted by Study Group XIV of CCITT as recommendation T.4 for

what is called Group 3 facsimile machines. The elements of this stand

ard that are important to us are the following:

1) Resolution: Each scan line on an A4 size document is
divided into 1728 pels. The normal vertical resolution
is 3.85 lines/mm. A higher vertical resolution of 7.7
lines/mm is available as an option.

2) Timing: Due to mechanical limitation of some machines
(specially in the recorder part), a minimum transmission
time is assured for each line so that the sender and the
receiver can be synchronized together.

3) The one dimensional code: It was decided to use a run-
length coding technique. Huffman coding was chosen because
of its good compression factor. The paper reported that
an experiment showed that the error recovery of Huffman
code was comparable to other codes. Instead of coding
the length from 0 to 1728, it was decided to limit the
size of the table by using make-up words. Hence, this
table was named the modified Huffman table.

4) The two dimensional code: Several proposals were submitted.
The committee chose READ (suggested by Japan) and added
some modifications to it. Hence, the code is called the
modified READ (MREAD). The committee found the compres
sion factor of READ to be the same as the one of other
proposals. But READ was chosen because it has been imple
mented in a large number of commercial machines (Japan
depends a lot on facsimile, refer to [12]).

Then the paper also discussed the error recovery of both the one

and two dimensional standards. This error recovery will not be discussed

in this review. It also gave some simulation results of one and two

www.manaraa.com

15

dimensional standards applied to the CCITT documents.

Reference [14] derived the entropy of RAC method, a scheme based

on non-Markovian grammar. It gave numerical examples to prove the cor

rectness of this derivation and the wrongfulness of another method,

presented by other authors, which used 2nd order Markovian model. The

error in the numerical values was an order of magnitude.

Reference [15] is a modification of Preuss' method. In this method,

after predicting the new line from the old one and finding the predic

tion errors for each state, the length to be coded is the length from

the state first correct prediction, in a sequence consisting of the

same states, to the current state error in this sequence.

Reference [8] has many good points besides its coding method. So,

we will present its steps in the following:

1) It used a set of masks to remove notches and pinholes
from the scanner output. The notches are mostly caused
by the presence of imperfections in the scanning process.
Removing these nothces improves the coding efficiency
and, to a certain extent, improves image quality.

2) For every single black pel between two or more whites,
another one is inserted before it. Th.is is necessary
so that no loss of information will occur after the next
step.

3) The image is subsampled in horizontal and vertical direc
tions by taking every other pel in these two directions.
Hence, resolution is reduced by a factor of 4.

4) The picture is divided into blocks of certain size called
Initial Picture Block (IPS). If the IPB is not either
all white or all black it is divided into 4 subpictures
blocks (SPB) and a code of the division is sent. Each SPB
is tested to check if it is all white or.all black, if no
further division is made. When an all white or an all black
SPB is found, a code for it is sent. The division con

www.manaraa.com

16

tinues (if no all white or all black is found) till an
SPB of size 4, called basic picture block (BPS), is
reached. The BPBs are Huffman coded according to the
position of the black pels among its 4 pels.

5) The received data are used to construct the subsampled
data which are interpolated to get the original data.
Three methods of interpolation were used, namely, bi
linear, replication, and B-spline. Subjective tests were
made and led to the conclusion that bilinear was almost
the best of the three methods. An average of 20% de
crease in quality was noticed in these tests.

6) Due to the interpolation, some extra points might be
generated. Some restoration matrices were used with two
of the interpolation methods to get rid of these points.

The CCITT documents were scanned and compressed. The compression

factors were compared with the ones of the MH (in original and sub-

sampled form) code and found to be better. But, if we compare the ra

tio of its compression factor to the one of the MH subsampled, it is

found to be almost the same as between MREAD and MH (neither MREAD nor

MH in this case is subsampled). So, no big gain in compression factor

was due to the coding method itself, except maybe for document 2. The

following three IPB sizes were used: 8x8, 16 x 16, and 32 x 32 pels.

Bigger sizes were not used and the paper suggested that no further

substantial increase in compression factor could be achieved in this

way. The compression factor generally increased with the size increase

of IPB. This is maybe due to the extra overhead bits needed in cod

ing smaller IPB sizes.

Reference [16] is an example of progressive image transmission

technique. It transmits defined pieces of the image till the whole image

is transmitted. The benefit is that most of the details can be seen

www.manaraa.com

17

faster and we may stop at a stage before sending the whole data and

still get a good image. It transmits in 7 stages as follows:

1) Every line numbered a multiple of 16 is transmitted
with l/4th of the horizontal resolution.

2) Another line out of 16 is transmitted at the same hori
zontal resolution. Each of these lines will be in the
middle of two previously transmitted lines (i.e., in
stage 1 we transmitted lines 1, 16, 32,... and in stage
2 we transmitted lines 8, 24, 40,...).

3) One of 8 lines is transmitted. These lines (numbered
4, 12, 20,...) are in the middle of lines transmitted
in stage 1 and stage 2. So, after stage 3, every fourth
line is received at l/4th of the horizontal resolution.

4) The horizontal resolution of transmitted lines is
doubled. So, every fourth line is received at half reso
lution.

5) One out of 4 lines (e.g., lines 2, 6, 10, 14,...) is
transmitted at half resolution.

6) The horizontal resolution for previously transmitted
lines is doubled. So, at the end of this stage, all
lines are with full resolution. These lines are the
even lines.

7) The odd numbered lines are transmitted at full horizontal
resolution.

The lines sent at each stage are coded using CCITT code (both one

dimensional and two dimensional). Note, that for half horizontal reso

lution, each element is replaced by two pels on the screen.

The paper suggested that stage 5 could be considered as the last

stage for screen display since it requires 864 pels/line and 1188

lines/page which is the resolution limit of high resolution monitors.

Reference [17] is another progressive transmission technique. It

has four stages. The image is sampled at l/4th of both the horizontal

www.manaraa.com

18

and vertical resolutions. These samples are coded by one dimensional

code and the codes are sent to the receiver that interpolates the miss

ing pels. In the next three stages, run length codes of the prediction

errors of the remaining pels are transmitted. The prediction used pre

viously transmitted pels as the reference for prediction.

Reference [18] presented an experimental system of facsimile

communication using packet switched data network (PDSN). Facsimile

is usually sent by telephone over public switched telephone network

(PSTN). The paper gave the communication protocols and the needed

processors for the experimental system. It also used the facsimile

standard of group 3 machines.

Reference [19] described features of an apparatus for fast docu

ments transmission over a 1.536 Mbits/s satellite link without re-

dundacy reduction. It presented new techniques for recording a sys

tem and its control procedure.

Reference [20] presented error sensitivity of both the one and

two dimensional facsimile coding standards. As expected, it was found

that two dimensional coding was more affected by errors than the one

dimensional coding. The paper discussed ways to stop the error effect

from spreading throughout the page.

Reference [21] described a facsimile compression system that uses

a symbol matching technique. It used the same principal as in [11] with

some modifications and presented more details of both the symbol match

ing and the features extraction. It had two more features to be ex-

www.manaraa.com

19

tractad than the features In [11]. It reported that these two features

offered higher degree of symbol identification. The paper also showed

that some signal modification techniques, applied before the two dimen

sional coding, resulted in a typical 14% improvement over regular two

dimensional coding.

Reference [22] used a symbol matching technique similar to the one

in [11] and [21]. It was more enhanced, more optimized, and did not have

residue coding. The main advantages of this new technique are the fol

lowing ;

1) It matches not only symbols but also nonsymbol patterns.
A nonsymbol pattern was defined as a pattern of certain
size and window, and that has a black pel in it which is
connected to other black pels outside the pattern. An
example of this is parts of vertical and horizontal lines,
the symbol is defined as a pattern that has connected
black pels, is totally surrounded by white pels, and fits
inside a window. This allows the method to efficiently
code graphics. So, all black data are coded and no resi
due is left. This, of course. Implies a white back
ground.

2) The symbols in a line are stored and arranged in a buf
fer before sending them to the receiver. This resulted
in efficient coding. Example of this efficiency is that
it arranges the same symbols after each other and does
the following: the code of a repeated symbol (i.e., its
library number) is sent first for its first occurrence.
Then, for the coming consecutive occurrences of this
symbol, we send a shorter code (3 bits) that signals the
receiver that the library number is the same as before.

3) It used a better criterion for symbol matching.

4) The bit map was compressed by the CCITT two dimensional
code before sending it.

5) The coding of the data was more optimized and used vari
able length code for control information.

www.manaraa.com

20

6) The library management was better and the library size
was bigger.

7) The compression factor ratio to the one of CCITT two
dimensional code was often doubled and it reached 4.5.
Compared to CSM, it was 20-80% bigger.

8) For CSM and this method, the compression factor doubled
between two versions of the same document that differed
in resolution.

9) By using mixed custom and programmed logic, it was able
to send a document in one to two seconds at a 64 kbits/s
rate.

Note that the paper reported wrong matches (e.g., between 0 and 0,

i and 1).

Reference [23] describes algorithms used in the design of Image

View Facility (IVF), a system/370 based software that permits the

display and fast manipulation of binary images. This software allows

images to be rotated, scaled (so it can be displayed at different reso

lutions), and compressed. The compression algorithm is a slight modifica

tion to MREAD. It modifies MREAD by dropping the end of the line se

quence, not inserting any fill bits, and using an end of the document

sequence. The paper reported an increase of the compression factor by

15 to 35% when these modifications were added to the case of not using

them. The images to be compressed had the same horizontal resolution

as CCITT standard, but the vertical resolution was slightly different

(1100 and 2200 lines/page for low and high resolution, respectively).

The decompression time was found to be 3 to 10 times faster than the

authors anticipated.

www.manaraa.com

21

From the above review, we come to the following conclusions:

1) Line-by-line techniques are the best among the tech
niques that do not have any. symbol matching capability.
Practically, there is no difference between the line-by
line techniques, so MREAD can be chosen because it is the
standard.

2) Line-by-line techniques, even though called two dimen
sional coding, are a limited form of two dimensional
coding because first, these methods use no memory to
remember the content of more than one reference line.
Second, the coding line uses only a small part of the
information available in the reference line.

2.2. Review of the Lempel and Ziv Algorithm

The investigation in Chapter 4 will show that the compression

methods used in facsimile, except those that use pattern recognition

or symbol matching techniques have two problems. First, they do not

give the same compression factor they give in facsimile machines.

Second, they are limited in the amount of redundancy they can recog

nize. Therefore, a new type of algorithms should be investigated.

The universal coding algorithms are such algorithms. From these uni

versal coding algorithms, we chose the Lempel and Ziv algorithm which

we Will review in the rest of this chapter. For a review of universal

coding, refer to [24j-[31].

The Lempel and Ziv method for data compression looks at the data

as a string of symbols. This string is a collection of smaller strings

(substrings) of symbols (substrings may overlap). These substrings

are generated from previously encountered substrings and some symbols.

While this method scans the string, it builds a table of these sub

www.manaraa.com

22

strings and sends a code of the current substring. By finding the best

substrings to represent the original string, we get a total size of the

sent codes that is smaller than the size of the original string; hence,

the data are compressed.

In the following review, we will look at papers that dealt with

the Lempel and Ziv method, including papers by the authors themselves.

For the sake of following the method development, we look at the papers

in their chronological order.

The following abbreviations will be used:

LZ = Lempel and Ziv

LZ method (or theorem) = The Lempel and Ziv method (or
theorem).

LZW method (or theorem) = The Lempel, Ziv, and Welch method
(or theorem). It is a modification
and clearer representation of Lempel
and Ziv's method done by Welch.
This method is the one we will be
using later.

[_ X _j = The smallest integer bigger than x.

In [32], Ziv proposed two forms of the probability of the block

coding error. He then proved the existence of a universal constant code

for which the error probability (using both forms) goes to zero as the

code length goes to infinity.

An algorithm for coding was given in [32]. It works as follows:

- The message is divided into blocks of n letters each.

-Each block is divided into n/k vectors (k-grams).

www.manaraa.com

23

- Each vector (gram) is translated into a code which is a
(k |_ log.L J) vector, where L is the size of the source
alphabet.

- The code word of a block consists of nR binary letters
(bits), where R is the coding rate.

- The code is divided into two parts:

a) a list of the distinct vectors in the n letters.

b) a sequence of codes for the (n/k) vectors where each
code is an address for a word in the list of distinct
words in part a above.

It was shown that the probability of an encoding error can be

made small for output rates which are not larger than those of the op

timal codes that do depend on the statistics of the source.

In [33], Lempel and Ziv looked at the complexity of finite se

quences. They proposed linking the complexity of sequences to a

gradual build up of new patterns along each sequence from a finite

alphabet. Works before this tried to define the complexity of the

sequence by linking it to an algorithm by which the sequence is sup

posed to be generated. This definition of the complexity is not of

fered as a new absolute measure of complexity, which the authors be

lieve nonexistent. Rather, it evaluates the complexity from the point

of view of a simple learning machine which, as it scans an n-digit se

quence (S = Sĵ ŝ ŝ) from the left to the right, adds a new

word to its memory every time it discovers a substring of consecutive

digits not previously encountered. The size of the vocabulary and

the rate at which new words are encountered along S serve as basic

www.manaraa.com

24

ingredients in the proposed complexity evaluation.

The proposed measure is defined and put to test against a well-

established test case, namely, the de Bruijn sequences. Under this

measure, it was shown that most sequences are complex. However, it was

also shown that this measure was not very weak, by showing that it dis

carded ergodic sources with normalized entropy less than one.

The paper laid down some definitions of sequences build up and

sequences parsing. The "reproduction" and the "production" of a se

quence from its parts were defined.

The complexity of S was defined as follows. Any nonnull sequence S

can be parsed into its history as in H(S) = S(l, ĥ) S(ĥ + 1, hg)...

S(h T + 1, h). These m strings are called the components of H(S).
m—1 m

A component Ĥ (S) and the corresponding production step, S(l, ĥ =>

S(l, ĥ) are called exhaustive if S(l, ĥ _̂) -/-> S(l, ĥ), where ==>,

—>, and -/-> mean produce, reproduce, and do not reproduce, respective

ly. A history is called exhaustive if all of its components except the

last one, are exhaustive. Every nonnull sequence has an exhaustive his

tory.

Let's now define the following terms:

c (S) = The number of components in a history H(S) of S.
H

c(S) = The proposed measure of complexity of the sequence S

= min {ĉ (S)}.

c (S) = The number of components in the exhaustive history
 ̂ of S.

www.manaraa.com

25

It was proved that c(S) = ĉ CS). An upper bound for c(S) was

given in terms of n and a, where n is the code length and a the size

of the input alphabet. It was shown that for almost all strings S, c(S)

was close to this upper bound.

The main idea from this paper that will be used in the following

papers is the way strings can be built and their proposed complexity

measure.

Using the concept of string copying procedures introduced in [33]

for building sequences from the parsing of its individual substrings

with minimum number of steps, [34] introduced an algorithm for com

pressing the sequence without prior knowledge of its statistics. The

effect of source statistics on the code manifests in building the

string from previously encountered strings.

The encoding algorithm proposed by [34] can be explained as fol

lows;

- Let A be a finite alphabet of a symbols and S a sequence

of letters from the alphabet (A S = ŝ ŝ ®l(s)'

where l(s) = length of S).

- S(i, j) = ŝ Sj .

- For each j, such that 0 ̂ j ̂ &(s), S(l, j) is called a

prefix of S; S(l, j) is a proper prefix of x if j £ i(s).

- For S(l, j) and i, where i ̂ j, let L(i) denote the largest

nonnegative Z, where 2 ̂ &(s) -j, such that S(i, i+2-1) =

S(j+1, j+&). p is the position within S(l, j) for which

www.manaraa.com

26

L(p) = max {&(!)}; maximization is over i, where i is in

the range [1, j].

- The substring S(j+1, S,+L(p)) of S is called the repro

ducible extension of S(l, j) into S and the integer p is

called the pointer of the reproduction. So, although

S(l, j) may reproduce, i.e., by copying, different exten

sions bigger than S(l, j), we choose the longest exten

sion to be the reproducible one.

- The encoding is done by parsing S into S = ŝ ŝ ŝ ...,

where ŝ is the reproducible extension of ŝ into S and

the reproducible extension of ŝ ŝ into S, and so on.

Each ŝ is assigned a code ĉ (ĉ has a fixed length).

- To get a bounded delay encoding, a buffer of finite length

n is used to hold the last encountered symbols. The pars

ing is modified by limiting &(ŝ) to a maximum value of L̂ .

The parsing is done now by finding the reproducible exten

sion of B(n-Lg) into B, where B is the buffer content.

The encoding proceeds as follows:

1) Initialize the buffer to (n-L̂) zeros (the left side of

the buffer) followed by the first symbols of the input

string S (reading S from left to right). This content

of B is Bĵ .

2) Having determined B̂ , look for the reproducible extension

E of B̂ (l, n-Lg) into B̂ (l, n-1). From E, get ŝ = E.s

www.manaraa.com

27

where s is the symbol next to E in For let =

&(E) + 1.

3) Let be the reproduction pointer used to determine ŝ ,

then the code word ĉ for ŝ is given by ĉ = ĉ ̂ĉ ̂̂ j_3

where :

= Cp̂ - 1), so &(ĉ)̂ =|_ logg (n-L) J .

=12 ° ̂ î - 1)' &(ĉ 2) = l_ log2 I-g J •

ĉ ̂and ĉ 2 are in radix a representation.

ĉ 2 last symbol of ŝ (i.e., ĉ ̂~ B̂ Cn-Lg + .

Send out the code ĉ .

4) Shift (to the left) out of the buffer the symbols occupy

ing the first left positions while feeding in the next

symbols from the source.

5) Go to step 2 and continue till all the string S is encoded.

Decoding is done by reversing the encoding process, it works as

follows:

1) Use a buffer of length (n-L̂), initializing it to zeros.

This is B̂ .

2) From ĉ ,̂ and determine p̂ and

3) Store the content of B̂ (p̂).

4) Shift to the left B̂ one time. Put the stored B̂ (p̂)

in B (n-L).
i s

5) Continue the storing, the shifting, and the filling

for - 1 times.

www.manaraa.com

28

6) Shift to the left one more time and then fill B̂ Cn-L̂)

with the symbol s which comes from ĉ g.

7) is now in B̂ (n-L̂ -il̂ , n-L̂) which is the far right

positions of B̂ .

8) Go to step 2 and continue till all the ĉ 's are decoded.

Reference [34] derived bounds for block-to-variable and variable-

to-block coding designed to match a specific source. Then, it derived

the bound for this universal coding and showed that it uniformly ap

proached the lower bounds for the two coding methods.

Reference [35] defined the finite state encoder and decoder and

restricted the discussion to this class of machines. This machine has a

memory and encoder (or decoder) delay time. Two examples of this class

were given, one of them was a block encoder. The block encoder was the

one that was used in the rest of the paper.

For faithful coding, under constant coding and decoding rate, the

paper defined the quantity h(u) and showed that it played a role analo

gous to that of the entropy, although no statistical information was used

to get h(u). The analogy came from finding that, using the coding method

introduced in [32], the coder input did not equal the decoder output if

h(u) > logg B, where S is the size of the output alphabet. h(u) is de

fined as a measure of the complexity of the sequence ;

h(u) = lim hjCu), where hgCu) is given by
5,-x» ̂ ̂

logg Sh (u) = number of distinct I vectors in an in
finitive sequence u.

www.manaraa.com

29

From h(u), the source complexity H(u) was derived. It was also

shown that the entropy of a source equaled its complexity, H(u), for an

ergodic source, and the expected value of the complexity for a station

ary source.

It was also shown that a normalized version of the Lempel-Ziv

complexity, defined in [33], was a lower bound on H(u).

Reference [36] took the concept of universal coding introduced in

[34] and applied it to variable rate coding. The way it parses a string

is the same, but the way it codes individual parameters is different.

The paper also defined the compression ratio of a finite state encoder

in terms of the block length, the code length, and the size of the

source symbols. From the compression ratio, the minimax p(X) is defined

as the finite state compressibility of a sequence x (as block length

goes to infinity and number of states goes to infinity).

Reference [36] also showed that p(x) had a lower bound in terms of

the normalized Lempel-Ziv complexity (defined in [33]). p(x) also has

a role analogous to that of the entropy (as did the quantity HC.) defined

in [35]).

Reference [37] showed that there existed an asymptotically optimal

universal coding scheme (the encoder is assumed to be an information

lossless finite state encoder, whcih is defined in the paper) under

which the compression ratio of a string x tended in the limit to the

compressibility p(x) for every string x.

A direct application of LZ method, as presented in [33], needs

www.manaraa.com

30

2
calculations of 0(n), where n is the string length. To overcome this

problem, [37] used an algorithm of tree construction due to McCreight.

The parsing of the string is done by building a compact tree which is

linear in n. Then, McCreight algorithm makes it possible to construct

this tree in a time linear in n, i.e. 0(n).

Using this method and a universal presentation of integers yielded

a universal linear variable-to-variable encoding scheme. The compres

sion ratio of this scheme was shown to be optimal for ergodic sources

as the length of the input string goes to infinity.

Reference [38] looked at the LZ algorithm as an example of data

compression via textual substitutions or macro coding. It classified

macro coding into two classes, namely, external and internal macro

schemes. Each class is divided into subclasses. LZ method falls under

the subclass called original pointer macro coding in the internal macro

scheme class (an original pointer is defined as a pointer that points to

a substring of the original string).

Reference [38] then related the performance of the LZ method to

other classes showing that the worst case performance of LZ did not com

pare favorably with other schemes. It also mentioned that LZ was asymp

totically optimal for ergodic sources as the source length tended to

infinity, but for individual finite strings it could be far from optimal.

Reference [39] showed that for parsing strings, the greedy dis

sectors, such as LZ, were optimal for some classes of strings but not

for others.

www.manaraa.com

31

Reference [40] showed that LZ method could be represented by an

incomplete parsing tree. It then showed that the working of LZ could

be explained by an equivalent symbolwise model. This representation

gave more insight on the work of LZ and why it compresses the strings.

In [41], Welch gave a modification of LZ method and showed more

clearly how to use it. We delay discussing it to a later chapter to

avoid repetition.

Reference [42] looked at three compression schemes, namely, LZ

method, arithmetic coding, and Huffman coding. It gave some bounds

for each of them and did some simulation to compare them. The simula

tion gave better results than the bounds did. It also gave the follow

ing interesting results:

1) For the data that occupy a small size memory (less than
1KB), it is recommended to use the arithmetic coding.
For the data that occupy a medium size memory (few KB),
the Huffman code is the best. For the data that occupy
a big size memory (tens of KB), the LZ coding (which it
called universal coding) is better than the other two.

2) The cross point between the algorithms, as memory varies,
depends on the source entropy. For instance, if memory
equals 1KB the cross point between the arithmetic and the
Huffman coding is at entropy equal to 0.19. This means
that for a data of size 1KB, Huffman coding is better
for entropies bigger than 0.19.

Reference [43] gave a modified LZ coding which finds out the basic

building blocks (words or sentences) of the language and synchronizes

itself on these blocks. It achieves this by searching for a new string

match then letting this match be the extension of the string method in

the last previous search. The memory requirement is the same as in

www.manaraa.com

32

the LZW algorithm but it requires complex programming to solve some

special cases.

A simulation result showed that this algorithm compression factor

was slightly less than the one of LZW for an English text and a Fortran

source code and bigger for a pseudo random sequence. An interesting

note, which [43] did not mention, is that this algorithm gave better

results as the entropy increases (the best result was for the pseudo

random sequence). Using a variable coding for the output improved the

compression slightly (6%).

Reference [43] showed that for the basic LZ the binary representa

tion is better than the one byte representation because the new symbol

is smaller in the first case (one bit vs. 8 bits). This problem can

be solved by including the new symbol as first symbol of new string

(as in LZW).

It also showed that choosing the basic building blocks (i.e., 4, 8,

16 bits) as the symbols was better than the others (e.g., 3 bit symbols).

In [44], Lempel and Ziv tried to extend their universal code to

picture compression. They did this by using one of the color filling

algorithms to scan within subblocks of the picture. The intuition about

this is that this way of scanning the picture will produce for each block

a string that is more suitable to the compression than the string of a

normal scan. The order of moving from a subblock to another also tries

to exploit this more by avoiding the move to a subblock that is far in

the picture but next in order in a normal scan. It does this by moving

www.manaraa.com

33

forward then backward (or upward then downward) instead of moving for

ward from one end to another then retracing to a lower block to start

a new block.

Our intuition is that this method may not be suitable to our

specific goal because of the following reasons:

1) It works on square pictures; but our way of dividing
the picture into blocks according to their class of
content, will mostly produce rectangular blocks instead
of squares.

2) It is suitable for blocks of colors, but for graphics
or complex colors we think it will not work much better
than normal scanning will.

Due to time limitations, this method will not be checked.

www.manaraa.com

34

3. CREATION OF THE IMAGE DATA BASE

3.1. Classification of the Library

Informational Material

A survey was done to get an idea about the type of information

contained in typical library materials. The subject of this survey was

selected magazines that are thought to be representative of the other

magazines in the library. The magazines were chosen because they will

be more used in the electronic library than other materials like books.

Besides that, magazines contain more colors and photos. Hence, they oc

cupy more memory in storage and take longer transmission time.

The results of the survey are shown in Table 3.1. Under each class

of data in this table, column "b" represents the percentage of the size

of this class to the size of the whole document. For all classes ex

cept "text" and "space" classes, column "a" is the percentage of pages

containing that class to the total pages of the whole document. Column

"a" in "text" is the percentage of pages containing text only to the pages

of the whole document. It is meaningless to have a column "a" in the

class "space" because all pages contain some amount of space.

The average of each column in Table 3.1 was calculated. It showed

that text represented 57% of the data and space represented 13.5% of

the data. Black and white photos, colored photos, and graphs classes

represented no more than 10% each. The percentage of pages containing

only textual data represented an average of 33% of the total pages in

each document.

www.manaraa.com

Table 3.1. Results of the library data survey

Periodical
% text % space % b/w photos

Periodical a b b a b

Polymer Science 30.00 57.00 20.00 1.20 0.30
Bios 62.00 66.00 9.20 18.80 11.30
The American Biology
Teacher 29.00 62.00 11.00 30.80 7.50

Mechanical Engineering 14.30 44.30 10.70 30.00 9.80
Business Review 19.60 63.80 17.30 27.00 7.60
Welding Journal 3.70 40.40 9.70 38.20 11.30
Ergonomics 55.80 70.70 16.20 0.96 0.50
Aerospace 0.00 40.70 13.50 15.00 0.70
Sight and Sound 1.30 57.20 5.70 80.00 24.90
Nebraska Farmer 0.00 28.50 13.70 57.30 17.80
Political
Methodology 79.00 64.00 26.00 0.00 0.00

National Journal 29.00 68.00 14.00 54.00 14.00
Higher Education 79.00 77.00 8.90 0.00 0.00
International
Journal of Computer
And Information
Science 59.00 65.00 14.00 0 .00 0.00

AVERAGE 32.98 57.47 13.56 25.23 7.55

www.manaraa.com

36

% color photos % graphs % tables Sum
a b a b a b b

2.50 2.50 61.00 16.60 5.80 0.66 97.06
5.00 5.00 12.50 6.70 3.80 1.00 99.20

11.80 7.90 57.00 10.00 1.50 0.30 98.70
41.40 26.00 35.00 8.50 0.00 0.00 99.30
2.20 2.20 43.00 6.00 3.30 0.70 97.60
39.70 23.80 69.90 12.30 6.60 1.60 99.10
1.90 1.60 31.70 6.40 13.50 3.40 98.80

100.00 45.00 20.00 0.70 0.00 0.00 100.60
1.30 1.20 73.80 11.10 0.00 0.00 100.10
41.20 23.00 90.00 16.90 0.00 0.00 99.90

0.00 0.00 6.00 5.00 15.00 9.00 104.00
2.00 0.40 0.00 0.00 6.00 • 1.00 97.40
0.00 0.00 7.00 4.00 9.70 6.00 95.90

0.00 0.00 25.00 12.00 11.00 5.00 96.00

17.79 9.90 37.99 8.30 5.44 2.05 98.83

www.manaraa.com

37

Ifhat is meant by the class "space" is the space that separates

different types of blocks in each page of each magazine. For example,

the space between lines and the space in graphs are not counted as space

in our classification.

3.2. Device Description

The IBM PC class of computers has many resolutions that depend on

the graphics board used. The most common boards are:

a) The Color Graphics Adapter (CGA).

b) The Enhanced Graphics Adapter (EGA).

The CGA has many modes of resolution. Some of these modes are for

text only and some are for graphics and text. Since we need to display

graphics, we chose the graphics modes. From these graphics modes, the

mode with the highest number of displayed pels is mode 6 which can dis

play 640 pels/line x 200 lines/screen x 2 colors/pel, where the two

colors are black and white.

The EGA has the same modes of the CGA and more. The highest resolu

tion it can display is 640 pels/line x 350 lines/screen x 16 colors/pel.

At the time this research started, the CGA was widely available

while the EGA was at its second year and starting to be popular. This

fact plus the fact that the investigation we did in section 3.1 showed

that most of the library documents consisted of text and graphics, led

us to choose the CGA at the start. The goal was to investigate applying

the compression algorithms in the CGA with the text and graphics

www.manaraa.com

38

screens. Then, based on the result we get from this investigation, we

will investigate the modification of the algorithms in the EGA. Due to

time limitations, this research will not investigate the algorithms in

the EGA; furthermore, in a library system we envision that the data will

be sent in CGA mode 6 unless colors or photos are needed. This is due

to the following reasons:

1. The CGA resolution is adequate and the size of the screen
data is l/7th of the size of the EGA screen.

2. If more than two colors are needed, the system can send
these data in EGA mode after signaling the receiver of
the change in resolution.

3. Although the EGA can display more text lines per page
than the CGA, the quality of the text is good only if it
displayed the same number of lines (25 text lines/page).

In the following part of the thesis, the resolution of the IBM PC

is assumed to be CGA mode 6 unless otherwise specified. The compression

and decompression times were measured on an IBM PC AT (6 MHz). Note that

the maximum resolution of the new class of IBM machines (PS/2) is 640 x

480 X 256.

3.3. Procedures of the Research

The aim of this research is to experiment with the compression

algorithms presented in the next chapters at the resolution described in

the previous section. The following points will be examined in the

research:

1. The compression factors calculated at this resolution
using the different algorithms.

www.manaraa.com

39

2. The class of images for which each algorithm works the
best among the other algorithms.

3. The effect on the compression factor of dividing the
screen into small blocks then compressing each block
alone.

4. For the low resolution of the PC display, the effect on
the compression factor in case of changing the method,
its code, or both.

A very important point that should be kept in mind is the fact

that, in the regular screen format, the background of the computer

screen is black and the foreground is white. In regular papers, the

reverse is true. Throughout this thesis, we will use the regular

screen format unless otherwise specified.

3.4. Creation of the Image Data Base

The resolution of the IBM PC is a lot smaller than the CCITT low

resolution (1728 x 1128). There are no standard images generated in

this resolution available. To overcome this unavailability, we had to

build our own image data base that represents the type of data we usual

ly find in a library and that needs to be transmitted. The following

guidelines were used in designing the data base:

a. We tried to match the screen size to the actual size of
the data to be transmitted by letting each screen take what
is equivalent to 25 lines in an A4 size paper. So, a paper
with graphics that are equal in height to 50 lines will re
quire two screens to represent it. Note that the text we
generate will also differ from the text in a regular paper
due to the fact that the spacing between lines is zero in
CGA mode 6. In fact, in the graphics screen, each charac
ter takes 8x8 pels block and these blocks have no spacing
between them. However, this does not mean that the charac

www.manaraa.com

40

ters will be connected to each other because in each
character block the bottom or the upper line is empty.

b) For the horizontal resolution, we limited the part we
took from the documents to the equivalent of 80 charac
ters/line of text because this is the limit of the PC
screen.

c) The CCITT standard documents do not represent very well
the data we want to transmit. So, we created many other
samples to be tested.

Appendix A contains a copy of this image data base.

3.5. Classification of the Image Data Base

To help us investigate the compression algorithms applicability in

the screen and the best way to use them, images for the following classes

of screens were generated:

1. Screens that imitate CCITT documents 1, 2, 4, 5, 6, and
8 .

2. Screens that are full of graphics data.

3. Screens that are full of text.

4. Screens that are mixed of both text and graphics and
sent as whole screens.

5. Screens that have one or more blocks of graphics.

6. Screens that can be considered as blocks of text and
graphics and sent as blocks.

7. Screens that are not typical.

8. Screens to test power or limitations of the methods.

By having this extensive data base, we hope it will be a good test

for the compression algorithms. From now on, each class will be as

signed a group number according to its order above.

www.manaraa.com

41

3.6. Results to be Analyzed

The images in the data bases were compressed then decompressed.

The results of compressing each screen are:

a. Compression factor = original size/compressed size.

b. Compression time.

c. Decompression time.

The results of compressing the imitations of the CCITT documents

were compared to published results of compressing these documents using

CCITT standard techniques at facsimile resolution. To make the com

parison more meaningful, the compression factor of compressing each

document and not its parts was used in the comparison. This compression

factor was normalized by dividing it by the compression factor of docu

ment no. 1.

3.7. Implementation Considerations

The following points are some general remarks about the code we

wrote to simulate the algorithms:

1. The byte switching that the 8088 family uses makes ac
cessing the screen buffer confusing if we want to access
it as words. The reason of accessing words instead of
bytes is to speed up the program execution.

2. An earlier version of the program for the one dimensional
facsimile techniques translated the bits of the current
line into a string where each pel is represented by a byte
and the program was written to use this feature. Then
the program was changed to its current form where the pels
are accessed as bits in a word. Although the words and
bits form is more complex, it gave about 40% decrease in
compression time. This is due to the fact that the time
spent in converting bits to string was a waste in the
string version.

www.manaraa.com

42

Writing the code in an optimized manner makes a big dif
ference in both the size and speed of the final executable
code. An optimization of the code resulted in 45% increase
in speed of compression.

At early stages of the development, a big consideration
was given to code optimization. Starting from the coding
of the two dimensional technique, the big emphasis in op
timizing was relaxed because it needed a lot of trials in
order to find the most optimum form. This does not mean
that the code was not optimized from that point on. It
only means that we no longer try different formats of the
code.

Most of the code was written in C language, but part of it
was written in assembly language under the following con
ditions :

a) This part of the code is executed a lot of times or
it has a lot of looping. So, writing it in assembly
language increases the speed of execution.

b) The assembly language provides some commands that en
hances the program, and no corresponding powerful com
mands are available in C language. Examples of these
commands are the string instructions of the assembly
language which provide a speed that cannot be reached
in C because these string instructions are implemented
by the hardware.

www.manaraa.com

43

4. FACSIMILE CODING

4.1. Introduction

In this chapter, we will look at the use of the CCITT standard

one- and two-dimensional facsimile compression techniques for compress

ing images in the data base described in section 3.4. The two standards

were chosen because of the following reasons :

1. They are from the best (each in its dimension) techniques
discussed in the literature.

2. By using them, we may provide the ability to connect the
computer to facsimile machines.

3. A chip that has these two standards built in it was intro
duced. So, building a hardware system that uses these
two standards is feasible.

4. To the best of our knowledge, no report of using these
two coding techniques has been done for the same resolu
tion we are working at.

The CCITT coding techniques have some features that are unnecessary

to us, so we decided to drop these extra features. This resulted in our

code not being exactly the CCITT code. In the following sections, we

will describe the actual implementation of the codes and then give the

corresponding results.

4.2. One Dimensional Compression Technique

For each line, this technique reads the runs of black and white,

looks up the code of each run from the modified Huffman table, and then

sends the code to the receiver or puts it in the compression buffer.

This process is then repeated for each line till all lines are coded.

www.manaraa.com

44

The steps of the compression algorithm are the following:

1. Initialize lines counter.

Start on the first line.

2. Read first pel (pel̂) in the line.

If (pelg is white)

{insert the code of a black run of length zero in
the compression buffer}.

Set color to the color of pel̂ .

pels counter = 1.

3. While (the color does not change and end of line is not
reached)

{increment the pels counter}.

4. Put the code of the run of the current color in the com
pressed buffer.

5. If (the line ended)

{if there are more lines}

{"start on next line" GO TO 2}

else

{"the screen ended" GO TO 6}

else

{"the color changed within a line" GO TO 3}.

6. END.

The steps of decompression algorithms are the following:

1. Initialize lines counter.

Start on the first line.

www.manaraa.com

45

2. Initialize indexes of the compression and decompression
buffers.

3. Read the compression buffer from left to right starting
at its index and find the first bits to match a code for
a black run.

4. Put the run corresponding to the matched code in the
decompression buffer and adjust its index.

Increment the index of the compression buffer by the length
of the matched code.

5. If (decompressed data filled a line)

GO TO ENDLINE.

6. Read the compression buffer from left to right starting
at its index and find the first bits to match a code for
a white run.

7. Put the run corresponding to the matched code in the de
compression buffer and adjust its index.

Increment the index of the compression buffer by the length
of the matched code.

8. If (decompressed data filled a line)

GO TO ENDLINE.

9. GO TO 3.

10. "ENDLINE": Decrement lines counter.

If there are more lines GO TO 2.

11. END.

For more details of the code, refer to Appendix B. This implemen

tation of the code has the following differences with the CCITT standard

for one-dimensional coding:

1. No minimum scan line time is assumed. Hence, no fill bits
are used.

www.manaraa.com

46

2. End of line code is not used. The compressor sends the
size of the block at the beginning of the data, then the
decompressor uses these data to step from line to line.

3. The screen has horizontal resolution of 640 pels. Hence,
the run of 640 pels was used as a terminating word not as
a make-up one. Without this, it will be necessary to send
the code of a run equal to zero pels after the code for a
run equal to 640 pels is sent.

The differences 1 and 2 above arose because the CCITT version of

these points allows the compressor and the decompressor to synchronize

and/or allows for mechanical limitations. These limitations are not

present in the electronic library system. Hence, they will be disre

garded. The end of line code is used in the two CCITT standards to

correct the data if necessary. We assume that the communication soft

ware performs the error correction or that the communication channel is

error free. Hence, no code for error correction is inserted.

The results of applying the one dimensional coding technique to the

image data base are presented in Tables 4.1-4.8.

4.3. Two Dimensional Compression Technique

The CCITT two dimensional coding technique, titled MREAD, was used.

The general concept of MREAD is that the changing elements in the coding

line and the reference line take one out of three states. The code sent

is optimized for these states. MREAD has the same concept we described

in our review of [9]. For a complete description of MREAD, refer to

[13]. In the following discussion, we will use terms and notations de

fined in [13].

www.manaraa.com

47

Table 4.1. Results of compressing images in Group 1 using the CCITT
one dimensional compression technique

Theort. Comprs. Dcmprs.
Comprs. comprs. C.F. time time

Image xl yl x2 y2 factor factor T.C.F. (1/lOOth s) (1/lOOth s)

docla 0 0 639 199 8.03 9.27 0.87 214 99
doclb 0 0 639 199 3.47 4.49 0.77 280 242
doclc 0 0 639 199 15.15 20.62 0.73 192 50
doc2a 0 0 639 199 9.00 12.74 0.71 203 77
doc2b 0 0 639 199 8.12 10.91 0.74 209 83
doc2c 0 0 639 199 12.67 16.34 0.78 198 61
doc4a 0 0 639 199 1.96 2.56 0.77 368 428
doc4b 0 0 639 199 1.67 2.15 0.78 395 500
doc4c 0 0 639 87 1.74 2.24 0.78 170 214
docSla 3 0 514 199 3.80 4.45 0.85 209 165
doc51b 0 0 511 199 5.52 6.61 0.84 187 110
doc51c 0 0 511 114 9.49 16.72 0.57 93 33
docSra 0 0 479 199 2.46 2.93 0.84 237 247
docSrb 0 0 479 199 6.19 8.13 0.76 165 88
docSrc 0 0 479 114 2.86 3.53 0.81 126 121
doc6a 0 0 639 199 4.77 7.01 0.68 231 149
doc6b 0 0 639 199 6.83 13.15 0.52 214 104
doc8 0 0 639 199 5.61 9.64 0.58 203 93

AVERAGE 6.07 8.53 0.74 216 159

Ĉ.F. = Comprs. factor.
T.C.F. = Theort. comprs. factor.

www.manaraa.com

48

Table 4.2. Results of compressing images in Group 2 using the CCITT
one dimensional compression technique

Theort. Comprs. Dcmprs.
Comprs. comprs. C.F. time time

Image xl yl x2 y2 factor factor T.C.F. (1/lOOth s) (1/lOOth s)

frnchSa 0 0 639 199 5.23 7.34 0.71 220 127
flowchrt 0 0 639 199 4.18 5.39 0.78 247 176
electrc 0 0 639 199 2.05 3.44 0.60 318 352
ordrfrm 0 0 639 199 4.13 5.37 0.77 258 192
frnchla 0 0 639 199 5.90 7.92 0.74 231 132
doc2a 0 0 639 199 9.00 20.74 0.43 204 77
doc2b 0 0 639 199 8.12 10.91 0.74 208 88

AVERAGE 5.52 8.73 0.68 241 163

Table 4.3. Results of compressing images in Group 3 using the CCITT
one dimensional compression technique

Theort. Comprs. Dcomprs.
Comprs. comprs. C.F. time time

Image xl yl x2 y2 factor factor T.C.F. (1/lOOth s) (1/lOOth s)

romtxt 0 0 639 199 1.46 1.91 0.76 434 582
frnch2a 0 0 639 199 2.07 2.66 0.78 351 401
pagel 0 0 639 199 3.19 4.04 0.79 291 258
docl-2 0 0 639 199 3.38 4.43 0.76 280 248
cprog 0 0 639 199 5.56 7.22 0.77 236 149
doclb 0 0 639 199 3.47 4.49 0.77 280 242
doc4a 0 0 639 199 1.96 2.56 0.77 362 428
doc4b 0 0 639 199 1.67 2.15 0.78 396 500

AVERAGE 2.84 3.68 0.77 329 351

www.manaraa.com

49

Table 4.4. Results of compressing images in Group 4 using the CCITT
one dimensional compression technique

Theort. Comprs. Dcmprs.
Comprs. comprs. C.F. time time

Image xl yl x2 y2 factor factor T.C.F. (1/lOOth s) (1/lOOth s)

pdraw3 0 0 639 199 4.09 4.84 0.85 253 192
sciencel 0 0 639 199 3.58 4.12 0.87 263 214
science2 0 0 639 199 2.69 3.21 0.84 308 297
docSla 0 0 514 199 3.80 4.45 0.85 209 165

AVERAGE 3.54 4.16 0.85 258 217

www.manaraa.com

50

Table 4.5. Results of compressing images in Group 5 using the CCITT
one dimensional compression technique

Theort. Comprs. Dcmprs.
Comprs. comprs. C.F. time time

Image xl yl x2 y2 factor factor T.C.F. (1/lOOth s) (1/lOOth s)

opampl 160 0 6S9 158 5.80 7.31 0.79 231 71
opamp2 0 0 6S9 190 5.35 6.47 0.83 225 137
ecll 72 7 551 166 8.88 12.51 0.71 121 44
ecl2 0 7 607 190 8.09 10.84 0.75 181 77
netwrk 16 9 62S 187 5.10 7.58 0.67 192 121
tablel 0 IS 639 147 3.17 3.80 0.83 181 159
usai 56 24 519 164 10.43 17.24 0.60 99 33
doc51a S6 48 483 115 5.79 9.06 0.64 55 27
doc5rb 28 4S 475 169 5.31 7.19 0.74 105 61
lotssin 88 22 631 165 3.00 5.08 0.59 171 160
frnch3b 0 0 639 71 5.40 7.96 0.68 77 44
barchrt SO 10 SSS 145 4.50 6.77 0.66 71 44
barchrt SO 10 237 60 2.45 5.48 0.45 22 22
barchrt S2 68 335 145 5.57 9.70 0.57 38 27
test2 120 15 455 120 5.08 6.79 0.75 60 38
tests 120 15 455 120 4.54 5.33 0.85 66 43
test4 120 15 455 120 4.05 4.72 0.86 66 49
tests 120 15 487 120 3.95 4.41 0.90 77 60
diagl 70 26 453 120 5.83 7.92 0.74 66 33
diag2 42 42 393 108 7.03 9.20 0.76 38 17
diagS 210 18 449 131 1.07 4.02 0.27 99 138
diag4 108 14 443 88 5.03 6.13 0.82 44 28
diagS 68 5 467 102 7.44 16.89 0.44 60 28
diagSs 208 28 479 98 5.46 11.85 0.46 33 17
diagô 40 9 279 76 5.03 10.84 0.46 33 22
diagô 22 109 405 141 6.35 15.21 0.42 22 11
diagô 22 9 405 141 8.29 19.13 0.43 82 33
netwrk2 1S6 62 391 136 2.88 5.30 0.54 38 33
pdrawl 0 70 287 150 4.09 4.91 0.83 44 33
usa2 202 26 329 61 3.27 3.94 0.83 11 11
usa2 164 92 403 162 5.38 7.46 0.72 33 16
doc51b 24 19 471 51 7.62 17.35 0.44 22 11
sciences 0 80 127 196 2.94 3.46 0.85 32 33
sciences 456 12 535 66 2.29 2.90 0.79 11 11

AVERAGE 5.19 8.38 0.67 80 50

www.manaraa.com

51

Table 4.6. Results of compressing images in Group 6 using the CCITT
one dimensional compression technique

Cmprs. Dcmprs.
Comprs. time time

Image xl yl x2 y2 factor (1/lOOth s) (1/lOOth s)

pdrawl.pic 0 0 559 150 3.96 170 132
pdraw2.pic 0 0 575 152 3.36 186 159
pdraw3.pic 0 0 575 191 3.56 230 192
pdraw3.pic 16 0 559 39 1.48 72 99
pdraw3.pic 0 70 287 150 4.09 50 33
pdraw3.pic 380 77 571 152 2.66 33 33
pdraw3.pic 48 160 575 191 3.65 33 33
pdraw3.pic 0 0 639 199 4.09 258 192

Compression factor using 4 blocks 3.36

Table 4.7. Results of compressing images in Group 7 using the CCITT
one dimensional compression technique

Theort. Comprs. Dcmprs.
Comprs. comprs. C.F. time time

Image xl yl x2 y2 factor factor T.C.F. (1/lOOth s) (1/lOOth s)

bignames 0 0 639 199 1.38 2.10 0.66 429 566
sun 0 0 639 199 2.62 3.68 0.71 297 291
hazard 0 0 639 199 2.38 3.44 0.69 307 324
manscl 0 0 639 199 1.96 2.62 0.75 340 390
mansc2 0 0 639 199 2.74 3.48 0.79 285 275
fig2 0 0 639 199 1.41 6.31 0.22 346 439
fig4 0 0 639 199 2.86 6.76 0.42 275 247
fig6 0 0 639 199 3.43 4.85 0.71 263 214
fig7 0 0 639 199 5.04 7.71 0.65 231 143
fig8 0 0 639 199 3.10 4.50 0.69 275 242

AVERAGE 2.69 4.55 0.63 305 313

www.manaraa.com

52

Table 4.8. Results of compressing images in Group 8 using the CCITT
one dimensional compression technique

Theort. Comprs. Dcmprs,
Comprs. comprs. C.F. time time

Image xl yi x2 y2 factor factor T.C.F, . (l/lOOth s) (l/lOOth s)

blok3 0 0 639 199 27.22 134.12 0.20 176 22
blok6 0 0 639 199 4.63 16.11 0.29 225 143
boxes 0 0 639 199 12.12 51.39 0.24 192 61
lines 0 0 639 199 7.27 48.38 0.15 214 104
testl 120 15 455 120 10.91 56.29 0.19 54 17
usamap 72 28 551 164 (Comprs ;. factor < 1, not applicable)

AVERAGE 12.43 61.26 0.21 172 69

www.manaraa.com

53

Reference [13] gave details and a flowchart of the compression and

we provided details of the process of decompression in the flowchart in

Figure 4.1.

4.4. MREAD Implementation and Results

The code for MREAD is presented in Appendix C. A close look at

the code combined with our experience while debugging the program sug

gests that the code matching part might be improved in speed if we write

the matching in a tree-like form, i.e., using IF() THEN {} ELSE {} and

nesting these conditions. Such a code was tried and gave an average of

9% decrease in decompress time.

MREAD suggested using k = 2 to help in recovering from errors which

decrease the compression factor. If no error recovery is needed, k =

=0 can be used. This will give higher compression factor. To get k =

it is only necessary to let KFACTOR be 201 in the programs listed in

Appendix C.

MREAD was modified by the modification described for the one di

mensional coding technique in section 2. Note that although MREAD has

minimum scan line time specification, it has no fill bits.

The results of compressing the data base images for the case of

k = 2 and k = are given in Tables 4.9-4.16 and Tables 4.17-4.24,

respectively. The times are obtained by using a tree-like code.

www.manaraa.com

Figure 4.1. Flow diagram of the decompression process using
the CCITT two dimensional compression technique

www.manaraa.com

55

HORIZONTAL

ADJUST INDEX
OF COMPRESSION
BUFFER

MATCH CODE OF r
IN COMPRESSION
BUFFER

ADJUST INDEX
OF COMPRESSION
BUFFER

UPDATE DECOMP-
BUFFER BY ri

PELS OF a- COLOR

MATCH CODE OF r_
IN COMPRESSION '•
BUFFER

ADJUST INDEX
OF COMPRESSION
BUFFER

UPDATE DECOMP-
BUFFER BY r;

PELS OF ag COLOR

START

1-D DECOMPRESSION
OF FIRST LINE

K • KFACTOR - i

ADJUST INDEX
OF COMPRESSION
BUFFER

ADJUST
DECOMPRESSION
BUFFER BY
(b2 - 'o)
PELS OF a„
COLOR

NO

Vj = VERTICAL DISPLACEMENT
1-D = ONE DIMENSIONAL

DECOMP-BUFFER - DECOMPRESSION BUFFER

VERTICAL

ADJUST INDEX
OF COMPRESSION
BUFFER

UPDATE
DECOMPRESSION
BUFFER BY
[(bl-'o)+Yd]
PELS OF
COLOR "

O

a. COLOR
a^ COLOR

NO

K = KFA :T0R-1

DECODE
LINE U
1-D TE

NEXT
SING
CHNIQUE

K = 0

K = K

END OF
BLOCK?

DECREMENT
LINES
COUNTER

DONE

www.manaraa.com

56

Table 4.9. Results of compressing images in Group 1 using the CCIIT
two dimensional compression technique with k = 2

Image xl yi x2 y2
Comprs.
factor

Comprs.
time

(1/lOOth s)

Dcmprs.
time

(1/lOOth s)

docla 0 0 639 199 8.71 286 165
doclb 0 0 639 199 3.41 400 325
doclc 0 0 639 199 17.21 248 104
doc2a 0 0 639 199 11.04 258 126
doc2b 0 0 639 199 9.98 264 138
doc2c 0 0 639 199 15.27 248 110
doc4a 0 0 639 199 1.89 544 522
doc4b 0 0 639 199 1.60 598 604
doc4c 0 0 639 87 1.67 259 258
docSla 3 0 514 199 3.96 291 220
doc51b 0 0 511 199 6.33 247 154
docSlc 0 0 511 114 12.70 120 55
docSra 0 0 479 199 2.45 346 307
doc5rb 0 0 479 199 7.67 220 127
doc5rc 0 0 479 114 2.87 181 154
doc6a 0 0 639 199 6.39 308 181
docSb 0 0 639 199 9.62 274 143
docS 0 0 639 199 9.14 259 132

AVERAGE 7.33 297 213

www.manaraa.com

57

Table 4.10. Results of compressing Images In Group 2 using the CCITT
two dimensional compression technique with k = 2

Comprs. Dcmprs.
Comprs. time time

Image xl yl x2 y2 factor (1/lOOth s) (1/lOOth s)

frnchSa 0 0 639 199 7.29 297 176
flowchrt 0 0 639 199 4.75 335 231
electrc 0 0 639 199 2.04 478 445
ordrfrm 0 0 639 199 4.29 362 269
frnchla 0 0 639 199 6.36 313 198
doc2a 0 0 639 199 11.04 258 126
doc2b 0 0 639 199 9.98 264 137

AVERAGE 6.54 330 226

Table 4.11. Results of compressing Images In Group 3 using the CCITT
two dimensional compression technique with k = 2

Comprs. Dcmprs.
Comprs. time time

Image xl yl x2 y2 factor (1/lOOth s) (1/lOOth s)

rcmtxt 0 0 639 199 1.38 670 698
frnch2a 0 0 639 199 2.01 533 505
pagel 0 0 639 199 3.11 407 335
docl-2 0 0 639 199 3.25 400 324
cprog 0 0 639 199 5.42 324 220
doclb 0 0 639 199 3.41 401 324
doc4a 0 0 639 199 1.89 544 527
doc4b 0 0 639 199 1.60 599 604

AVERAGE 2.76 485 442

www.manaraa.com

58

Table 4.12, Results of compressing images in Group 4 using the CCITT
two dimensional compression technique with k = 2

Image xl yi x2 y2

Comprs.
factor

Comprs.
time

(l/lOOth s)

Dcmprs.
time

(1/lOOth s)

pdraw3 0 0 639 199 4.32 352 258
sciencel 0 0 639 199 3.87 379 280
science2 0 0 639 199 2.63 445 384
doc51a 3 0 514 199 3.96 292 214

AVERAGE 3.70 367 284

www.manaraa.com

59

Table 4.13. Results of compressing images in Group 5 using the CCITT
two dimensional compression technique with k = 2

Image xl yi x2 y2

Comprs.
factor

Comprs.
time

(1/lOOth s)

Dcmpi
tim<

Cl/100<

opampl 160 0 639 158 7.12 170 99
opamp2 0 0 639 190 5.95 297 187
ecll 72 7 551 166 11.45 153 71
ecl2 0 7 607 190 9.87 236 121
netwrk 16 9 623 187 6.79 264 159
tablel 0 13 639 147 3.95 258 198
usai 56 24 519 164 11.90 126 55
doc51a 36 48 483 115 7.06 65 38
docSrb 28 43 475 169 6.94 137 82
lotssin 88 22 631 165 3.55 241 187
usamap 72 28 551 164 0.63 747 851
frnch3b 0 0 639 71 7.60 104 60
barchrt 30 10 333 145 6.47 99 60
barchrt 30 10 237 60 4.11 33 22
barchrt 32 68 335 145 6.85 55 33
testl 120 15 455 120 18.01 72 27
test2 120 15 455 120 5.79 83 49
tests 120 15 455 120 5.02 88 55
test4 120 15 455 120 4.41 94 60
tests 120 15 487 120 4.24 104 72
diagl 70 26 453 120 7.16 83 50
diag2 42 42 393 108 7.79 49 22
diagS 210 18 449 131 1.26 153 154
diag4 108 14 443 88 5.63 60 38
diagS 68 5 467 102 10.80 83 39
diagSs 208 28 479 98 7.69 44 28
diag6 40 9 279 76 7.45 38 22
diagô 22 109 405 141 9.38 28 16
diagô 22 9 405 141 12.69 105 50
netwrk2 136 62 391 136 3.81 55 44
pdrawl 0 70 287 150 4.58 60 44
usa2 202 26 329 61 3.68 11 5
usa2 164 92 403 162 6.07 39 22
docSlb 24 19 471 51 11.20 27 11
science] 0 80 127 196 3.20 49 38
sciences 456 12 535 66 2.33 16 17

AVERAGE 6.58 120 86

www.manaraa.com

60

Table 4.14. Results of compressing images in Group 6 using the CCITT
two dimensional compression technique with k = 2

Comprs. Dcmprs.
Comprs. time time

Image xl yl x2 y2 factor (1/lOOth s) (1/lOOth s)

pdrawl 0 0 559 150 4.01 236 176
pdraw2 0 0 575 152 3.55 258 203
pdrawS 0 0 575 191 3.76 324 247
pdraw3 16 0 559 39 1.41 110 116
pdraw3 0 70 287 150 4.58 61 39
pdraw3 380 77 571 152 3.56 44 32
pdraw3 48 160 575 191 3.70 50 39
pdraw3 0 0 639 199 4.32 352 252

Compression factor using 4 blocks

Table 4.15. Results of compressing images in Group 7 using the CCITT
two dimensional compression technique with k = 2

Image xl yl x2 y2
Comprs.
factor

Comprs.
time

(1/lOOth s)

Dcmprs.
time

(1/lOOth s)

bignames 0 0 639 199 1.48 659 670
sun 0 0 639 199 2.89 423 352
hazard 0 0 639 199 2.46 439 379
manscl 0 0 539 199 2.10 517 472
mansc2 0 0 639 199 3.10 417 340
fig2 0 0 639 199 1.77 538 495
fig4 0 0 639 199 4.02 379 280
fig6 0 0 639 199 3.87 357 263
fig7 0 0 639 199 5.57 302 186
fig8 0 0 639 199 3.47 379 291

AVERAGE 3.07 441 373

www.manaraa.com

61

Table 4.16. Results of compressing images In Group 8 using the CCITT
two dimensional compression technique with k = 2

Comprs. Dcmprs.
Comprs. time time

Image xl yl x2 y2 factor (1/lOOth s) (1/lOOth s)

blok3 0 0 639 199 43.17 225 77
blokô 0 0 639 199 7.78 302 176
boxes 0 0 639 199 20.55 248 104
lines 0 0 639 199 11.76 280 148

AVERAGE 20.82 264 126

www.manaraa.com

62

Table 4.17. Results of compressing images in Group 1 using the CCITT
two dimensional compression technique with k = "

Theort. Comprs. Dcmprs.
Comprs. comprs. C.F» time time

Image xl yl x2 y2 factor factor T.C.F. (1/lOOth s) (1/lOOth s)

docla 0 0 639 199 9.57 10.36 0.92 346 247
doc lb 0 0 639 199 3.40 3.88 0.88 511 439
doclc 0 0 639 199 19.54 26.55 0.74 286 176
doc2a 0 0 639 199 14.30 18.96 0.75 302 193
doc2b 0 0 639 199 12.75 17.57 0.73 308 203
doc2c 0 0 639 199 18.83 27.37 0.69 280 176
doc4a 0 0 639 199 1.87 2.09 0.89 730 693
doc4b 0 0 639 199 1.56 1.69 0.92 808 786
doc4c 0 0 639 87 1.64 1.80 0.91 346 335
docSla 3 0 514 199 4.23 5.28 0.80 368 297
docSlb 0 0 511 199 7.60 10.18 0.75 297 220
docSlc 0 0 511 114 18.81 35.12 0.54 137 88
docSra 0 0 479 199 2.50 2.79 0.90 450 401
docSrb 0 0 479 199 10.10 13.79 0.73 258 186
docSrc 0 0 479 114 2.90 3.36 0.86 236 209
doc 6a 0 0 639 199 9.57 13.06 0.73 368 264
doc6b 0 0 639 199 16.10 25.71 0.63 318 214
doc8 0 0 639 199 22.99 32.69 0.70 308 197

AVERAGE 9.90 14.01 0.78 370 296

www.manaraa.com

Table 4.18. Results of compressing images in Group 2 using the CCITT
two dimensional compression technique with k = °°

Theort. Comprs. Dcmprs.
Comprs. comprs. C.F. time time

Image xl yl x2 y2 factor factor T.C.F. (1/lOOth s) (1/lOOth s)

frnch3a 0 0 639 199 12.05 14.70 0.82 357 253
flowchrt 0 0 639 199 5.56 6.39 0.87 412 330
electrc 0 0 639 199 2.04 3.66 0.56 631 599
ordrfrm 0 0 639 199 4.77 5.74 0.83 467 385
frnchla 0 0 639 199 7.16 9.41 0.76 385 286
doc2a 0 0 639 199 14.30 19.81 0.72 296 192
doc2b 0 0 639 199 12.75 18.33 0.70 313 209

AVERAGE 8.38 11.00 0.75 409 322

Table 4.19. Results of compressing images in Group 3 using the CCITT
two dimensional compression technique with k = <»

Theort. Comprs. Dcmprs.
Comprs. comprs. C.F. time time

Image xl yl x2 yl factor factor T.C.F. (1/lOOth s) (1/lOOth s)

romtxt 0 0 639 199 1.40 1.57 0.89 900 890
frnch2a 0 0 639 199 1.96 2.11 0.93 698 660
pagel 0 0 639 199 3.25 3.85 0.84 528 456
docl-2 0 0 639 199 3.36 4.13 0.81 517 445
cprog 0 0 639 199 5.68 7.49 0.76 406 319
doclb 0 0 639 199 3.40 4.26 0.80 511 440
doc4a 0 0 639 199 1.87 2.14 0.87 725 692
doc4b 0 0 639 199 1.56 1.70 0.92 807 785

AVERAGE 2.81 3.41 0.85 637 586

www.manaraa.com

64

Table 4.20. Results of compressing images in Group 4 using the CCITT
two dimensional compression technique with k = «>

Theort. Comprs. Dcmprs.
Comprs. comprs. C.F. time time

Image xl yi x2 y2 factor factor T.C.F. (1/lOOth s) (1/lOOth s)

pdraw3 0 0 639 199 4.84 5.31 0.91 439 352
sciencel 0 0 639 199 4.19 4.85 0.86 467 390
science! 0 0 639 199 2.61 2.99 0.87 582 522
doc51a 0 0 514 199 4.23 5.10 0.83 363 297

AVERAGE 3.97 4.56 0.87 463 390

www.manaraa.com

65

Table 4.21. Results of compressing Images In Group 5 using the CCITT
two dimensional compression technique with k = ™

Comprs.
Image xl yl x2 y2 factor

Theort. Comprs. Dcmprs.
comprs. C.F. time time
factor T.C.F. (1/lOOth s) (1/lOOth s)

opampl 160 0 639 158 9.07 10.08 0.90 204 143
opamp2 0 0 639 190 6.85 7.66 0.89 357 269
ecll 72 7 551 166 15.82 22.10 0.72 181 115
ecl2 0 7 607 190 12.51 15.99 0.78 275 182
netwrk 16 9 623 187 9.87 13.51 0.73 313 226
tablel 0 13 639 147 5.21 6.31 0.83 324 264
usai 56 24 519 164 13.40 24.20 0.55 148 94
doc5rb 36 48 483 115 9.16 12.21 0.75 88 60
doc5rb 28 43 475 169 9.81 13.40 0.73 165 115
lotssin 88 22 631 165 4.38 7.17 0.61 302 247
frnchSb 0 0 639 71 12.42 20.48 0.61 126 88
barchrt 30 10 333 145 11.38 18.10 0.63 116 83
barchrt 30 10 237 60 12.01 68.63 0.17 38 28
barchrt 32 68 335 145 8.88 13.69 0.65 66 49
testZ 120 15 455 120 6.75 8.21 0.82 94 71
tests 120 15 455 120 5.59 7.10 0.79 104 77
test4 120 15 455 120 4.86 6.18 0.79 110 88
test5 120 15 487 120 4.56 5.67 0.80 126 99
diagl 70 26 453 120 8.99 13.08 0.69 99 71
diag2 42 42 393 108 9.07 15.00 0.60 60 38
diagS 210 18 449 131 1.52 4.27 0.36 204 192
diag4 108 14 443 88 6.32 8.22 0.77 71 50
diagS 68 5 467 102 18.46 28.90 0.64 99 66
diag5s 208 28 479 98 12.76 18.15 0.70 55 38
diag6 40 9 279 76 13.88 21.61 0.64 44 33
diag6 22 109 405 141 17.70 41.35 0.43 33 16
diag6 22 9 405 141 26.19 45.54 0.58 120 77
netwrk2 136 62 391 136 5.78 8.43 0.69 66 49
pdrawl 0 70 287 150 5.34 6.16 0.87 71 55
usa 2 202 26 329 61 3.94 4.80 0.82 11 11
usa2 164 92 403 162 7.35 9.78 0.75 50 33
doc51b 24 19 471 51 20.82 52.41 0.40 38 22
sciences 0 80 127 196 3.40 4.36 0.78 60 50
sciences 456 12 535 66 2.43 3.02 0.80 22 16

AVERAGE 9.60 16.64 0.68 125 92

www.manaraa.com

66

Table 4.22. Results of compressing images in Group 6 using the CCITT
two dimensional compression technique with k = «

Image xl yl x2 y2
Comprs.
factor

Comprs.
time

(1/lOOth s)

Dcmprs.
time

(1/lOOth s)

pdrawl 0 0 559 150 4.34 297 242
pdraw2 0 0 575 152 3.99 330 275
pdraw3 0 0 575 191 4.19 401 335
pdrawS 16 0 559 39 1.45 148 148
pdrawS 0 70 287 150 5.34 72 55
pdrawS 380 77 571 152 5.47 60 44
pdrawS 48 160 575 191 3.94 66 504
pdrawS 0 0 639 199 4.84 439 352

Compression factor using 4 blocks 4.18

Table 4.23. Results of compressing images in Group 7 using the CCITT
two dimensional compression technique with k = •»

Theort. Comprs. Dcmprs.
Comprs. comprs. C.F. time time

Image xl yl x2 y2 factor factor T.C.F. (1/lOOth s) (1/lOOth s)

blgnames 0 0 639 199 1.59 1.81 0.88 873 851
sun 0 0 639 199 3.20 4.46 0.72 527 456
hazard 0 0 639 199 2.53 3.43 0.74 560 494
manscl 0 0 639 199 2.28 2.79 0.82 665 610
mansc2 0 0 639 199 3.61 4.69 0.77 533 456
fig2 0 0 639 199 2.40 4.35 0.55 686 637
fig4 0 0 639 199 6.78 12.23 0.55 466 368
fig6 0 0 639 199 4.34 6.76 0.64 445 357
fig7 0 0 639 199 6.29 10.75 0.59 363 269
fig8 0 0 639 199 3.94 6.30 0.63 466 384

AVERAGE 3.70 5.76 0.69 558 488

www.manaraa.com

Table 4.24. Results of compressing images in Group 8 using the CCITT
two dimensional compression technique with k = "

Theort. Comprs. Dcmprs.
Comprs. comprs. C.F. time time

Image xl yl x2 y2 factor factor T.C.F. (1/lOOth s) (1/lOOth s)

blokS 0 0 639 199 109.03 359.73 0.30 252 138
blokô 0 0 639 199 24.54 142.33 0.17 363 247
boxes 0 0 639 199 69.57 813.68 0,09 280 171
lines 0 0 639 199 32.07 191.23 0.17 324 214
testl 120 15 455 120 49.60 99.19 0.50 77 44
usamap 72 28 551 164 1.56 7.13 0.22 1011 962

AVERAGE 47.73 268.88 0.24 385 296

www.manaraa.com

68

4; 5. Entropy Calculation of the One

Dimensional Model

The one dimensional coding can be represented as a first order

Markov chain as in Figure 4.2. The per pel entropy is given in

[6] as follows:

(4.1)

where :

.P̂ = probability of white pels

Pg = probability of black pels

= white run-length entropy

N

i=0
(4.2)

= black run-length entropy

N

- Jg Pbi-̂ °S2 Pbl C4.3)

p̂ ̂= probability of run-length of i white pels

p̂ ̂= probability of run-lengths of i black pels

r̂ ̂= average white run-length in pels = S i-p̂ ̂

r = average black run-length in pels = Z i'p
D 02.

(4.4)

(4.5)

Note that:

(4.6)

(4.7)

www.manaraa.com

69

B̂W

Figure 4.2. A first order Markov model for the CCITT one
dimensional coding technique

www.manaraa.com

70

EPbi = 1 (4.8)

To get and p̂ , we solve the matrix question:

p P , P ,
WW wb

—
W

p P,, P
. bw bb. - B.

(4.9)

Then, we get the following equations:

= • wb

W Pwb + Pbw
(4.10)

P,
•bw

wb ̂ ̂bw
(4.11)

Substituting from (4.10) and (4.11) in (4.1), we get

«W +

+ Ps
(4.12)

The maximum theoretical compression factor is defined as

(4.13)

Reference [12] applied CCITT one dimensional coding technique to

the 8 CCITT documents and gave the result of r , r , li , H , Q , and
w D w D mâx

actual compression factor in Table IV of the reference.

The result of calculating the Q of the data base is included in
max

Tables 4.1-4.8.

www.manaraa.com

71

Figures 4.3-4.11 show the distribution of the frequency of the

run-lengths for a sample of images from the data base. Runs greater

than 63 were broken into two runs as described by the standard.

Reference [13] did not calculate the entropy for the 8 CCITT doc

uments. Reference [9], which has the same principles of using three

states, did. Besides, the compression factors in [9] are comparable

to those of MREAD. So, we will calculate the entropy and using a

modified version of the model given in [9]. The model we will use is

valid only for the case of k = <».

We assume that each of the three states is independent of the other

4.6. Entropy Calculation of the Two

Dimensional Model

states. Hence, the entropy per pel H

H (4.14)

where

= average entropy per state

= average number of pels per state

Hj = entropy of state .

The entropies of the three states are given by

= -log PCŜ) +

= -log PCSg)

H3 = -log PCS]) + (4.17)

(4.15)

(4.16)

www.manaraa.com

max run = 469

rr

Î'.
o* 0)

•H —

10 20 30 40 50 60 run-length

max run = 244

h û)
MH M-l
M
a (d «
M PQ

[llllllLl|l>lltlii|̂ l M lll|illl +
10 20 30 40 50 60 run-length

(a) Hill te run-length distribution (b) Black run-length distribution

Figure 4.3. Frequency distribution of image "doc2a"

www.manaraa.com

max run = 511

L

S-

0)

id
JUL T
10 20

r
30 40 50 60 run-length

max run = 334

cr

•K k i&'i . # L
20 30 40 50 60 run-length

(a) White run-length distribution (b) Black run-length distribution

Figure 4.4. Frequency distribution of image "doc2b"

www.manaraa.com

max run = 409

0).

ai
u.
•H

10 20 30 40 50 60 run-length

max run = 90

I]
g-

M

r4
FQ —j

f "4-
10 20 30 40 50 60 run-length

(a) White run-length distribution (b) Black run-length distribution

Figure 4.5. Frequency distribution of image "doc2c"

www.manaraa.com

max run = 1581

1. cr
2̂

Q)

LL T T T T
10 20 30 40 50 60 run-length

(a) White run-length distribution

max run = 781

P
h

lllulflil ll||||duill|I *r T
10 20 30 40 50 60

+
run-length

(b) Black run-length distribution

Figure 4.6. Frequency distribution of image "doc6a"

www.manaraa.com

max run = 1049

i
0) 11

L. T T
10 20 30 40 50 60 run-length

max run =762

|h

«H

•o.
cd
r4
m H

diliiLY lailhi I I
10 20 30 40 50 60 run-length

(a) White run-length distribution (b) Black run-length distribution

Figure 4.7. Frequency distribution of image "doc6b"

www.manaraa.com

max run = 309

I'
<u

II I I • I I I I
10 20 30 40 50

I I ' •
60 run-length

max run 166

t cr

t
rH

iflL ̂ I
10 20 30 40 50 60 run-length

(a) White run-length distribution (b) Black run-length distribution

Figure 4.8. Frequency distribution of image "ec£l"

www.manaraa.com

max run = 2658

0-)

o>,
M

10 20 30 40 50 60 run-length

(a) White run-length distribution

max run = 413

cr

rH pq—

10 20 30 40 50
T

60 run-length

(b) Black run-length distribution

Figure 4.9. Frequency distribution of image "lotssin"

www.manaraa.com

max run = 5905 max run = 2728

K
cr

0)

M v— I ' I I ' I ' I I I
10 20 30 40 50 60 run-length 10 20 30 40 50 60 run-length

(a) Wiite run-length distribution (b) Black run-length distribution

Figure 4.10. Frequency distribution of image "doc4a"

www.manaraa.com

max run = 3643

t
or

44
0)
u
•H

iL r T
10 20 30 40 50 60 run-length

max run = 1494

I
l-J
rH

T
10 20 30 40 50 60 run-length

(a) White run-length distribution (b) Black run-length distribution

Figure 4.11. Frequency distribution of image "pagel"

www.manaraa.com

81

where

Hj = entropy of the edge difference d(d = bl - al) in the
vertical mode (state Ŝ)

3
= - E P(d)*log P(d) (4.18)

d=-3

. =entropy of the i run (i = 1 or 2) in the horizontal
 ̂ mode (state Ŝ)

lk-0

P(d) = the probability that (bl - al) is equal to d where d
is an integer varying between -3 and 3

P(&.) = the probability that the i run (i=l or 2) is equal to
 ̂ 5,̂ in the horizontal mode.

The average number of pels per state is given by

"aOal + '(Sz) 'aOb2 + + '2>

where

r̂ Oai ~ average of absolute value of aOal, aOal = al-aO

640
E P(aOal).aOal (4.21)

aOal=l

â0b2 ~ average value of pass mode distance a0b2

640
E P(aOb2)'aOb2 (4.22)

aOb2=2

r̂ = average length of first run in the horizontal mode

640
= E P(A.).A_ (4.23)
& =1 ^

www.manaraa.com

82

= average length of second run in the horizontal mode

640
(4.24)

The theoretical compression factor is calculated from the en

tropy per pel by the following formula;

(4.25)

Tables 4.17-4.24 include the theoretical compression factor, using

the two dimensional model, for the images in the data base. Figures

4.12-4.21 show the distribution of the frequency of the run-lengths, in

the horizontal mode, for a sample of images from the data base. Runs

greater than 63 were broken into two runs as described by the standard.

The figures also show the distribution of the vertical distance d.

Looking at the results, we concluded the following points:

1) The two dimensional (k = ") coding technique gave better com

pression factor than the one dimensional coding technique except for

the case of screens or blocks full of text. The ratio of the two di

mensional compression factor to the one dimensional compression factor

depended on the class of image to be compressed. In Table 4.25, the

first three columns contain the compression factor averages of the pic

tures of each group calculated using one dimensional, two dimensional

(k = 2), and two dimensional (k = <») techniques. This table shows that

the ratio of the compression factors of the two dimensional (k = <») to

4.7. Analysis of the Results

www.manaraa.com

max run = 91

o

t 0)
M.

Om

i-

(a)

10 20 30 40
I I " I
50 60 run-length

max run = 49

E 0)

o-
cd
r-M
m

(b)

,!• iiifin 4 +
10 20 30 40 50 60 run-length

max run = 113

5",

L tr
0)
a
A.
>

(c)

, , 1 —1—1—,—
V(-3) V(-2) V(-l) V(0) V(l) V(2) V(3)

(a) White run-length distribution (b) Black run-length distribution
(c) Vertical displacement (V.D.) distribution

Figure 4.12. Frequency distribution of image "doc2a"

www.manaraa.com

max run = 110

I-(U-
w

(U
w_
•H

(a)

I III ,11 I i|
10 20 30 40

' I I
50 60 run-length

max run = 60

I"
h m —

(b)

11 Ijl I niluhl illii,lln I ll|i
50 60 run-length

lllLiik.
20 30 40

max run = 1353

a>

a
> '

(c)

*

—1—1— —L —1— —1
V(-3) V(-2) V(-l) V(0) V(l) V(2) V(3)

(a) White run-length distribution (b) Black run-length distribution
(c) Vertical displacement (V.D.) distribution

Figure 4.13. Frequency distribution of image "doc2b"

www.manaraa.com

max run = 112

i.

0)

(a)

10 20 30
-T—
40

-r—
50

—r—
60 run-length

max run = 31

I: 0)
il
M
0

(b)

|L n I NL II hi ,BII I 111 111
30 40

f
50

JLI.
60 run-length

max run = 854

h <u —̂
M

« -
> _

(c)

,—1—1— 1—H
V(-3) V(-2) V(-l) V(0) V(l) V(2) V(3)

(a) White run-length distribution (b) Black run-length distribution
(c) Vertical displacement (V.D.) distribution

Figure 4.14. Frequency distribution of image "doc2c"

www.manaraa.com

max run = 148

i-
cr (U_
M

(a)

'I" ' I ' I I I I *1
10 20 30 40 50 60 run-length

max run = 55

&

1 ̂
0)
u

-Y
td —
fH
m «

(b)

lliPlliiII Ll
iO 20 30 40 50 60 run-length

iflL

max run = 3125

0 ̂ 1
>

U-<—I.

(c)

+
V(-3) V(-2) V(-l) V(0) V(l) V(2) V(3)

(a) White run-length distribution (b) Black run-length distribution
(c) Vertical displacement (V.D.) distribution

Figure 4.15. Frequency distribution of image "doc6a"

www.manaraa.com

max run = 88

I"
cr

0)

(a)

10 20 30 40
—r-
50

I ' I
60 run-length

max run = 34

I:
cr (U .

m'
O _
cd
rH
PQ

iiiiyiiiMi,iiii |i111,11II

10 20
r
30

J.

40 50
*-

60

(b)

run-length

max run = 2216

h
Û)
iî-f

o
>

—I—I-
V(-3) V(-2) V(-l)

(c)

I I I
V(0) V(l) V(2) V(3)

(a) Ifhite run-length distribution (b) Black run-length distribution
(c) Vertical displacement (V.D.) distribution

Figure 4.16. Frequency distribution of image "doc6b"

www.manaraa.com

max run = 59 max run = 30

0—I cr
OJJ

0)
ii-i

(a)

LLJL I , H , | I , 1 , I I p J i 1
10 20 30 40 50 60 run-length

Î cr 01
M

t
rH pq —j

MIL I ,IL I ,MI
10 20 30 40

—f—
50

(b)

60 run-length

max run =731

0)
M H •4H

a
>

(c)

, , 1 1 . .
V(-3) V(-2) V(-l) V(0) V(l) V(2) V(3)

(a) \-Ihlte run-length distribution (b) Black run-length distribution
(c) Vertical displacement (V.D.) distribution

Figure 4.17. Frequency distribution of Image "ec&l"

www.manaraa.com

max run = 515

0).
M

•i-

(a)

I "I I • I
10 20 30 40

max run

50 60 run-length

max run = 3746

cr
0» M
M

A-
> _

20 30 40 50 60 run-length

(c)

'I I I I I I
V(-3) V(-2) V(-l) V(0) V(l) V(2) V(3)

(a) White run-length distribution (b) Black run-length distribution
(c) Vertical displacement (V.D.) distribution

Figure 4.18. Frequency distribution of image "lotssin"

www.manaraa.com

max run = 1711

l: cr
0) a
u

0)
w,
•H

(a)

I""'* I I I I I I I
10 20 30 40 50 60 run-length

max run = 912

IH cr
2-J

r4
PQH

(b)

llhi|liihi it|ili I M|
10 20 30 40 50 60 run-length

max run = 7248

o -I

M

P -
> _

(c)

1—,—1 —1—1—
V(-3) V(-2) V(-l) V(0) V(l) V(2) V(3)

(a) White run-length distribution (b) Black run-length distribution
(c) Vertical displacement (V.D.) distribution

Figure 4.19. Frequency distribution of image "doc4a"

www.manaraa.com

max run = 936

OH

U
cr
Q) H
u

0) 4J ̂

(a)

I I II I
10 20 30 40

—T-
50 60 run-length

max run = 428

'I ' I
10 20 30 40 50

I '• I
60 run-length

max run = 4367

I-" Q)

A -
> -

(C)

1—1— —,—\
V(-3) V(-2) V{-1) V(0) V(l) V(2) V(3)

(a) IJhite run-length distribution (b) Black run-length distribution
(c) Vertical displacement (V.D.) distribution

Figure 4.20. Frequency distribution of image "pagel"

www.manaraa.com

max run = 136

>» K a*

m
(1)

g_

(a)

I j|U. I ' I I
10 20 30 40

I I I
50 60 run-length

max run

20 30 run-length

max run 35651

S'H
a
A-

(c)

• I I " I I I
V(-3) V(-2) V(-l) V(0) V(l) V(2) V(3)

(a) Ulilte run-length distribution (b) Black run-length distribution
(c) Vertical displacement (V.D.) distribution

Figure 4.21. Frequency distribution of image "usamap"

www.manaraa.com

93

Table 4.25. Compression factors averages of each group of the image
data base using each technique

Group # ID* 2Kb 2K/1D FK/ID

Group 1 6.07 7.33 9.90 1.21 1.63
Group 2 5.52 6.54 8.38 1.18 1.52
Group 3 2.85 2.76 2.81 0.97 0.99
Group 4 3.54 3.70 3.97 1.05 1.12
Group 5 5.19 6.58 9.60 1.27 1.85
Group 6 2.69 3.07 3.70 1.14 1.38

AVERAGE 4.31 5.00 6.39 1.14 1.41

ID = compression factor using the CCITT one dimensional compres
sion technique.

2̂K = compression factor using the CCITT two dimensional compres
sion technique with k = 2.

FK = compression factor using the CCITT two dimensional compres
sion technique with k = <».

www.manaraa.com

94

the one dimensional technique has an average of 1.41 with minimum and

maximum equal to 0.99 and 1.85, respectively. The 0.99 ratio is for

screens full of text and is the only ratio that is less than 1. The

1.85 ratio is for group 5 which consists of sample blocks of graphics.

2) In Table 4.25, it is shown that for screens full of graphics

(group 2), the ratio of the average compression factor of the two di

mensional, k = 2, to the average compression factor of the one dimen

sional is 1.18. This ratio is 1.52 for the case of two dimensional,

k = 00. This result shows that two dimensional technique with k = <» is

the best choice for screens full of graphics.

3) From Table 4.25, it is clear that, for screens full of text

(group 3), there is no significant difference between two dimensional

and one dimensional compression factors. The average compression fac

tor of the group using one dimensional technique is 2.85.

4) For screens that are a mixture of graphics and text blocks

(group 4), Table 4.25 shows that the two dimensional compression factor

is higher than one dimensional compression factor and the ratio of the

average of the two dimensional to the average of the one dimensional

compression factor is 1.05 and 1.12 for k = 2 and k = respectively.

The one dimensional compression factor was found to have an average of

3.54.

5) In Table 4.25, it is shown that for blocks of graphics (group

5), the ratio of the average compression factor of the two dimensional

technique, k = 2, to the average compression factor of the one dlmen-

www.manaraa.com

95

slonal technique is 1.27. This ratio is 1.85 for the case of two di

mensional technique, k = ". This result shows that the two dimensional

technique with k =®is the best choice for graphics blocks.

6) Screen pdraw3 contains 4 blocks. We compressed each of the 4

blocks separately and a big block containing all of these 4 blocks. The

following two compression factors were calculated:

i) Compression factor of the big block = original size of
the big block/size of the compressed block.

ii) Compression factor using the 4 small blocks to represent
the big block = original size of the big block/
4
Z (size of the compressed block i).
i=l

Comparing the compression factors in i) and ii), we found that in

ii) it is very slightly bigger than in i) using the one dimensional

technique and almost the same when we used the two dimensional technique

(k = "'). Hence, it may be concluded from this example that dividing a

big block into smaller blocks and compressing them individually will not

give a better compression factor than in the case of compressing the big

block as a whole. Besides, the division into smaller blocks will add

more complexity and a small overhead of bytes that represents the sizes

of the small blocks.

7) Table 4.26 contains the compression factors using the one

dimensional and two dimensional (k = <*>) techniques taken from [13] for

some CCITT standard documents. These values are normalized with refer

ence to the compression factor of docl and included in the table. Ta

ble 4.27 contains similar values deduced from Tables 4.1 and 4.17. It

www.manaraa.com

Table 4.26. Compression factors of the CCITT documents according to Reference [13]

ID̂ 2D̂
LowC Hlghd

Document Norm. Norm. Norm. Low High
it C.F. C.F.® Size C.F. C.F. Size C.F. C.F. ID ID

1 15. 160 1. 000 130684 15. 709 1. 000 175704 23.367 1. 000 1. 036 1. 541
2 16. 670 1. 100 106851 19. 212 1. 223 117304 35.001 1. 498 1. 153 2. 100
4 4. 911 0. 324 408261 5. 028 0. 320 585074 7.017 0. 300 1. 024 1. 429
5 7. 927 0. 523 226285 9. 072 0. 578 288655 14.224 0. 609 1. 144 1. 794
6 10. 780 0. 711 150572 13. 634 0. 868 164085 25.022 1. 071 1. 265 2. 321

AVERAGE 11.090 0.732 204531 12.531 0.798 266164 20.926 0.896 1.124 1.837

ÎD = the CCITT one dimensional compression technique.

2̂D = the CCITT two dimensional compression technique with k = «>.

L̂ow = document compressed in low resolution.

Ĥigh = document compressed in high resolution.

N̂orm. C.F. = normalized compression factor.

www.manaraa.com

97

Table 4.27. Compression factors of the CCITT documents using the CCITT
one and two dimensional compression techniques

Document

ID* 2D̂
2D C.F.
ID C.F.

Document
C.F.

Norm.
C.F.c C.F.

Norm.
C.F.

2D C.F.
ID C.F.

1 6.267 1,000 6,670 1.000 1.064
2 9.579 1.528 14,891 2.233 1.555
4 1.782 0.284 1.680 0.252 0.943
5 4,070 0.649 4.741 0.711 1.165
6 5.617 0.896 12.004 1.800 2.137

ÎD = the CCITT one dimensional compression technique.

2̂D = the CCITT two dimensional compression technique.

*̂ Norm. C.F. = normalized compression factor.

www.manaraa.com

98

was found that the ratios of two dimensional/one dimensional compression

factors in the low resolution case in Table 4.26 were close to those in

Table 4.27 except for doc2 and doc6. For the high resolution case, the

only ratios thgt were close to each other in the two tables were those

of doc6. This may be interpreted by noticing that low resolution mode

was just enough to show the textural material in documents docl, doc4,

and doc5 which are documents that contain a lot of text. Similarly, the

resolution of the screen was just enough to represent textual material

in images docl, doc4, and doc5.

8) To investigate the possibility of using a modified Huffman

table with codes that are suitable to the screen statistics, frequency

graphs for each image were generated. The coordinates of the horizontal

axis in these figures represent the run-lengths while the coordinates of

the vertical axis represent the number of times this run-length was used

in compressing the picture. Runs greater than 63 were broken into two

runs as described by the standard. From these graphs, we got the fol

lowing remarks and conclusions:

a) Distribution of white runs has almost the same form in
all the images. It has a concentration of small runs
mostly located in the region between run 1 and run 6.
The maximum run frequency occurs in run 1 for some of the
images, specially graphics screens, and in run 2 for
some other images, specially screens that have a lot of
text. Since this maximum is not fixed, we might try to
change the code so that, for the maximum frequency run,
it varies with the image. We will show later that no
big difference in compression factor can result from
this change.

b) Frequency of the black runs is more distributed and varies
from image to image with no fixed form. So, making vari

www.manaraa.com

99

able code as suggested for the white runs in a) is not
suitable. The frequency is also concentrated on small
runs to the extent that the standard one dimensional code
is efficient enough and no clear benefit can be seen from
changing it.

Run length 1 has one of the highest frequencies, but the
CCITT code assigns a code of length 6 while other less
important frequencies are assigned a code of length 4.
So, an improvement in the code may be found by assigning
less bits to run-length 1.

c) Figures 4.3-4.5 show the distribution of the frequency
for pictures doc2a, doc2b, and doc2c which represent
graphics screens. Their distribution agrees with a) and
b) above. Similar comments are applicable to doc6a, doc6b,
and any graphics screen in groups 2, 5, and 7. Figures
4.6-4.9 show the frequency distribution for some graphics
screens.

d) Figures 4.10 and 4.11 show the frequency distribution for
pictures doc4a and pagel which represent screens full of
text (group 3). The distribution of white is as explained
in a) while the distribution of black is as in b) but more
condensed than in graphics screens and more concentrated
on small runs. To show that changing the code does not
result in a big increase in the compression factor, we
give the following example:

Table 4.3 shows that the compression factor of image doc4a
is 1.96 which corresponds to a compressed image of size
8163 bytes. Figure 4.10 shows that white run-length 2
has a frequency equal to 5905. The modified Huffman table
assigns a code of length 2 bits to this run. If a new
code assigns 1 bit to this run (without going in details
of this new code), the compressed buffer will decrease
by 738 (= 5905/8) bytes. Hence, the new compressed size
will be 2.15 (= 16000/(8163-738)). This represents 8%
increase in the compression factor. Note that this cal
culation assumed that a code of length 1 bit was possible
and neglected the negative effects of changing other
codes in the table. In spite of that, the increase in
compression factor is only 8%.

e) A calculation similar to the one in d) was done for doc6a,
which is a sample of graphics screen, and showed 6% in
crease in the compression factor if the code was changed.
Hence, we reached the same conclusion we got in d).

www.manaraa.com

100

9) Comparing the compression factor of the two dimensional'(k =

<») coding technique with the theoretical compression factor of the one

dimensional technique, we found that the former one was higher than the

latter one except for documents containing a lot of text. So, two di

mensional technique is the best choice.

10) Tables 4.1-4.8 show that, using the one dimensional technique,

the average ratio of the real compression factor to the theoretical one

is slightly low (0.68) for graphics screens and almost acceptable (0.77)

for screens full of text. This result may be explained by two reasons.

First, the code was optimized for the frequency of the runs in textual

materials, but not for the frequency in graphics materials where it is

hard to predict this frequency. Second, the model is not accurate for

graphics screens because it assumed that black and white runs were inde

pendent of each other.

11) Tables 4.18-4.19 show that, using the two dimensional technique,

the average ratio of the real compression factor to the theoretical one

is 0.75 for graphics screens and 0.85 for screens full of text. Al

though the different variables that were used in calculating these com

pression factors were examined, no clear interpretation can justify why

the model worked better in the case of screens full of text than in the

case of graphics screens. The code of the first and second runs in the

horizontal mode should not be considered as a part of the interpretation,

as was the code for the runs in the one dimensional case, because the

probability of the horizontal mode is almost the same in the two groups.

www.manaraa.com

101

12) The average probabilities of the vertical, pass, and horizontal

modes were found to be 0.75, 0.1, and 0.15, respectively. These are

different from the values reported in [9] where the probability of the

vertical mode was almost 0.9. This shows that the distributions of black

and white pels in the computer screen are different than the same dis

tributions in regular papers such as the CCITT standard documents.

13) The vertical mode was dominated by V(0). This fact and the

result of the previous point indicate that the two dimensional technique

worked as designed and to its limit.

14) The compression factor of the image usamap using the one di

mensional technique was found to be less than 1. It was found to be

1.56 when using the two dimensional technique. The fact that these

compression factors are low, even though the image usamap contains a lot

of redundancy, indicates that these two techniques are not efficient

for certain classes of images. Some examples of these classes are images

that contain some repeated similar blocks or cross hatching. To over

come the deficiency found when the compression factor is less than 1,

the standard techniques allow for uncompressed mode.

4.8. Conclusion

From the above analysis, we conclude that the CCITT standard two

dimensional coding technique have better compression factor than the one

dimensional technique, hence, should be our choice although its decom

pression time is higher. We also conclude that the two methods worked

www.manaraa.com

102

to their limit and produce satisfactory compression factors for the

screen resolution. The facts that no improvement could be seen to

changing the modified Huffman table and that for some class of data

the two techniques are not efficient enough indicate we should search

for other techniques.

www.manaraa.com

103

5. APPLICATION OF THE LEMPEL-ZIV-WELCH ALGORITHM

In this chapter, we will present the LZW algorithm and the results

of compressing the images of the data base defined in Chapter 3 using

the LZW algorithm.

As a new major contribution,.this research modifies the regular

use of LZW in three different ways. The new modifications will be called

LZWB, LZWBl, LZWB2-A, and LXWB2-B methods.

5.1. Description of the Lempel-Ziv-Welch

Algorithm

The Lempel-Ziv-Welch (LZW) algorithm examines the data serially as

a sequence of characters. It has a table to which it adds new strings

of characters that it did not encounter before. Each entry "w,k" in the

table consists of the symbol of a previously encountered string, w, and

a character symbol, k. At each step, the algorithm searches for the

string "w,k" in the table. If the string is found in the table, w is

assigned the symbol of the string "w,k", k is assigned the value of the

next input character, and a new search starts. If the string "w,k" is

not found in the table, the symbol w is sent to the output, w is equated

to k, k is equated to the next input character, and a new search starts.

By this technique, the algorithm codes the input data according to its

repeated strings and their distribution.

The first 256 symbols of the table are initialized to 256 charac

ters, where each symbol content is equal to the symbol number. The

www.manaraa.com

104

string w and the character k are Initialized to the values of the first

and second characters in the input data, respectively. The size of the

table is chosen to be 4096 symbols, so each symbol is represented by 12

bits. For more details, refer to [41] or Appendix D which has the list

ing of the code that simulates the LZW algorithm.

5.2. Method LZWB

The LZW algorithm compresses the data without any previous knowledge

of its source. This may not be efficient enough when the source and

some of its characteristics are known in advance. For the data this

research works on, screens of text and graphics, the distribution of

the black and white runs are known in advance. So, to let LZW benefit

from this previously known source information, this research introduces

a new solution that we call method LZWB. The proposed solution is to

count the black and white runs in the image and then send the codes of

these runs to LZW for compression. The letter "B" in method LZWB

stands for "binary".

Method LZWB assumes that the first 128 symbols in the LZW Table

represent run-lengths 1 to 128 of black pels and the symbols 129 to 256

represent run-lengths 1 to 128 of white pels. The input first goes

through a counter which counts runs between 1 and 128. Any run-length

greater than 128 is divided into one or more multiples of 128 and a run-

length smaller than 128. The output of this counter is fed to the LZW

algorithm for compression. The output of the counter may be greater than

the size of the original block in some cases but it is expected that the

www.manaraa.com

105

distribution of the runs makes this data more suitable to compression

than the original data. This better compressibility comes from the

facts that certain runs are more frequent than the others and the de

pendency among the different runs is present in the form of repeated

strings. Appendix E gives the code necessary to simulate the LZWB

method.

5.3. Method LZWBl

Method LZWBl, as proposed by this research, assumes the first 200

characters in the LZW table to represent run-lengths 1 to 100 of black

and white pels. The remaining 56 symbols of characters in the table

are used to represent two or three consecutive run-lengths. Table 5.1

has these runs and their corresponding symbols. These runs were chosen

because their probabilities, as given in the CCITT modified Huffman

table, are the highest among other runs.

Table 5.2 shows the most probable black and white run-lengths and

the lengths of their corresponding codes as defined in the modified

Huffman table. The Huffman table is optimum if the probabilities of

the entries are in the form (1/2)̂ where n is an integer greater than or

equal to 1. We assume that the table is optimum and, hence, calculate

the probabilities as given in Table 5.2. According to Table 5.2, white

run lengths 1 to 4 have a total probability equal to 75% of the white

run-lengths whereas black run-lengths 2 to 7 have (6/16) of the black

run-lengths. So, from the white run-lengths, we only used run-lengths

1 to 4 in the symbols. As for the black run-lengths, we chose run-

www.manaraa.com

106

Table 5.1. The probability and code length of some run-lengths derived
from Table I in [13]

Black runs White runs
Run Code Run Run Code Run

length length prob. length length prob.

2 4 1/16 2 2 1/4

3 4 1/16 3 2 1/4

4 4 1/16 1 3 1/8

5 4 1/16 4 3 1/8

6 4 1/16

7 4 1/16

8 5 1/32

9 5 1/32

10 5 1/32

11 5 1/32

64 5 1/32

128 5 1/32

www.manaraa.com

107

Table 5.2. The strings used in LZWBl and their corresponding symbols

String starting String starting
Symbol with black pel Symbol with white pel

200 01 212 10
201 001 213 110
202 0001 214 1110
203 00001 215 11110

204 Oil 216 100
205 0011 217 1100
206 00011 218 11100
207 000011 219 111100

208 0111 220 1000
209 00111 221 11000
210 000111 222 111000
211 0000111 223 1111000

224 010 240 101
225 0100 241 1011
226 01000 242 10111
227 010000 243 101111

228 0010 244 1101
229 00100 245 11011
230 001000 246 110111
231 0010000 247 1101111

232 0110 248 1001
233 00110 249 11001
234 01100 250 10011
235 001100 251 110011

236 01110 252 10001
237 001110 253 110001
238 011100 254 100011
239 0011100 255 1100011

www.manaraa.com

108

lengths 1 to 4; we did not choose run-lengths 5 to 7 because we wanted

to simplify the operation although if there is a benefit or not of in

cluding them is a point that needs more research. The CCITT modified

Huffman table assumes that the frequency of black run-length 1 is smaller

than the probability of any run-length between 2 and 11, but our dis

tribution analysis in Chapter 4 showed that frequency of black run-length

1 was comparable to that of run length 3 and might be a little less than

run length 2. So, in the symbols we chose, we also represented run-

length 1.

Method LZWBl is a step beyond LZWB and, as in method LZWB, we pre

dict that the output of the counter is more compressible than the original

data. We also predict that, since some of the symbols represented two or

three of the most frequent runs, the size of the counter output will not

be as big as the size of the counter output in LZWB. Appendix F gives

the code necessary to simulate method LZWBl.

5.4. Method LZWB2

The LZW algorithm initializes the first 256 symbols to character

symbols. Since it has no previous knowledge of the symbols in the input

data, it does not try to initialize symbols other than the characters

symbols. The symbols of method LZWB2, as in LZWB, represent white and

black run-lengths; hence, we assume that LZWB2 has a prior knowledge of

the frequency of the symbols and benefit from this knowledge by initial

izing some symbols, from symbol 257 and above, to symbols of strings that

are very likely to occur.

www.manaraa.com

109

Two table initializations were tried. The symbols and their

corresponding run-lengths for these two initializations are presented

in Tables 5.3 and 22.1. The initialization of the table requires a

change in the code of the LZW decompression process. The change needed

is to allow for the first received symbol to be a string symbol in the

form of "w,k". The code of this is inserted before the code of the

decompression used in LZW. Appendix G gives the code necessary to

simulate method LZWB2 using Table 5.3. Ue will call this combination

method LZWB2-A. The code of method LZWB2 using Table 22.1 is exactly

the same as the code using Table 5.3 except for the part of initializing

the table which differs by the number of symbols to be initialized.

We will call method LZWB with the LZW table initialized by Table 22.1

as method LXWB2-B.

5.5. Results of LZW and the Above Mentioned

Modifications

The results of compressing the images in the data base using the

LZW algorithm are presented in Tables 5.4-5.10. Tables 5.11-5.15 give

the results of the average values for each group when compressed by

methods LZW, LZWB, LZWBl, LZWB2-A, and LZWB2-B. Note, that for the

methods LZWB, LZWB2-A, and LZWB2-B, the results for group 8 do not

include the image "usamap" because the result of the symbols counter

is bigger than the buffer used. In the following sections, we will try

to analyze the above results.

www.manaraa.com

110

Table 5.3. Extended LZW tables to be used with LZWB2-A

Symbol String w k

256 01 0 128
257 001 1 128
258 0001 2 128
259 00001 3 128
260 Oil 0 129
261 0011 1 129
262 00011 2 129
263 000011 3 129
264 0111 0 130
265 00111 1 130
266 000111 2 130
267 0000111 3 130
268 010 256 0
269 0100 256 1
270 01000 256 2
271 010000 256 3
272 0010 257 0
273 00100 257 1
274 001000 257 2
275 0010000 257 3
276 0110 260 0
277 00110 261 0
278 01100 260 1
279 001100 261 1
280 OHIO 264 0
281 001110 265 0
282 011100 264 1
283 0011100 265 1
284 10 128 0
285 110 129 0
286 1110 130 0
287 11110 131 0
288 100 128 1
289 1100 129 1
290 11100 130 1
291 111100 131 1
292 1000 128 2
293 11000 129 2
294 111000 130 2
295 1111000 131 2
296 101 284 128
297 1011 284 129

www.manaraa.com

5.3

mbo

298
299
300
301
302
303
304
305
306
307
308
309
310
311

111

continued

String w k

10111 284 130
101111 284 131
1101 285 128
11011 285 129
110111 285 130
1101111 285 131
1001 288 128
11001 289 128
10011 288 129
110011 289 129
10001 292 128
110001 293 128
100011 292 129
1100011 293 129

www.manaraa.com

112

Table 5.4. Results of compressing images in group 1 using method LZW

Co»prs. Table Ê tra
Image factor size calls

s s

docla 6.62 19.93 1.59 1867 0
doclb 3.69 19.55 1.53 3142 0
doclc 13.25 12.91 1.60 1060 0
doc2a 7.71 11.21 1.54 1638 0
doc2b 6.82 14.55 1.59 1818 0
doc2c 10.01 14.99 1.60 1321 0
doc4a 2.91 33.67 1.54 3917 0
doc4b 2.55 32.24 1.54 4096 341
doc4c 2.31 8.74 0.66 2283 0
doc51a 3.88 18.62 1.21 2454 0
doc51b 5.44 11.75 1.27 1822 0
docSlc 8.41 5.28 0.71 838 0
docSra 2.97 15.87 1.16 2946 0
doc5rb 5.87 11.48 1.16 1617 0
doc5rc 3.18 6.54 0.66 1703 0
doc6a 4.86 18.84 1.59 2448 0
doc6b 6.81 21.58 1.60 1822 0
doc8 5.77 16.75 1.60 2104 0

AVERAGE 5.73 16.36 1.34 2161 19

www.manaraa.com

113

Table 5.5. Results of compressing images in group 2 using method LZW

Comprs.
Image factor size calls

s s

frnch3a 5.63 16.31 1.60 2148 0
flowchrt 4.57 18.18 1.59 2589 0
electrc 3.87 22.90 1.53 3012 0
ordrfrm 5.17 17.91 1.53 2316 0
frnchla 6.11 17.14 1.53 2001 0
doc2a 7.71 11.15 1.59 1638 0
doc2b 6.82 14.50 1.59 1818 0

AVERAGE 5.70 16.87 1.57 2217 0

Table 5.6. Results of compressing images in group 3 using method LZW

Comprs. ""mpra. Tw,l« Extra
Image factor ® ® size calls

s s

romtxt 2.35 34.43 1.54 4096 691
frnch2a 2.91 27.91 1.54 3925 0
pagel 4.15 17.75 1.59 2825 0
docl-2 4.68 18.78 1.59 2535 0
cprog 7.07 17.19 1.54 1763 0
doclb 3.69 19.56 1.54 3142 0
doc4a 2.91 33.67 1.53 3917 0
doc4b 2.55 32.24 1.54 4096 341

AVERAGE 3.79 25.19 1.55 3287 129

www.manaraa.com

114

Table 5.7. Results of compressing images in group 4 using method LZW

Co»prs. Table Extra
Image factor size calls

pdraw3 4.58 25.43 1.59 2585 0
sciencel 3.53 24.50 1.54 3279 0
science2 2.77 29.44 1.54 4096 10
doc51a 3.88 18.62 1.21 2454 0

AVERAGE 3.69 24.50 1.47 3104 3

www.manaraa.com

115

Table 5.8. Results of compressing images in group 5 using method LZW

Cô rs. "7̂ - T.bla Extra
Image factor ̂ ̂ size calls

opampl 5.94 7.09 0.93 1326 0
opamp2 6.07 13.46 1.54 1934 0
ecll 7.77 6.54 0.94 1078 0
ecl2 7.98 10.27 1.43 1423 0
netwrk 6.16 10.77 1.32 17.28 0
tablel 3.47 14.01 1.05 2331 0
usai 9.13 5.11 0.82 852 0
doc51a 4.79 2.31 0.33 785 0
doc5rb 5.03 5.22 0.71 1198 0
lotssin 3.56 10.66 0.99 2087 0
frnchSb 5.11 4.39 0.54 1006 0
barchrt 5.27 3.79 0.49 909 0
barchrt 3.36 0.82 0.16 518 0
barchrt 5.58 1.70 0.27 609 0
test2 4.03 3.03 0.44 992 0
tests 3.43 3.19 0.44 1121 0
test4 3.21 3.35 0.44 1184 0
tests 3.04 3.95 0.44 1324 0
diagl 4.49 3.07 0.44 932 0
diag2 4.78 • 1.92 0.27 666 0
daig3 3.81 2.30 0.33 853 0
diag4 3.58 2.03 0.28 842 0
diagS 7.63 2.86 0.49 683 0
diagSs 5.41 1.38 0.27 552 0
diagô 5.27 1.16 0.17 513 0
diag6 4.71 0.88 0.16 479 0
diag6 8.62 4.01 0.61 749 0
netwrk2 3.36 1.65 0.28 731 0
pdrawl 3.19 1.92 0.28 864 0
usa2 2.06 0.32 0.06 441 0
usa2 4.01 1.20 0.22 609 0
docSlb 5.62 0.99 0.17 474 0'
sciences 2.54 1.32 0.16 746 0
sciences 1.85 0.33 0.05 453 0

AVERAGE 4.82 4.03 0.52 970 0

www.manaraa.com

116

Table 5.9. Results of compressing images in group 7 using method LZW

Comprs.
Comprs.
time
s

Decmprs.
time
s

Table Extra
Image factor

Comprs.
time
s

Decmprs.
time
s

size calls

bignames 2.11 37.68 1.54 4096 1222
sun 2.95 27.73 1.54 3872 0
hazard 2.66 28.73 1.54 4096 166
manse1 2.35 34.93 1.53 4096 690
mansc2 3.31 23.01 1.54 3478 0
fig2 8.42 14.17 1.60 1522 0
fig4 7.86 12.85 1.53 1612 0
fig6 3.69 22.74 1.54 3149 0
fig7 5.09 15.98 1.53 2350 0
fig8 3.43 23.84 1.54 3364 0

AVERAGE 4.19 24.17 1.54 3164 208

Table 5.10. Results of compressing images in group 8 using method LZW

Image
Comprs.
factor

Comprs.
time
s

Decmprs.
time
s

Table
size

Extra
calls

blok3
blok6
boxes
lines
testl
usamap

27.97
10.98
16.06
15.19
12.79
6.57

10.49
14.06
10.38
12.25
2.47
6.59

1.59
1.59
1.60
1.59
0.44
0.77

636
1226
919
957
487
1089

0
0
0
0
0
0

AVERAGE 14.93 9.37 1.26 886 0

www.manaraa.com

117

Table 5.11. Results of compressing each group of the image data base
suing method LZW

Comprs. Dcmprs.
Gomprs. C.F. time time Table Extra

Group // factor FAX s s size calls

GROUP 1 5.73 0.58 16.36 1.34 2161 19
GROUP 2 5.70 0.68 16.87 1,57 2217 0
GROUP 3 3.79 1.35 25.19 1.55 3287 129
GROUP 4 3.69 0.93 24.50 1.47 3104 3
GROUP 5 4.82 0.50 4.03 0.52 970 0
GROUP 7 4.19 1.13 24.17 1.54 3164 208

AVERAGE 4.65 0.86 18.52 1.33 2484 60

Table 5.12. Results of compressing each group of the image data base
using method LZWB

Cmprs. Dcmprs.
Comprs. C.F. C.F. time time Count Table Extra

Group # factor FAX LZW s s smbl. size calls

GROUP 1 5.88 0.59 1.02 13.80 1.03 6425 2227 164
GROUP 2 5.42 0.65 0.95 13.11 1.03 6428 2368 0
GROUP 3 2.96 1.05 0.78 26.75 2.39 14931 3588 785
GROUP 4 3.37 0.85 0.91 20.47 1.42 8853 3284 44
GROUP 5 5.18 0.54 1.07 2.83 0.29 1768 970 0
GROUP 7 3.79 1.02 0.90 26.95 1.99 12218 3306 362

AVERAGE 4.43 0.78 0.94 17.32 1.36 8437 2624 226

www.manaraa.com

118

Table 5.13. Results of compressing each group of the image data base
using method LZWBl

Cmprs. Dcmprs.
Cmprs. C.F. C.F. time time Count Table Extra

Group it factor FAX LZW s s smbl. size calls

GROUP 1 5.86 0.59 1.02 12.31 0.91 5057 2224 158
GROUP 2 5.41 0.65 0.95 11.86 0.94 4973 2369 0
GROUP 3 3.01 1.07 0.79 29.00 1.96 9994 3566 751
GROUP 4 3.37 0.85 0.91 18.38 1.21 6297 3285 43
GROUP 5 5.19 0.54 1.08 2.61 0.28 1491 958 0
GROUP 7 3.89 1.05 0.93 23.77 1.66 8584 3285 371

AVERAGE 4.46 0.79 0.95 16.32 1.16 6066 2615 221

Table 5.14. Results of compressing each group of the image data base
using method LZWB2-A

Cmprs. Dcmprs.
Cmprs. C.F. C.F. time time Count Table Extra

Group # factor FAX LZW s s smbl. size calls

GROUP 1 6.00 0.61 1.05 13.72 1.02 6425 2255 168
GROUP 2 5.49 0.66 0.96 13.29 1.04 6428 2401 0
GROUP 3 2.98 1.06 0.79 27.04 2.39 14931 3608 803
GROUP 4 3.40 0.86 0.92 20.48 1.42 8853 3310 50
GROUP 5 5.29 0.55 1.10 2.91 0.30 1768 1012 0
GROUP 7 3.81 1.03 0.91 27.79 1.99 12218 3330 380

AVERAGE 4.50 0.79 0.95 17.54 1.36 8437 2653 234

www.manaraa.com

119

Table 5.15. Results of compressing each group of the image data base
using method LZWB2-B

Cmprs. Dcmprs.
Cmprs. C.F. C.F. time time Count Table Extra

Group it factor FAX LZW s s smbl. size calls

GROUP 1 6.28 0.63 1.10 15.77 1.02 6425 2493 196
GROUP 2 5.72 0.68 1.00 15.44 1.05 6428 2661 0
GROUP 3 3.07 1.09 0.81 30.79 2.39 14931 3731 925
GROUP 4 3.53 0.89 0.96 22.73 1.42 8853 3485 105
GROUP 5 5.48 0.57 1.14 3.63 0.29 1768 1323 0
GROUP 7 3.86 1.04 0.92 26.14 1.99 12218 3512 494

AVERAGE 4.66 0.82 0.99 19.08 1.36 8437 2868 287

Table 5.16. Compression and decompression times averages for each group
when compressed by the CCITT two dimensional compression
technique with k = «

Comprs. Dcmprs.
time time

Group It s s

GROUP 1 3.70 2.96
GROUP 2 4.09 3.22
GROUP 3 6.37 5.86
GROUP 4 4.63 3.90
GROUP 5 1.48 1.14
GROUP 7 5.58 4.88

AVERAGE 4.31 3.66

www.manaraa.com

120

5,6. LZW vs. FAX

By method FAX here and throughout the rest of the thesis, we mean,

unless otherwise specified, the CCITT two dimensional coding technique

with k = 00. The results of the average compression factor (c.f.) for

each group were presented in Table 4.25 and the results of the compres

sion and decompression times are presented in Table 5.16. Comparing

the results in the above tables with the results in Table 5.11, we get

the following points:

1) Compression factor: FAX gives higher c.f. than LZW for graphics

data, such as group 2 (g2) and g5, and LZW gives higher c.f. than FAX

for g3 and g7. This means when the data consist of mainly long black

runs and short white runs FAX outperforms LZW, but when the data con

sists of mainly small runs, of black and white pels, LZW outperforms

FAX. For the data that are mixed of short and long runs, it seems that

FAX outperforms LZW as in group 4 or the average of group 1.

2) LZW needs longer compression time (c.t.), almost 4 times the

time used by FAX. But the LXW decompression time (d.t.) is smaller than

that of FAX, almost 0.36 times the time used by FAX. The decompression

times are in the range of 3 s and 1 s for FAX and LZW, respectively.

5.7. LZWB and LZWB2 vs. LZW and FAX

From Tables 5.11 and 5.12, we observe that LZWB advantages over

LZW are that groups 1 and 5 have higher c.f. and lower d.t. and c.t.

than those of LZW. The disadvantages are that the overall c.f. is

www.manaraa.com

121

smaller and the table size is bigger. So, in general, LZW is still bet

ter than LZWB.

Tables 5.14 and 5.15 show that initializing the LZW table, as in

LZWB2-A and LZWB2-B, gave slight improvement in the c.f. and the bigger

the initialized part is the bigger the increase in c.f. is. The increase

in the LZWB2-B c.f. were 10% and 14% over the c.f. of LZW for gl and g5,

respectively. These increases are 3% and 7% for LZWB. The d.t. are very

small for g5, average of 29 s, with LZWB, LZWB2-A, and LZWB2-B. The dis

advantages of the initialization are that the c.t. and the counter out

put increase slightly with the initialized portion.

Compared to FAX, methods LZWB, LZWB2-A, and LZl:7B2-B have c.f. no

more than 10% higher for g3 and g7. But the c.f. of LZl̂ /B, LXWB2-A, and

LZWB2-B are less than the c.f. of LZW for the same groups.

5.8. LZIVBI vs. LZWB

From Table 5.13, we notice that LZWBl has almost the same c.f.

as IZWB. The c.t., d.t., and the counter output are smaller for LZWBl

than for LZWB. So, the theory behind LZWBl worked but produced no over

all higher c.f. than LZWB.

5.9. Conclusion

Based on the results of the previous sections, we conclude that

LZW gives a higher c.f. than FAX for some groups and lower d.t. for all

groups. So, an improvement in the LZW that increases the c.f. is desir

able if LZW is to be used instead of FAX.

www.manaraa.com

122

The techniques of compressing the run-lengths of the image instead

of the Image itself gave better c.f. and d.t. than those of FAX for g3

and g7. These techniques gave higher c.f. than LZW for gl and g5.

This means that more improvement in these techniques may produce a c.f.

that is better than both LZW and FAX. Moreover, in the case that we are

investigating which consists of black and white text and graphics, each

pel is represented by 1 bit. So, it is envisioned that for the case of

colored images where each pel is represented by more than one bit, the

LZWBs methods will give better c.f. and they may be better than LZW

and/or FAX.

www.manaraa.com

123

6. MODIFICATIONS TO THE LZW ALGORITHM

Each entry in the LZlf algorithm table consists of a string symbol

and a character symbol that was previously encountered after this string.

Reference [43] suggested using a table in which each entry consists of

the symbols of two strings that were encountered after each other. This

modification was chosen because it was expected that it would result

in matching longer input strings to table entries. So, both LZW and the

method suggested by [43] search for the longest string in the input that

can be matched to a string encountered before; but the strings that are

obtained by this method are predicted to be longer.

The search for the longest string in LZW is easy because after each

successful match the string increases by one character. Hence, in LZW

the search starts at symbol 256 and continues in one pass till all the

table entries are searched. The search in this new method is not so

easy because searching for the longest string requires the decomposition

of every table entry that has as its first character the next unprocessed

character in the input. Reference [43] did not show how it accomplished

this task. In designing a code to do this task, the following two prob

lems arose:

1) The first character of each table entry should be stored
in a separate table so that only strings beginning with
the required character are searched. Without this stor
ing, it would be necessary to decompose each table entry
just to see if it starts with the desired character or
not; this results in a big increase in the compression
time.

2) The decomposition of each table entry that begins with
the desired character will take long searches; so, it

www.manaraa.com

124

is desirable to search for the longest block without the
need to do these long searches.

In the following sections, we will propose two new methods that

we will call LZWl and LZW2 and that search for the longest string with

out decomposing every table entry that begins with the next unprocessed

input character. Next, a method of decomposing every possible table

entry will be presented. This method, that we will call LZW3, follows

the concept suggested in [43]; nevertheless, it is not clear if [43]

designed the details of the method in the same way we did. Actually,

[43] never showed how to get the longest string, although this is a

critical point in applying the concept that [43] proposed.

The following definitions are used in the following discussions and

in the code used to simulate the above three methods:

= The last string sent to the output.

Lj = The current longest string to be sent to the output.

ŵ = The first symbol of a table entry.

Wg = The second symbol of a table entry.

ŵ = The first character of Wg in a table entry.

first_char = The first character in w while searching for
the longest block.

code(wl, w2) = The code of the tables index corresponding to
"ŵ ,wg". It is found by a scan function.

The variables w_ and first char are used to solve the first of the j —

two problems mentioned above. Since these two variables represent a

character, 8 bits are needed to address each of them. The variable ŵ

represents a string symbol; hence, at least 12 bits are needed to ad

www.manaraa.com

125

dress in the case of a 4096 entry table. To simulate a table where

each entry consists of ŵ , and ŵ , three.tables were used. Two of

these tables, where in these two each entry is an unsigned number, repre

sent ŵ and Wg and the third table is a table of characters that repre

sent ŵ .

Note that LZW used one table of unsigned numbers to represent w

and a character table to represent k. The three tables mentioned above

need more memory than the two tables of LZW. This explains the need to

use the far pointers in coding these new methods. To make the code of

LZW as close as possible to the code of its modifications, far pointers

were also used in coding LZW although there was no need for these far

pointers.

6.1. Method LZWl

Method LZWl avoids using long searches, used in LZW3 later, by

firstly, finding the longest string it can build character by charac

ter, i.e., it will search the ŵ table with ŵ only equal to one of the

character symbols. Secondly, it enters a second loop where it searches

for a string that begins with the current string and that matches the

input. If it finds that string, this string will be the LZWl current

string, and this second loop will start again. If no string, that be

gins with the current string and matches the input, was found, the cur

rent string will be in this case the longest string we can get. Hence,

it will be sent out, the tables will be updated, and LZWl will start

again in the first loop. The coding of LZWl can be described as follows.

www.manaraa.com

126

in a C language like code;

1. in_index = out_index = 0;

2. = input[in_index++];

output[out_index++] = L̂ ;

Lj = input[input_index++];

first_char = ;

3. while (in_index < bufr_size)

{

while Cin_index < bufr_size)

{

«2 = input[input_index++];

if (string "wl,w2" is in the tables]

= code(wl,w2);

else

first__char = ŵ ;

}

while (in_index < bufr_size)

{

start from "position" and search wl_table and

w3_table for symbol "code" that corresponds

to wl and first_charOj;

if(tables has ŵ as first string and second string

www.manaraa.com

127

starts with first_char, i.e., corresponding

first_char)

{

position = code + 1;

find Wg at the matched symbol code;

decompose into characters;

if (Wg matches the input)

{

ŵ = code;

adjust in_index;

first_char = input[input_index++];

}

}

else

break

)

= "li

output[out_index++] = ;

update tables wl_table, w2_table, and w3_table with L

Lj, and ŵ , respectively;

Li=L.;

ŵ = Wg = first_char;

}

END.

www.manaraa.com

128

The decompression is straightforward and can be described as

follows :

1. in_index = out_index = 0;

2. while (in_index < input_size)

{

ŵ = input [in_index-H-] ;

decompose(ŵ);

update decompress buffer with characters from ŵ

decomposition;

update wl table and w2 table with w, and w„;
— — i /

ŵ = ŵ }

3. END.

Appendix H contains the listing of the LZWl code.

6.2. Method LZW2

Method LZW2 does more searching than LZWl in order to get the

longest string. It also consists of a "while" loop that contains two

smaller "while" loops. The outer and first "while" loops are similar

to the ones in LZWl. The second "while" loop is different.

In LZWl, the second "while" loop can be summarized as follows:

while (more input and more table entries are to be searched)

{

read next character element in the input string;

match the input string to a table entry that has ŵ

as its first string and first_char as first character

www.manaraa.com

129

of the entry second string;

let = symbol of the matched entry;

}

In LZW2, the second "while" loop can be summarized as follows:

while (more input and more table entries are to be searched)

{

read next character element in the input string;

loop till you find the longest string that matches

the input and has ŵ as its first string and first_char

as the first character of its second string;

let ŵ = symbol of the longest matched string;

}

The decompression of LZW2 is exactly the same as of LZWl. Appendix

I contains the listing of the LZW2 code.

6.3. Method LZW3

Method LZW3 searches in the LZW table for the longest possible

string. It searches every single element that has ŵ as its first

string and its second string ŵ starts with first_char. To make the

search more efficient, we also make a table for the second character

of Wg and use this information to speed up the search. In the results,

we will see that even with this improvement, LZW3 takes a very long time

without producing a considerable increase in the compression factor.

The decompression process of LZW3 is exactly the same as of LZWl. Ap

pendix J contains the listing of the LZW3 code.

www.manaraa.com

130

6.4. Results of Compression Using LZWl,

LZW2, and LZW3

To compare the LZW, LZWl, LZW2, and LZW3 methods, we apply them

to an image that has an infinite size and consists of a repetition of

the same byte, e.g., black or white images. From manually tracing the

methods, we observe that after sending n symbols from each method,

these symbols represent a total number of input bytes, we will call

"sum", as follows :

1) LZW: sum = 1+2+3+4+ +n

which can be expressed as

sum 2
n(n+l)

int((n-l)/2)
2) LZWl; sum = 1+1+2+2+4+4+8+8+16+16 +2

which can be expressed for n = 2m as

sum = 2(1+2+4+8+ +2°"̂)

= 2̂ "+̂ - 2

= _ 2 ; n = 2, 4, 6, 8

3) LZW2: sum = 1+1 +2+2 +4 +6+6 +12 +18+18 +36 +54+54 +108

for n = 2 + 3m and n > = 5 we get

sum = 1+1 +(2+2+6+6+18+18+54+54+....)

+(4+12+36+108+...)

= 1+1 +4(1+3+9+27+) +4(1+3+9+27+)

www.manaraa.com

131

2 +8(1+3+9+27+ +3̂ "

= 2 +8(1+3+9+27+ +3(((n-2)/3)-l)̂

;n=5,8,ll,14,...

= 2 + 4(3 -1)

;n=5,8,ll,l4,. . .

4) LZW3: sum = 1+1+2+3+5+8+13+21 +a
n

from [45], we get

iW)
where = 0, â = 1, â = 1, â = 2, and so on.

These terms can be summed as two geometrical series. Hence, after

rearranging, we get:

2 sum = —
/5 /s - 1 /5 + 1

Table 6.1 contains the results of sum with respect to some values

of n for LZW, LZW1-LZW3. These values are drawn in Figures 6.1 and 6.2.

From the above table and figures, we see that for small values of n, LZW

gives higher value of sum than the other methods. LZW3 crosses LZW at

almost n = 6 and then rises very fast. LZWl and LZW2 cross LZW at almost

n = 9 and 8, respectively, then rise but not as fast as LZW3, with LZW2

being the highest. We will use these results in our analysis of the

www.manaraa.com

n

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

132

Size of the data represented by n symbols for each LZWx
method

LZW LZWl LZW2 LZW3

1 1 1 1
3 2 2 2
6 4 4 4
10 6 6 7
15 10 10 12
21 14 16 20
28 22 22 33
36 30 34 54
45 46 52 88
55 62 70 143
66 94 106 232
78 126 160 376
91 190 214 609
105 254 322 986
120 382 484 1596
136 510 646 2583
153 766 970 4180
171 1022 1456 6764
190 1534 1942 10945
210 2046 2914 17710
231 3070 4372 28656
253 4094 5830 46367
276 6142 8746 75024
300 8190 13120 121392
325 12286 17494 196417
351 16382 26242 317810
378 24574 39364 514228
406 32766 52486 832039
435 49150 78730 1346268
465 65534 118096 2178308
496 98302 157462 3524577
528 131070 236194 5702886
561 196606 354292 9227464
595 262142 472390 14930351
630 393214 708586 24157816
666 524286 1062880 39088168
703 786430 1417174 63245985
741 1048574 2125762 l.OE+08
780 1572862 3188644 1.7E+08
820 2097150 4251526 2.7E+08

www.manaraa.com

133

150

140

130

130

110 LZW
LZWl
LZW2
LZW3

!> 100

90

4J

SO

N 40
44

30

30

10

1 3 8 7 9

Number of symbols sent, n

Figure 6.1. Plot of size of data (sum) vs. number of symbols
used (n) for compressing a white image of infinite
size (n = 1 to 10)

www.manaraa.com

134

LZWl
LZW2

Number of symbols sent, n

Figure 6.2. Plot of size of data (sum) vs. number of symbols
used (n) for compressing a white image of in
finite size (n = 11 to 20)

www.manaraa.com

135

images compression results. Note that although this theoretical treat

ment shows a big difference between the methods for the infinite image,

the results are not the same for an image of limited size. Table 6.2

contains the results of compressing a white screen using each of the LZW

methods. This table shows that there is no big difference in the c.f.

of the 4 LZW methods.

The results of compressing each group by methods LZWl, LZW2, and

LZW3 are presented in Tables 6.3, 6.4, and 6.5, respectively. Table 6.6

contains the results of compressing each group using "LZW3+LZWB1" which

is similar to LZWbl but with the LZW3 used instead of LZW. From these

tables and the corresponding tables for LZW and FAX, we get the follow

ing remarks;

1) The results of LZW2 and LZWl are very close to LZW. LZWl and

LZW2 have very small advantage in c.f. and table size. LZW2 has slight

ly higher c.t. than LZWl. The c.t. of both methods are slightly higher

than the c.t. of LZW. The table size of both LZWl and LZW2 are very

slightly higher than LZW. Taking all the groups into consideration, it

seems that LZWl and LZW2 give better c.f. and d.t. than IZW.

2) LZW3 gives better c.f. than LZW for all groups except g3. The

d.t. of LZW3 is similar to LZW but its c.t. is very big. In fact, the

c.t. of LZW3 is bigger than one minute; for this reason, we do not in

clude c.t. in the tables of LZW3.

3) LZW gives better c.f. than LZWl and LZW2 for g3 and g4. This

can be explained by using the theoretical analysis we presented before.

www.manaraa.com

136

Table 6.2. Results of compressing a white screen, using methods FAX,
LZW, LZWL, LZW2, and LZW3

Comprs. Decomprs.
Comprs. time time Table Extra

Method factor s s size calls

FAX 305.49 2.79 1.54 NÂ NA
LZW 59.48 8.95 1.59 ' 434 0
LZWl 340.43 2.64 1.48 286 0
LZW2 363.64 3.13 1.49 284 0
LZW3 410.26 5.44 1.54 281 0

N̂A = entry not valid for this method.

Table 6.3. Results of compressing each group of the image data using
method LZWl

Comprs. Dcmprs.
Comprs. C.F. C.F. time time Table Extra

Group # factor FAX LZW s s size calls

GROUP 1 6.29 0.64 1.10 13.32 1.20 2118 49
GROUP 2 5.72 0.68 1.00 13.43 1.37 2209 0
GROUP 3 3.60 1.28 0.95 29.14 1.46 3388 268
GROUP 4 3.62 0.91 0.98 22.60 1.36 3127 33
GROUP 5 5.31 0.55 1.10 3.20 0.47 941 0
GROUP 7 4.27 1.15 1.02 30.28 1.46 3208 308

AVERAGE 4.80 0.87 1.03 18.66 1.22 2499 110

www.manaraa.com

137

Table 6.4. Results of compressing each group of the image data base
using method LZW2

Comprs. Dcmprs.
Comprs. C.F. C.F. time time Table Extra

Group // factor FAX LZW s s size calls

GROUP 1 6.35 0.64 1.11 15.04 1.20 2113 48
GROUP 2 5.78 0.69 1.01 15.16 1.36 2187 0
GROUP 3 3.62 1.29 0.96 32.82 1.47 3386 260
GROUP 4 3.64 0.92 0.99 24.25 1.35 3113 31
GROUP 5 5.40 0.56 1.12 3.68 0.43 936 0
GROUP 6 4.30 1.16 1.03 29.20 1.46 3200 309

AVERAGE 4.85 0.88 1.04 20.03 1.21 2489 108

Table 6.5. Results of compressing each group of the image data base
using method LZW3

Dcmprs.
Comprs. C.F. C.F. time Table Extra

Group # factor FAX LZW s size calls

GROUP 1 6.62 0.67 1.16 1.43 2056 39
GROUP 2 6.12 0.73 1.07 1.57 2048 0
GROUP 3 3.74 1.33 0.99 1.59 3345 216
GROUP 4 3.77 0.95 1.02 1.48 3047 14
GROUP 5 5.82 0.61 1.21 0.47 894 0
GROUP 7 4.54 1.23 1.08 1.59 3149 268

AVERAGE 5.10 0.92 1.09 1.36 2423 90

www.manaraa.com

138

Table 6.6. Results of compressing each group of the image data base,
using method LZW3 combined with LZWBl

Dcmprs.
Comprs, C.F. C.F. time Table Extra

Group # factor FAX LZW s size calls

GROUP 1 6.06 0.61 1.06 1.01 2215 182
GROUP 2 5.53 0.66 0.97 0.98 2323 0
GROUP 3 3.00 1.07 0.79 2.04 3567 858
GROUP 4 3.34 0.84 0.91 1.28 3294 69
GROUP 5 5.77 0.60 1.20 0.27 930 0
GROUP 7 4.14 1.12 0.99 1.74 3261 451

AVERAGE 4.64 0.82 0.98 1.22 2598 260

www.manaraa.com

139

Since the analysis showed that LZW is better than LZWl and LZW2 for small

values of n adding to that the fact that g3 and g4 contain a lot of text

(which means the run-lengths of these two groups consist of small runs),

the length of the strings LZWl and LZW2 produce in the LZW table is

small, hence LZW is better.

4) The same conclusion reached in 3 about LZWl and LZW2 can be

reached for LZW3. But as the calculation shows, LZW3 crosses with LZW

for smaller values of n and does much better than LZW for bigger values

of n; hence, in general, LZW3 is better than IZW. Table 6.5 showed

that LZW3 always had bigger c.f. than LZW except for g3 where the c.f.

of the two methods were very close to each other.

4) The c.f. of LZW1-LZW3 compared to FAX are, as was the case for

LZW, higher for g3 and g5 and lower for the other groups. The ratio of

the c.f. of LZW3 to that of FAX is 1.35 for g3 which is screens full of

text. This big gain in c.f. for g3 justifies using LZW3 at least for

S3.

5) From Table 6.6, it is clear that the only advantage LZW3+LZWB1

has over LZW3 is a slightly less d.t. LZW3+LZWB1 has the disadvantage

of lower c.f. and slightly bigger table size. Compared to LZWBl alone,

LZW3_LZ\̂ B1 gives a higher c.f. The same analysis and conclusion we got

for LZWBl in Chapter 4 applies to LZW3+LZWB1.

www.manaraa.com

140

7. METHODS R8, R4, AND BIG

7.1. Method R8

The following observations led to the development of methods R8 and

R4:

1) LZW gives higher c.f. if the input contains repeated strings

and strings that can be built from each other. The methods LZWBs were

an attempt to change the input data to LZW from just the pels of the

screen in their regular form to other form, run-lengths symbols, that

might result in a higher c.f. using LZW. As was shown in Chapter 5,

this attempt was successful for some groups and not successful for

others. So, another attempt to produce better input.to LZW was de

veloped by the author.

2) The attempt of Chapter 6 to produce better versions of LZW gave

modified versions of LZW (namely, LZWl, LZW2, and LZW3) that gave bet

ter c.f. than LZW but not as high as expected.

3) LZW, LZWl, LZW2, and LZW3 gave better c.f. than FAX for g3

which consists of screens full of text. At the first glance, it seems

that groups consisting of mainly graphical data, and not g3, should give

higher c.f. because there is no relation between the screen bytes in

the case of g3. But, besides the fact that FAX is not optimum for

screens that have a lot of small white and black runs, a closer look at

the functioning of LZW and the structure of the input data suggests that

LZW does better than FAX for g3 because LZW benefits from the dependency

www.manaraa.com

141

between the characters themselves. That is to say, if character "B"

comes after "A", the rows of pels representing "B" come after the rows

of pels representing "A". This results in adding, to the LZW table,

a number of strings equal to the character height (assume from now on

that the character height is 8). So, the next time "B" comes after "A",

LZW will detect that 8 strings have already been encountered before and

are in the table. Hence, LZW represents these 8 strings with fewer sym

bols than in the case of an input from the normal scan. Note that at

this point LZW denotes any of LZW, LZWl, LZW2, and LZW3.

Taking the above 3 points into consideration, we developed methods

R8 and R4. Method R8 can be explained as follows.

Instead of reading the screen in the normal scan, R8 divides the

screen into blocks of 8 lines and reads each block column by column,

where a column width is one byte. Figure 7.1 represents the normal

scan and the scan in method R8. So, method R8 is not a compression

method; it is only a way of arranging the screen data in the best form

for compression. Consequently, method R8 (similarly, R4) should be

used with any LZW method. The notation for using LZW combined with

R8 will be "LZW+R8". Throughout the rest of the thesis the notation

LZWx will be used to denote LZW, LZWl, LZW2, or LZW3 (so, x = 0, 1, 2,

or 3 with LZWO denoting LZW). The notation Ry will be used to denote

R8 or R4. The letter "R" in the method name stands for "rotated" scan.

The numbers 4 and 8 stand for the column width in pels.

www.manaraa.com

142

"#—8 PELS —

1 PEL n
/
/

n
t

(/)

1 i \
/
/

/ \
1
1

1
1

1

1
1
1

1

t

(/)

\ i \ /
/

/ \
1
1

1
1

1

1
1
1

1

t

(/) \ / 1
\ 1

1

1

1

1

' /
/

/
/

/ \
1
1

1
1

1

1
1
1

1

œ
00 * /

/ 1
\ 1

1

1

1

1

' /
/

/

/ \
1
1

1
1

1

1
1
1

1

1 f

) /

/ 1
\ 1

1

1

1

1

' /
/

/

/ \
1
1

1
1

1

1
1
1

1

1 f

» /

/ 1
\ 1

1

1

1

1

' /
/

/

/ \
1
1

1
1

1

1
1
1

1

1 f w

/

L

\
(a) METHOD RS SCANNING

1

1

1

(a) METHOD RS SCANNING

-— 8 PELS

PEL — PEL — ̂ 1

t

(b) NORMAL SCANNING

Figure 7.1. A comparison between normal scanning and scanning
of method RS

www.manaraa.com

143

7.2. Method R4

Method R8 was designed with the screen viewed as characters in

order to increase the c.f. of compressing textual data. But for graphics

screens or blocks this view may not be the best idea for compression.

To investigate this point, we developed method R4. R4 works similar to

R8 except that the column width in the rotated scan is 4 pels or half a

byte. It is envisioned that this will work better for graphics data

because it can isolate longer strings, specially runs of black pels.

Another reason for developing R4 is that such a scanning method

might be necessary when scanning typed material where the character width

of each letter is not the same for all letters.

7.3. Method BIG

LZW is known to work better as the input data size increases, up

to a certain limit [41]. In all the previous LZWx methods, we compress

a screen or part of a screen; this means that the input data maximum

size is 16 KB. The previous methods (e.g., LZWx+Ry) results showed that

the table size was smaller than the table maximum size. This means,

as will be cleared later, there is a room for increasing the input size.

In method BIG, we use any of the previous methods to compress more than

one screen. So, BIG is not an actual method but we name it as a method

to make the comparison and investigation clearer.

www.manaraa.com

144

7.4. Results and Analysis of R8 and R4

Tables 7.1 and 7.2 contain the results of using LZW with R8 and

R4, respectively. Tables 7.3 and 7,4 contain the results of using

LZWl with R8 and R4, respectively. Tables 7.5 and 7.6 contain the re

sults of using LZW2 with R8 and R4, respectively. Tables 7.7 and 7.8

contain the results of using LZW3 with R8 and R4, respectively.

From the above mentioned tables, we get the following points:

1) For all groups, Ry+LZW3 gives higher c.f. than Ry+LZWx
(where x=0, 1, 2) and LZWx without Ry.

2) c.f. of R8 vs. c.f. of R4: the c.f. results of the dif
ferent groups can be classified as follows:

a) For gl, R4+LZW or R4+LZW1 is almost the same as
R8+LZW or R8+LZW1, respectively, and R4+LZW2 or
R4+LZW3 is better than the R8+LZW2 or R8+LZW3,
respectively.

b) For g2, R4 is better than R8 when any of them is com
bined with LZWl, LZW2, or LZW3. For the LZW, R8 is
better.

c) For g3, R8 is better than R4 for any LZWx.

d) For g4, R4 is better than R8 for any LZWx.

e) For g5, R4 is better than R8 for LZW1-LZW3 and R8
is better than R4 for LZW.

f) For g7, R4 is better than R8 for LZWl and LZW2, same
as R8 for LZW3. For g7, using LZW, R8 is better than
R4.

From the above classification, it is clear that, as ex
pected, R8 is better than R4 when the data is only, or
mostly, a textual screen. But for graphical data, R4 is
better. When the data are a combination of text and
graphics R4 is better or at least the same as R8 for all
the LZWx methods except LZW.

www.manaraa.com

145

Table 7.1. Results of compressing each group of the image data base
using method LZW combined with method R8

Comprs. Dcmprs.
Comprs. C.F. C.F. time time Table Extra

Group # factor FAX LZW s s size calls

GROUP 1 6.96 0.70 1.21 14,58 1.79 1706 0
GROUP 2 6.70 0.80 1.18 16.78 2.09 1928 0
GROUP 3 5.84 2.08 1.54 20.09 2.09 2313 0
GROUP 4 4.41 1.11 1.20 24.33 1.99 2761 0
GROUP 5 5.44 0.57 1.13 3.89 0.67 855 0
GROUP 6 4.67 1.26 1.11 24.01 2.07 2882 167

AVERAGE 5.67 1.09 1.23 17.28 1.78 2074 28

Table 7.2. Results of compressing each group of the image data base
using method LZW combined with method R4

Comprs. Dcmprs.
Comprs. C.F. C.F. time time Table Extra

Group # factor FAX LZW s s size calls

GROUP 1 6.95 0.70 1.21 15.10 2.06 1726 0
GROUP 2 6.61 0.79 1.16 17.67 2.41 1959 0
GROUP 3 5.40 1.92 1.42 22.65 2.39 2513 24
GROUP 4 4.67 1.18 1.27 24.32 2.25 2620 0
GROUP 5 5.47 0.57 1.13 4.07 0.76 859 0
GROUP 7 4.59 1.24 1.10 25.74 2.38 3207 208

AVERAGE 5.62 1.07 1.22 18.26 2.04 2147 39

www.manaraa.com

146

Table 7.3. Results of compressing each group of the image data base
using method L2Mfl combined with method R8

Comprs. Dcmprs.
Comprs. C.F. C.F. time time Table Extra

Group 1/ factor FAX LZW s s size calls

GROUP 1 7.51 0.76 1.31 7.83 1.16 1598 0
GROUP 2 6.78 0.81 1.19 10.21 1.33 1895 0
GROUP 3 7.58 2.70 2.00 11.68 1.43 1974 0
GROUP 4 4.71 1.19 1.28 17.46 1.31 2698 0
GROUP 5 5.80 0.60 1.20 2.42 0.44 839 0
GROUP 7 4.86 1.31 1.16 25.10 1.43 2948 228

AVERAGE 6.21 1.23 1.36 12.45 1.18 1992 38

Table 7.4. Results of compressing each group of the image data base
using method LZWl combined with method R4

Comprs. Dcmprs.
Comprs. C.F. C.F. time time Table Extra

Group it factor FAX LZW s s size calls

GROUP 1 7.52 0.76 1.31 7.63 1.17 1590 0
GROUP 2 6.95 0.83 1.22 9.72 1.35 1864 0
GROUP 3 6.98 2.48 1.84 13.05 1.44 2127 21
GROUP 4 5.19 1.31 1.41 14.83 1.32 2453 0
GROUP 5 6.02 0.63 1.25 2.33 0.45 824 0
GROUP 6 4.94 1.34 1.18 24.51 1.45 2905 249

AVERAGE 6.27 1.22 1.37 12.01 1.20 1961 45

www.manaraa.com

147

Table 7.5. Results of compressing each group of the image data base
using method LZW2 combined with method R3

CoQprs. Dcmprs.
Comprs. C»F. C.F. time time Table Extra

Group // factor FAX LZW s s size calls

GROUP 1
GROUP 2
GROUP 3
GROUP 4
GROUP 5
GROUP 7

AVERAGE 6.22 1.23 1.36 13.10 1.19 1988 38

Table 7.6. Results of compressing each group of the image data base
using method LZW2 combined with method R4

Comprs. Dcmprs.
Comprs. C.F. C.F. time time Table Extra

Group a factor FAX LZW s s size calls

GROUP 1 7.64 0.77 1.33 8.91 1.18 1521 0
GROUP 2 6.91 0.82 1.21 11.33 1.37 1877 0
GROUP 3 6.59 2.35 1.74 15.88 1.47 2133 15
GROUP 4 5.12 1.29 1.39 17.03 1.31 2474 0
GROUP 5 6.06 0.63 1.26 2.65 0.41 822 0
GROUP 7 4.99 1.35 1.19 21.92 1.45 2893 249

AVERAGE 6.22 1.20 1.35 12.95 1.20 1953 44

7.56 0.76 1.32 9.04 1.16 1589 0
6.84 0.82 1.20 11.65 1.36 1884 0
7.64 2.72 2.02 14.37 1.42 1970 0
4.65 1.17 1.26 18.98 1.32 2701 0
5.83 0.61 1.21 2.78 0.41 837 0
4.82 1.30 1.15 21.80 1.44 2944 226

www.manaraa.com

148

Table 7.7. Results of compressing each group of the image data
base using method LZW3 combined with method R8

Dcmprs.
Comprs. C.F. C.F. time Table Extra

Group it factor FAX LZW s size calls

GROUP 1 8.07 0.82 1.41 1.48 1515 0
GROUP 2 7.33 0.87 1.29 1.57 1781 0
GROUP 3 7.84 2.79 2.07 1.58 1915 0
GROUP 4 4.93 1.24 1.34 1.51 2599 0
GROUP 5 6.41 0.67 1.33 0.51 790 0
GROUP 7 5.30 1.43 1.26 1.63 2835 200

AVERAGE 6.65 1.30 1.45 1.38 1906 33

Table 7.8. Results of compressing each group of the image data
base using method LZW3 combined with method R4

Dcmprs. •

Comprs. C.F. C.F. time Table Extra
Group it factor FAX LZW s size calls

GROUP 1 8.17 0.83 1.43 2.14 1506 0
GROUP 2 7.41 0.88 1.30 2.40 1773 0
GROUP 3 7.31 2.60 1.93 2.41 2075 0
GROUP 4 5.41 1.36 1.47 2.28 2387 0
GROUP 5 6.60 0.69 1.37 0.72 783 0
GROUP 7 5.30 1.43 1.26 2.43 2827 228

AVERAGE 6.70 1.30 1.46 2.06 1892 38

www.manaraa.com

149

Although the c.f. ratios (LZW3/FAX) and (LZW3/LZW) seem
to be the same for R4 and R8 when combined with LZW3, the
average c.f. of all groups is higher in the case of R4
(6.7 for R4 vs. 6.65 for R8).

3) R4 has higher d.t. than R8 when any of them is combined
with LZW or LZW3 and almost the same as R8 when any of
them is combined with LZWl or LZW2. The d.t. of R8+LZW3
is approximately 2/3 of the d.t. of R4+LZW3.

d.t. of R8+LZWX (x=l, 2, 3) are less than d.t. of R8+LZW

with R8+LZW1 and R8+LZW2 having the smallest values.

d.t. of R4+LZW1 or R4+LZW2 are less than d.t. of R4+LZW.
d.t. of R4+LZW3 is the same as d.t. of R4+LZW.

So, for Ry+LZWx (x=l, 2, 3), although LZW1-LZW3 have longer
strings to be decomposed than LZW, the number of strings
in the case of LZW1-LZW3 is less, resulting in a d.t.
smaller than or equal to the d.t. of LZW.

4) Although unexpected, the c.t. of Ry+LZWl or Ry+LZW2 are
smaller than the c.t. of Ry+LXIV. Most of the c.t. of
LZW3 or Ry+LZW3 are longer than one minute, so it was
decided not to include them in the tables.

5) The table size for Ry+LZWx decreases as x increases. The
table size of R4+LZWx is close to the table size for
R8+LZWX for each corresponding value of x.

6) For g3, the c.f. of R8+LZWx increases as x increases. R4
has a similar trend except for R4+LZW2, where the c.f.
is less than R4+LZW1 but still higher than LZW.

7) The c.f. of Ry+LZW3 is higher than FAX for g3, g4, and g7
and less for easy graphics such as g2, g5, and gl which is
mixed of text and easy graphics. The result of compress
ing gl can be explained by the fact that the majority of
the documents in gl are easy graphics ; only document 4
can be considered as a "text only" document. Hence, the
effect of documents totally or partially consisting of
graphics cause the c.f. of FAX to be higher than Ry+LZW3.

The highest ratio of the c.f. of Ry+LZWx to FAX c.f.
is for R8+LZW3 where it is 2.79.

8) LZWl or LZW2 when combined with Ry give c.f. that are
smaller than LZW3+Ry by no more than 10%; but they have

www.manaraa.com

150

the advantage of lower d.t. and extremely lower c.t. in
comparison to LZW3. So, If the c.t. Is not important,
as In our case, LZW3+Ry is the best choice. Choosing
between R4 and R8 depends on the group of data to be
compressed and the. d.t. allowed. But as we saw before,
LZW3+R4 gives an overall c.f. that is higher than LZW3+R8
and its d.t. is only in the range of 2 s (=1.5 times the
d.t. of LZW3+R8). Hence, we think LZW3+R4 should be the
choice.

Furthermore, R8 may not do as well for variable width
characters as it did in the case of g3 as shown in Tables
7.7.

If the c.t. is Important, Ry+LZWl or Ry+LZW2 is the choice.
From the previous data and analysis, there is no big dif
ference between Ry+LZWl and Ry+LZW2, and choosing any of
them will do as well as the other.

7.5. Results and Analysis of BIG

To investigate BIG, we grouped two or more files for a total of

19 groups or combinations. To avoid confusion with the group numbering

that we made in Chapter 3, we call these "combinations" and denote them

by cl, c2,... etc. Table 7.9 lists these combinations and the images

they combine. The images in each combination are listed in their com

pression order. Tables 7.10-7.12 contain the c.f. results of BIG+Ry+LZWx

(x=0, 2, and 3). Table 7.13 contains the c.t. results of BIG+Ry+LZW and

BIG+Ry+LZW2. Since the c.t. results of BIG+Ry+LZW3 are bigger than 1

mln, they will not be included. Table 7.14 contains the summation of

the c.t. of the individual Images in each combination when each indi

vidual image is compressed alone using Ry+LZW and Ry+LZW2. Table 7.15

contains the extra calls made when compressing each combination. The

presence of negative values of the "extracalls" is used to denote that

www.manaraa.com

151

Table 7.9. The combinations used in BIG

Combination image 1 Image 2 Image 3 Image 4 Image 5

1 docla
2 doc2a
3 doc4a
4 doc6a
5 docla
6 doc2a
7 doc4a
8 doc4a
9 doc4a
10 doc4a
11 doc4a
12 doc4a
13 doc4a
14 doc4a
15 doc6a
16 doc6a
17 doc6a
18 doc6a
19 doc6a

doclb doclc
doc2c doc2c
doc4b
doc6b
doclb
doc2b
doc4b romtxt
doc4b £rnch2a
doc4b doc4c
doc4b doc4a
doc4b doc2a
doc4b cprog
doc2a doc4b
electrc doc4b
doc6b doc8
doc6b frnch3a
doc6b electrc
doc6b flowchrt
doc6b flowchrt

romtxt frnch2a

electro

www.manaraa.com

152

Table 7.10. Compression factor results using Ry+LZW

Combi
nation R8+LZW R4+LZW
BIG IND BIG/IND BIG/FAX BIG IND BIG/IND BIG/FAX

1 6.70 6.07 1.10 1.00 6.61 6.05 1.09 0.99
2 11.49 9.34 1.23 0.77 11.37 9.35 1.22 0.76
3 5.97 5.09 1.17 3.51 5.54 4.72 1.17 3.26
4 8,49 7.55 1.12 0.71 8.65 7.82 1.11 0.72
5 5.09 4.80 1.06 1.01 5.00 4.77 1.05 1.00
6 9.80 8.61 1.14 0.73 9.79 8.66 1.13 0.73
7 4.34 4.85 0.89 2.73 2.54 4.53 0.56 1.60
8 4.07 4.45 0.91 2.29 2.84 3.74 0.76 1.60
9 2.78 4.44 0.63 1.67 2.57 3.84 0.67 1.55
10 6.61 5.16 1.28 3.78 6.16 4.79 1.29 3.52
11 6.70 5.98 1.12 2.78 6.11 5.63 1.09 2.54
12 6.68 6.09 1.10 3.01 5.25 5.64 0.93 2.36
13 6.78 5.98 1.13 2.81 6.51 5.63 1.16 2.70
14 5.23 4.91 1.07 2.91 4.94 4.59 1.08 2.74
15 8.46 7.54 1.12 0.59 8.62 7.77 1.11 0.60
16 8.89 7.52 1.18 0.74 8.85 7.59 1.17 0.74
17 6.65 6.21 1.07 1.46 6.55 6.19 1.06 1.43
18 7.48 6.66 1.12 0.86 7.51 6.81 1.10 0.87
19 5.54 5.99 0.92 1.16 5.07 5.98 0.85 1.06

www.manaraa.com

153

Table 7.11. Compression factor results using Ry+LZW2

Combi
nation R8+LZW2 R4+LZW2

it BIG IND BIG/IND BIG/FAX BIG IND BIG/IND BIG/FAX

1 6.68 6.14 1.09 1.00 6.73 6.30 1.07 1.01
2 10.97 9.05 1.21 0.74 11.10 9.18 1.21 0.75
3 8.67 7.04 1.23 5.10 8.15 6.55 1.24 4.79
4 8.50 7.91 1.07 0.71 8.96 8.18 1.10 0.75
5 5.05 4.80 1.05 1.01 5.10 4.92 1.04 1.02
6 9.33 8.19 1.14 0.69 9.46 8.35 1.13 0.70
7 7.86 6.83 1.15 4.94 7.17 6.41 1.12 4.51
8 5.57 5.20 1.07 3.13 4.09 4.43 0.92 2.30
9 4.61 5.41 0.85 2.78 4.05 4.79 0.85 2.44
10 10.49 7.13 1.47 5.99 9.99 6.59 1.52 5.72
11 8.82 7.53 1.17 3.66 8.54 7.20 1.19 3.54
12 10.03 8.42 1.19 4.52 9.41 7.74 1.22 4.24
13 8.68 7.53 1.15 3.60 8.37 7.20 1.16 3.47
14 6.55 6.04 1.08 3.64 6.14 5.72 1.07 3.41
15 8.38 7.84 1.07 0.59 9.00 8.21 1.10 0.63
16 8.58 7.67 1.12 0.71 9.03 7.80 1.16 0.75
17 6.74 6.44 1.05 1.47 6.75 6.47 1.04 1.48
18 7.34 6.88 1.07 0.85 7.81 7.09 1.10 0.90
19 5.25 6.15 0.85 1.10 4.97 6.23 0.80 1.04

www.manaraa.com

154

Table 7.12. Compression factor results using Ry+LZW3

Combi
nation R4+LZW3 R4+LZW3

// BIG IND BIG/IND BIG/FAX BIG IND BIG/IND BIG/FAX

1 6.93 6.46 1.07 1.04 6.98 6.54 1.06 1.05
2 11.63 9.77 1.19 0.78 11.73 9.89 1.19 0.79
3 8.63 7.14 1.21 5.08 8.38 6.66 1.26 4.93
4 9.60 8.67 1.11 0.80 9.79 9.02 1.09 0.82
5 5.25 5.02 1.05 1.05 5.26 5.09 1.03 1.05
6 9.86 8.88 1.11 0.73 9.99 9.03 1.11 0.74
7 7.87 6.87 1.15 4.95 7.51 6.57 1.14 4.72
8 5.69 5.36 1.06 3.20 4.36 4.55 0.96 2.45
9 4.43 5.51 0.80 2.67 3.99 4.93 0.81 2.40
10 10.54 7.19 1.47 6.02 10.24 6.72 1.52 5.85
11 9.02 7.78 1.16 3.74 8.89 7.42 1.20 3.69
12 10.15 8.50 1.19 4.57 9.75 7.97 1.22 4.39
13 9.01 7.78 1.16 3.74 8.86 7.42 1.19 3,68
14 6.87 6.24 1.10 3.82 6.69 5.95 1.12 3.72
15 9.33 8.57 1.09 0.65 9.74 8.96 1.09 0.68
16 9.59 8.37 1.15 0.80 9.70 8.64 1.12 0.81
17 7.40 6.96 1.06 1.62 7.28 7.05 1.03 1.59
18 8.30 7.43 1.12 0.96 8.51 7.74 1.10 0.98
19 5.72 6.62 0.86 1.20 5.63 6.77 0.83 1.18

www.manaraa.com

155

Table 7.13. Compression time of each combination using Ry+LZlf and
Ry+LZW2

Combination R8+LZW R4+LZW R8+LZW2 R4+LZW2
s s s s

1 99 100 60 60
2 60 61 36 38
3 55 61 34 35
4 37 39 24 23
5 64 65 47 47
6 31 32 23 24
7 129 131 66 70
8 121 125 96 121
9 264 276 183 187
10 96 104 52 53
11 111 108 55 57
12 111 112 47 49
13 105 112 59 62
14 105 114 83 89
15 81 85 52 49
16 70 85 48 47
17 82 88 66 66
18 75 78 58 56
19 116 124 122 132

www.manaraa.com

156

Table 7.14. Summation of the compression times of the Images in each
combination using Ry+LZW and Ry+LZW2

Combination R8+LZW R4+LZW R8+LZW2 R4+LZW2
s s s s

1 58 60 36 36
2 41 42 23 24
3 44 48 26 27
4 30 31 18 17
5 46 46 32 31
6 26 27 17 17
7 66 72 40 42
8 69 83 56 67
9 98 115 75 87
10 66 72 38 40
11 55 60 34 36
12 60 66 31 33
13 55 60 34 36
14 64 70 44 46
15 45 46 28 26
16 45 46 29 27
17 50 53 37 36
18 48 50 33 30
19 68 72 51 49

www.manaraa.com

157

Table 7.15. Extra calls required when compressing each combination
using Ry+LZW, Ry+LZW2, and Ry+LZW3

Combi
nation
R8+LZW R4+LZW R8+LZW2 R4+LZW2 R8+LZW3 R4+LZW3

1 936 1001 948 907 775 739
2 -1059 -1028 -930 -963 -1093 -1115
3 —268 12 -1382 -1225 -1371 -1299
4 -1331 -1376 -1334 -1464 -1622 -1665
5 346 422 381 338 219 214
6 -1666 2434 -1557 -1589 -1679 -1707
7 3523 8738 227 615 222 417
8 4016 7422 1902 3981 1781 3496
9 15320 16904 7705 9290 8179 9518
10 995 1354 -794 -641 -809 -722
11 936 1393 -218 -98 -299 -247
12 947 2256 -655 -444 -692 -564
13 874 1072 -159 -24 -293 -238
14 2273 2633 1041 1365 816 936
15 -61 -132 -28 -290 -413 -560
16 -244 -229 -115 -300 -507 -547
17 966 1038 906 898 480 547
18 435 419 513 251 13 —88
19 3861 4567 4281 4745 3612 3732

www.manaraa.com

158

there were no extra calls and the number given, is equal to the table

size minus the table maximum size, i.e., minus 4096.

Checking the c.f. results in Tables 7.10-7.12, we observe that

the method BIG, in general, produced the desired increase in the c.f.

We also observe that the trends in the three tables are very similar.

Hence, we chose to comment on only Table 7.12 which has the results of

using BIG+Ry+LZW3.

From Table 7.12, we see that the difference between using R4 and

R8 is very small, except for c8. In general, as expected and explained

before, R8 produces a higher c.f. for textual data and R4 produces a

higher c.f. for graphics data. In the following, we will look at the

results of BIG+R8+LZW3. We will refer to the. results of BIG+R4+LZW3

when necessary.

1) Combinations cl, c2, c3, and c4 represent the combination
of the parts of each of the CCITT documents. This means
the images combined in each combination are related to
gether. For this reason, the result of cl, c2, c3, and
c4 shows an increase in the ratio of the c.f. if the
combination is compressed at once, over the total c.f.
if each image was compressed alone. Tables 7.10-7.12
denote this ratio by BIG/IND, and we will use this nota
tion in the rest of the thesis. Among the BIG/IND ratios
of cl, c2, c3, and c4, the highest ratio was that of c3.
This is expected since this combination is a combination
of two textual screens. Note that the c.f. of c3 is 8.63
which is higher than the c.f. if each screen was sent
as an ASCII text. If each screen was sent as ASCII text,
then the c.f. is given by

c.f. = 16000/(80x25) = 8.0

We should note that the two textual screens in c3 have only
24 lines each with the last line being blank characters.
So, for a completely filled screen the c.f. may be a little
less, or may be higher.

www.manaraa.com

159

The fact that we get a c.f. of c3 that is higher than the
c.f. if we send the screen as ASCII is a very interesting
and important result. It means that without any pattern
recognition we get a c.f. higher than the c.f. if pattern
recognition is used.

2) Combinations c5 and c6 are each the combination of the
first two Images in cl and c2, respectively. Their c.f.
result shows that for such images, compressing three
images is better than compressing two Images in one com
bination.

3) Combinations c7 and c8 consist of doc4a and doc4b each,
followed by romtxt and frnchZa, respectively. The BIG/IND
ratio of c7 is higher than that of c8. This difference
can be explained by the following remarks;

a) The characters in frnchZa are different from the
characters in doc4a and doc4b while the characters
of romtxt are the same.

b) The image frnch2a is a screen filled with 22 lines
while the images doc4a, doc4b, and romtxt are textual
pages with 24 lines as a text and line 25 is blank.
This means that, first image romtxt is more similar
to doc4a and doc4b than image frnch2a. Second, the
compression of frnch2a will not be as good as any of
the other images because it is not in the best form
for R8, i.e., it does not consist of lines that are
next adjacent to each other and frnch2a has charac
ters of 8 pels high.

4) The ratio of the c.f. of c8 using BIG+R8+LZW3 to the
c.f. of BIG+R4+LZW3 Is the highest ratio in Table 7.12
for any combination.

5) Each of c9 and cl9 represent a combination of 5 images
of textual and graphics screens, respectively. In the
result of both combinations, BIG/IND is less than 1 but
BIG/FAX is bigger than 1. The fact that BIG/IND is less
than 1 suggests that, as expected, the LZWx methods lose
their adaptation if the input size Increases beyond a
certain limit.

6) Combination clO shows how LZWx benefits from repeated
strings and how it is highly adaptable. These two ob
servations come from the fact that doc4a is the first and
third image in this combination.

www.manaraa.com

160

7) Combinations cil and cl2 have images doc4a and doc4b as
their first two images and doc2a and cprog as their third
image, respectively. Although the third image is a
graphics image in cll and a textual image in cl2, both
combinations have BIG/IND around 1.15. This also shows
the adaptability of LZWx.

8) The second and third images In cl3 are the third and
second images in cll. It is Interesting that with this
flipping of the images order, the resulted c.f. are still
almost the same. BIG+R4+LZW3 gives similar results.

9) Combinations cl3 and cl4 both have doc4a and doc4b as
their first and third images, and their second image is
a graphical screen. Both combinations give BIG/IND big
ger than 1.10. This also shows the adaptability of LZWx.

10) In the combination cl5, the third image is completely
different from the first two images and still BIG/IND
is bigger than 1. This also shows the adaptability of
LZWx.

11) Combinations cl6, cl7, and cl8 start each with two related
graphics screens, namely, doc6a and doc6b, followed by
a third image that is also a graphics screen. The BIG/IND
is bigger than 1 in the three combinations. The BIG/IND
ratio Increases with the c.f. of the third image.

12) In most combinations, there were some extra calls made
but this did not affect the c.f. very much.

13) The compression time of the document increases as its
order in compression increases. The compression time for
images other than the first image is usually longer than
when compressing this image alone. This is due to the
fact that the method takes longer time to search the table
as the table size increases.

www.manaraa.com

161

8. GENERAL ANALYSES

In the previous chapters, we looked at the methods when we developed

them. In this chapter, we will present some general remarks about these

methods.

8.1. Building the Screen

In Chapter 3, we defined group 6 as a group that contains an image

that is built gradually and can be divided into smaller blocks. We saw

in Chapter 4 that, when using FAX, this division does not increase the

total c.f. of the small blocks. We did not look at this point for the

methods LZWx in the last chapters. Table 8.1 presents the results of

dividing the image pdraw3 into 4 smaller blocks using all the methods

developed so far.

From Table 8.1, we conclude that LZWx does not benefit from divid

ing the screen into smaller blocks. This is due to the fact that LZWx

works better as the input size increases, but by dividing the screen we

produce data of sizes smaller than the size of the original block; hence,

the c.f. will decrease. For small blocks, the LZWx method will not

gather enough data about the input to be able to produce a high c.f.

8.2. Screen Division

Table 8.2 gives the total c.f. when the screen is cut into two or

three equal parts then each part is compressed alone using all previous

compression methods. The table shows that the total c.f. of FAX is not

www.manaraa.com

162

Table 8.1. Compression factors of image pdraw3 taken as a whole and
as 4 parts and using all methods

4 parts
Method 4 parts Whole whole

FAX 2.91 4.19 0.69
LZW 2.58 4.00 0.65
LZW+R8 3.35 5.76 0.58
LZW+R4 3.16 5.59 0.57
LZWl 2.53 3.95 0,64
LZW1+R8 3.60 6.32 0.57
LZW1+R4 3.41 6.32 0.54
LZW2 2.53 3.96 0.64
LZW2+R8 3.59 6.54 0.55
LZW2+R4 3.40 6.24 0.54
LZW3 2.64 4.08 0.65
LZW3+R8 3.70 6.97 0.53
LZW3+R4 3.62 6.68 0.54
LZW3+LZWB1 2.18 3.40 0.64
LZWB 2.11 3.39 0.62
LZWBl 2.18 3.44 0.63
LZWB2-A 2.15 3.42 0.63
LZWB2-B 2.29 3.52 0.65

www.manaraa.com

163

Table 8.2. Compression factors of romtxt and doc6a taken as whole
2-part and 3-part figures using all methods

ROMTXT D0C6A
2 3 2 3

2 3 parts parts 2 3 parts parts
Method parts parts total total parts parts total total

FAX 1.40 1.40 1.00 1.00 9.52 9.44 0.99 0.98
LZW 2.12 1.98 0.90 0.84 4.41 4.14 0.91 0.85
LZW+R8 3.75 3.36 0.85 0.76 5.53 5.08 0.88 0.81
LZW4-R4 3.52 3.12 0.84 0.74 5.60 5.22 0.89 0.83
LZWl 1.97 1.85 0.91 0.86 5.41 5.07 0.93 0.87
LZW1+R8 5.01 4.34 0.78 0.67 5.55 5.23 0.93 0.87
LZW1+R4 4.71 3.96 0.75 0.63 5.81 5.37 0.91 0.85
LZW2 1.97 1.85 0.91 0.86 5.61 5.17 0.95 0.88
LZW2+R8 5.01 4.34 0.78 0.67 5.60 5.10 0.92 0.84
LZW2+R4 4.66 3.98 0.76 0.65 5.81 5.36 0.93 0.86
LZW3 2.02 1.88 0.91 0.85 5.93 5.54 0.94 0.88
LZW3+R8 5.03 4.34 0.79 0.68 6.28 5.78 0.91 0.84
LZW3+R4 4.69 4.05 0.75 0.65 6.38 5.94 0.92 0.86
LZW3+LZWB1 1.43 1.43 0.91 0.85 5.60 5.36 0.94 0.90
LZWB 1.55 1.45 0.91 0.85 5.42 5.10 0.93 0.87
LZWBl 1.57 1.46 0.91 0.84 5.46 5.20 0.94 0.89
LZWB2-A 1.56 1.45 0.91 0.85 5.54 5.26 0.94 0.89
LZWB2-B 1.61 1.51 0.93 0.87 5.79 5.56 0.94 0.90

www.manaraa.com

164

affected by this division while the total c.f. of LZWx is reduced by

this division. This observation of FAX can be explained by the fact

that FAX uses the information of only the previous line when coding the

current line. This understanding of FAX allows us to assume that the

total c.f. of compressing two or more screens together using FAX is, in

fact, the same as the total c.f. when each screen is compressed alone.

In the previous chapter, we implicitly used this result. Of course,

LZWx benefits from compressing two or more screens together as was shown

by the results of BIG in the previous chapter.

8.3. The Significance of the Groups Averages

Since there is no standard test to compare different compression

algorithms, we developed the image data base described in Chapter 3.

Comparing two compression methods based on the result of only one image

or one group of Images can be misleading. We avoid this problem by look

ing at the results of each group, the average of each group, and the aver

age of all groups averages. This comprehensive checking makes sure that

we avoid any anomaly that might exist in any Image or group. But this

creates another problem that might not be apparently noticeable; this

problem is that this group averaging makes it subtle to notice the power

these methods have when compressing some of the images. So, the best

way is to use the group average and the average of all groups averages

while keeping in mind that for some individual images (or groups) we may

get a c.f. considerably higher than the average value. For the above

reasons, we include Tables 8.3-8.22. Tables 8.3-8.10 contain the results

www.manaraa.com

165

Table 8.3. Results of compressing images in group 1 using method R8+LZW2

Comprs. Decomprs.
Comprs. time time Table Extra

Image factor s s size calls

docla 7.10 8.56 1.37 1757 0
doclb 3.63 23.13 1.48 3191 0
doclc 13.85 4.78 1.31 1025 0
doc2a 8.77 8.19 1.32 1471 0
doc2b 7.69 9.12 1.27 1642 0
doc2c 11.44 6.09 1.26 1187 0
doc4a 7.33 11.80 1.43 1710 0
doc4b 6.77 14.44 1.43 1831 0
doc4c 5.21 4.88 0.66 1156 0
doc51a 4.58 11.26 1.10 2116 0
docSIb 7.70 7.64 1.09 1363 0
docSIc 10.93 2.53 0.60 692 0
docSra 4.83 11.09 1.04 1910 0
docSrb 6.64 6.43 0.99 1460 0
docSrc 4.55 4.73 0.61 1239 0
doc6a 6.07 12.09 1.32 2011 0
doc6b 11.35 6.32 1.32 1195 0
doc8 7.71 9.72 1.32 1638 0

www.manaraa.com

166

Table 8.4. Results of compressing images in group 2 using method
R8+LZW2

Comprs. Decomprs.
Comprs. time time Table Extra

Image factor s s size calls

frnch3a 7.23 10.22 1.37 1731 0
flowchrt 5.46 14.83 1.37 2208 0
electrc 4.70 18.23 1.37 2524 0
ordrfrm 7.98 10.16 1.43 1591 0
fmchla 6.05 10.71 1.32 2018 0
doc2a 8.77 8.24 1.37 1471 0
doc2b 7.69 9.17 1.32 1642 0

AVERAGE 6.84 11.65 1.36 1884 0

Table 8.5. Results of compressing images in group 3 using method
R8+LZW2

Comprs. Decomprs.
Comprs. time time Table Extra

Image factor s s size calls

romtxt 6.46 14.00 1.48 1907 0
frnch2a 3.41 29.88 1.42 3387 0
pagel 8.75 9.34 1.37 1474 0
docl—2 10.89 7.41 1.43 1234 0
cprog 13.85 5.00 1.32 1025 0
doclb 3.63 23.07 1.42 3191 0
doc4a 7.33 11.81 1.48 1710 0
doc4b 6.77 14.45 1.43 1970 0

AVERAGE 7.64 14.37 1.42 1970 0

www.manaraa.com

167

Table 8.6. Results of compressing images in group 4 using method
R8+LZW2

Comprs.
File Comprs. time
name factor s

pdraw3 7.31 10.10
sciencel 3.80 22.19
science2 2.92 32.19
docSla 4.58 11.43

AVERAGE 4.65 18.98

Decomprs.
time Table Extra
s size calls

1.38 1715 0
1.37 3063 0
1.42 3910 0
1.10 2116 0

1.32 2701 0

www.manaraa.com

168

Table 8.7. Results of compressing images in group 1 using method
R4+L2W2

Conçrs. Decomprs.
Comprs. time time Table Extra

Image factor s s size calls

docla 7.40 8.24 1.37 697 0
doclb 3.68 22.90 1.48 3150 0
doclc 14.39 4.89 1.32 996 0
doc2a 8.95 8.40 1.32 1447 0
doc2b 7.82 9.06 1.32 1619 0
doc2c 11.45 6.37 1.31 1186 0
doc4a 6.65 12.42 1.43 1858 0
doc4b 6.46 14.77 1.48 1907 0
doc4c 4.89 4.89 0.66 1214 0
docSla 6.06 8.40 1.15 1663 0
docSlb 7.50 7.14 1.10 1392 0
docSlc 10.93 2.14 0.61 692 0
docSra 4.56 12.03 1.10 2009 0
doc5rb 6.45 6.98 0.99 1495 0
docSrc 3.94 5.33 0.60 1392 0
doc6a 6.24 11.48 1.32 1965 0
doc6b 11.89 5.44 1.32 1152 0
doc8 8.26 9.44 1.32 1546 0

AVERAGE 7.64 8.91 1.18 1521 0

www.manaraa.com

169

Table 8.8. Results of compressing images in group 2 using method
R4+LZW2

Comprs. Decomprs.
Comprs. time time Table Extra

Image factor s s size calls

frnchSa 7.13 10.05 1.32 1750 0
flowchrt 5.60 13.35 1.37 2158 0
electrc 4.56 18.90 1.43 2593 0
ordrfrm 8.36 8.84 1.42 1530 0
frnchla 5.96 10.71 1.43 2045 0
doc2a 8.95 8.40 1.32 1447 0
doc2b 7.82 9.06 1.32 1619 0

AVERAGE 6.91 11.33 1.37 1877 0

Table 8.9. Results of compressing images in group 3 using method
R4+LZW2

Comprs. Decomprs.
Comprs. time time Table Extra

Image factor s s size calls

romtxt 6.13 14.34 1.48 1996 0
fmch2a 2.69 40.20 1.54 4096 122
pagel 8.06 9.11 1.37 1579 0
docl-2 9.76 7.80 1.48 1348 0
cprog 12.16 5.38 1.43 1132 0
doclb 3.68 22.90 1.49 3150 0
doc4a 6.65 12.52 1.43 1858 0
doc4b 6.46 14.78 1.53 1907 0

AVERAGE 6.95 15.88 1.47 2133 15

www.manaraa.com

170

Table 8.10. Results of compressing images in group 4 using method
R4+LZW2

Comprs.
Comprs. time

Image factor s

pdraw3 7.21 11.20
sciencel 3.98 20.93
science2 3.22 27.68
doc51a 6.06 8.29

Decomprs.
time Table Extra
s size calls

1.37 1735 0
1.37 2932 0
1.42 3567 0
1.09 1663 0

AVERAGE 5.12 17.03 1.31 2474 0

www.manaraa.com

171

Table 8.11. Results of compressing images in group 1 using method
LZW3

Decomprs.
Comprs. time Table Extra

Image factor s size calls

docla 6.97 1.60 1786 0
doclb 3.59 1.65 3228 0
doclc 15.17 3.25 958 0
doc2a 7.96 1.54 1594 0
doc2b 7.32 1.53 1712 0
doc2c 10.78 1.54 1244 0
doc4a 2.77 1.54 4096 0
doc4b 2.35 1.59 4096 701
doc4c 2.17 0.72 2418 0
docSla 3.92 1.26 2434 0
docSlb 6.04 1.21 1668 0
docSlc 12.35 0.66 652 0
docSra 2.86 1.26 3054 0
docSrb 6.64 1.16 1460 0
docSrc 3.11 0.66 1736 0
doc6a 6.30 1.59 1948 0
doc6b 11.68 1.53 1168 0
doc8 7.09 1.53 1760 0

AVERAGE 6.62 1.43 2056 39

www.manaraa.com

172

Table 8.12. Results of compressing images in group 2 using method
LZW3

Decomprs.
Comprs. time Table Extra

Image factor s size calls

frnch3a 7.06 1.54 1766 0
flowchrt 4.63 1.59 2558 0
electro 4.25 1.60 2762 0
ordrfrm 5.38 1.59 2236 0
frnchla 6.25 1.59 1962 0
doc2a 7.96 1.54 1594 0
doc2b 7.32 1.54 1712 0

AVERAGE 6.12 1.57 2084 0

Table 8.13. Results of compressing images in group 3 using method
LZW3

Decomprs.
Comprs. time Table Extra

Image factor s size calls

romtxt 2.22 1.65 4096 970
fmch2a 2.74 1.60 4096 51
pagel 3.99 1.64 2926 0
docl-2 4.61 1.54 2566 0
cprog 7.62 1.54 1654 0
doclb 3.59 1.59 3228 0
doc4a 2.77 1.54 4096 0
doc4b 2.35 1.64 4096 701

AVERAGE 3.74 1.59 3345 216

www.manaraa.com

173

Table 8.14. Results of compressing images in group 4 using method
LZW3

Image
Comprs.
factor

Decomprs.
time
s

Table
size

Extra
calls

pdraw3 4.71 1.48 2520 0
sciencel 3.70 1.59 3136 0
scienceZ 2.74 1.59 4096 56
docSla 3.92 1.27 2434 0

AVERAGE 3.77 1.48 3047 14

www.manaraa.com

174

Table 8.15. Results of compressing images in group 1 using method
R8+LZW3

Decomprs.
Comprs. time Table Extra

Image factor s size calls

docla 7.35 2.08 1707 0
doclb 3.81 1.59 3056 0
doclc 15.15 3.35 959 0
doc2a 9.49 1.59 1379 0
doc2b 8.35 1.59 1532 0
doc2c 12.21 1.59 1128 0
doc4a 7.29 1.54 1718 7
doc4b 6.99 1.59 1780 0
doc4c 5.20 0.72 1158 0
doc51a 4.83 1.31 2022 0
doc51b 8.36 1.27 1276 0
doc51c 12.38 0.72 641 0
doc5ra 5.06 1.15 1836 0
doc5rb 6.94 1.15 1408 0
doc5rc 4.85 0.66 1179 0
doc6a 6.87 1.59 1808 0
doc 6b 11.73 1.54 1164 0
doc8 8.39 1.60 1526 0

AVERAGE 8.07 1.48 1515 0

www.manaraa.com

175

Table 8.16. Results of compressing images in group 2 using method
R8+LZW3

Decomprs.
Comprs. time Table Extra

Image factor s size calls

frnch3a 7.83 1.65 1617 0
flowchrt 5.79 1.53 2098 0
electrc 4.99 1.49 2392 0
ordrfrm 8.60 1.54 1495 0
frnchla 6.27 1.59 1956 0
doc2a 9.49 1.59 1379 0
doc2b 8.35 1.59 1532 0

AVERAGE 7.33 1.57 1781 0

Table 8.17. Results of compressing images in group 3 using method
R8+LZW3

Decomprs.
Comprs. time Table Extra

Image factor s size calls

romtxt 6.40 1.53 1922 0
frnch2a 3.58 1.59 3238 0
pagel 9.41 1.60 1389 0
docl-2 11.49 1.59 1183 0
cprog 13.76 1.59 1030 0
doclb 3.81 1.64 3056 0
doc4a 7.29 1.54 1718 0
doc4b 6.99 1.54 1780 0

AVERAGE 7.84 1.58 1915 0

www.manaraa.com

176

Table 8.18. Results of compressing images in group 4 using method
R8+LZW3

Decomprs.
Comprs, time Table Extra

Image factor s size calls

pdraw3 7.95 1.54 1597 0
sciencel 3.94 1.53 2962 0
scienceZ 3.00 1.70 3814 0
doc51a 4.83 1.27 2022 0

AVERAGE 4.93 1.51 2599 0

www.manaraa.com

177

Table 8.19. Results of compressing images in group 1 using method
R4+LZW3

Decomprs.
Comprs. time Table Extra

Image factor s size calls

docla 7.48 2.42 1681 0
doclb 3.86 2.47 3018 0
doclc 15.12 3.68 960 0
doc2a 9.65 2.37 1360 0
doc 2b 8.49 2.41 1511 0
doc2c 12.19 2.42 1130 0
doc4a 6.84 2.36 1814 0
doc4b 6.48 2.37 1902 0
doc4c 5.01 1.04 1191 0
docSla 6.39 1.98 1590 0
doc51b 8.15 1.92 1302 0
docSlc 12.85 1.10 627 0
doc5ra 4.69 1.81 1960 0
docSrb 7.06 1.82 1388 0
docSrc 4.13 1.05 1339 0
doc6a 6.92 2.41 1797 0
doc6b 12.96 2.42 1078 0
doc8 8.84 2.42 1461 0

AVERAGE 8.17 2.14 1506 0

www.manaraa.com

178

Table 8.20. Results of compressing images in group 2 using method
R4+LZW3

Decomprs.
Comprs. time Table Extra

Image factor s size calls

frnch3a 7.96 2.37 1594 0
flowchrt 6.03 2.42 2025 0
electrc 4.91 2.36 2429 0
ordrfrm 8.83 2.41 1462 0
fmchla 6.01 2.42 2030 0
doc2a 9.65 2.42 1360 0
doc2b 8.49 2.41 1511 0

AVERAGE 7.41 2.40 1773 0

Table 8.21. Results of compressing images in group 3 using method
R4+LZW3

Decomprs.
Comprs. time Table Extra

Image factor s size calls

romtxt 6.25 2.36 1963 0
fmch2a 2.79 2.47 4073 0
pagel 8.62 2.42 1493 0
docl-2 10.48 2.41 1273 0
cprog 13.17 2.42 1065 0
doclb 3.86 2.41 3018 0
doc4a 6.84 2.36 1814 0
doc4b 6.48 2.41 1902 0

AVERAGE 7.31 2.41 2075 0

www.manaraa.com

179

Table 8.22. Results of compressing images in group 4 using method
R4+LZW3

Decomprs.
Comprs. time Table Extra

Image factor s size calls

pdraw3 7.81 2.42 1620 0
sciencel 4.13 2.36 2840 0
science2 3.29 2.41 3496 0
docSla 6.39 1.92 1590 0

www.manaraa.com

180

of compressing gl, g2, g3, and g4 using Ry+LZW2. Tables 8.11-8.22 con

tain the results of compressing the above groups using LZW3 and Ry+LZW3.

We have chosen these tables to show the detailed results of compressing

each image or group using any LZWx method. Specifically, LZW3 was chosen

because it has the highest c.f. among all LZWx methods and LZW2 was

chosen because it is close to LZWl.

To illustrate the above points, we give the following examples:

1) The average c.f. of Table 8.22, which contains the results
of compressing g4 using R4+LZW3, is bigger than the aver
age c.f. of Table 8.18, which contains the results of com
pressing g4 using R8+LZW3; but the c.f. of the image pdraw3
in Table 8.18 is bigger than its c.f. in Table 8.22.

2) From Table 8.17, the average c.f. when compressing the
images in g3 using R8+LZW3 is 7.84 whereas the c.f. of
image docl-2 is 11.49, i.e., considerably higher than the
average c.f.

3) Tables 7.7 and 7.8 give the group averages using R8+LZW3
and R4+LZW3. From these tables, we see that R4+LZW3 gives
higher groups average but R8+LZW3 gives higher c.f. for g3.
Chapter 6 went into more detailed comparison of the groups
results using Ry+LZWx.

8.4. Using the CCITT Documents for Comparison

To help in comparing the different methods we present Table 8.23

which contains the results of the total compression factors of images

docl, doc2, doc4, doc5, and doc6, where docx means docxa+docxb+...etc.

Since these documents represent typical documents, it is easier to

compare the methods using Table 8.23. Comparing the methods using this

table, we get:

1) For docl, R4+LZW3 has the highest c.f. among the other
LZW methods. This c.f., 6.54, is slightly less than the

www.manaraa.com

181

Table 8.23. Compression factors of the CCITT standard documents using
all methods

Documents
Method docl doc2 doc4 doc5 doc6 Avera;

FAX 6.67 14.89 1.69 4.74 12.00 8.00
LZW 6.03 7.97 2.66 4.32 5.67 5.33
LZW+R8 6.07 9.34 4.89 5.38 7.55 6.65
LZW+R4 6.05 9.35 4.52 5.37 7.82 6.62
LZWl 5.95 7.90 2.40 4.31 7.74 5.66
LZW1+R8 6.16 8.95 6.64 5.78 7.74 7.05
LZW1+R4 6.21 9.03 6.13 5.94 8.09 7.08
L2W2 5.95 7.96 2.14 4.32 7.81 5.64
LZW2+R8 6.14 9.05 6.62 5.83 7.91 7.11
LZW2+R4 6.30 9.18 6.17 5.95 8.18 7.16
LZW3 6.15 8.45 2.47 4.49 8.19 5.95
LZW3+R8 6.46 9.77 6.69 6.20 8.67 7.56
LZW3+R4 6.54 9.89 6.28 6.34 9.02 7.61
LZW3+LZWB1 5.79 8.05 1.90 3.82 7.72 5.46
LZWB 5.79 8.01 1.95 3.80 7.45 5.40
LZWBl 5.82 7.99 1.97 3.80 7.42 5.40
LZWB2-A 5.90 8.13 1.96 3.85 7.59 5.49
LZWB2-B 6.18 8.58 1.99 4.01 7.91 5.73

www.manaraa.com

182

c.f. of FAX, 6.67. FAX did better because the image con
tains a lot of empty spaces.

2) For doc2, R4+LZW3 has the highest c.f., 9.89, among the
other LZW methods. The c.f. of FAX is 50% higher. FAX
did much better than R4+LZW3 because the image is a very
simple graphics screen with long black runs and short
white runs.

3) For doc4, R8+LZW3 has the highest c.f. among the other LZW
methods and the ratio of this c.f. to the corresponding
c.f. of FAX is 3.96. This ratio is too high because doc4
contains only textual data; and as we showed before Ry+LZWx
does extremely better than FAX for textual data.

4) For doc5, R4+LZW3 has the highest c.f. among the other LZW
methods and the ratio of this c.f. to the corresponding
c.f. of FAX is 1.34. The ratio is higher than 1 because
the screen contains textual data. The fact that doc5 con
tains both text and graphics explains why the ratio is not
as high as in the case of doc4. R4+LZW3 has higher c.f.
than R8+LZW3 in this case due to the effect of the graphics
data in doc5.

5) For doc6, R4+LZW3 has the highest c.f. among the other LZW
methods. This c.f. is 75% of the c.f. of FAX. The reason
that FAX has the highest c.f. is that doc6 is any easy
graphics screen. doc6 is not an easy graphics screen as
doc2 is; this explains the difference between the ratio of
the c.f. of R4+LZW3 to that of FAX for doc6 and the same
ratio for doc2. This shows that as the graphics get more
complex R4+LZWx becomes better till it produces a c.f.
higher than FAX.

6) We note that among the LZW methods, R4+LZW3 has the
highest c.f. for graphics screens and screGng that have
both textual and graphics data. R8+LZW3 has the highest
c.f. for textual screens.

7) Points 1 to 6 above agree with the observations we found
in Chapter 7.

8) Among all the LZW methods, R4+LZW3 has the highest average
of the 5 images c.f. The average in the case of FAX was
higher because of the high c.f. that FAX has for doc2 and
doc6.

www.manaraa.com

183

9) The c.f. of Ry+LZW3 is close to the c.f. of Ry+LZWl and
Ry+LZW2. The c.f. of Ry+LZW3 is bigger by no more than
10%. A similar trend is observed when the c.f. of LZW3
is compared to the c.f. of LZWl and LZW2.

8.5. Results of Group 5

In Chapter 4, we presented the results of compressing the graphics

blocks in g5. In Chapter 5, we presented the corresponding results using

L2ÏÏÎ. The results of LZW show that LZW do not produce a c.f. higher than

the c.f. of FAX for g5. The tables for the groups averages using all

the LZW methods agree with this. This result agrees with the observa

tion we mentioned before in Section 8.1 that the LZW c.f. will decrease

if the image is divided into smaller blocks. Hence, in the results of

the modifications on LZW, we do not give a table for g5; instead, we

only give the averages of each group.

8.6. Results of Group 8

In Chapter 3, group 8 was introduced to test the power of each

method. To help in comparing the results of these methods when com

pressing the images in g8, we included the c.f. for all the methods in

Table 8.24. From this table, we observe the following:

1) For images blokô, boxes, and lines LZW3+LZWB1 gives
the highest c.f. among all the methods, including FAX.
This shows that the concept of the LZWBs is optimum for
this kind of data. It also shows the need to use dif
ferent varieties of true images, as we did in the image
data base, to compare the methods because, as we showed
in Chapter 6, LZW3+LZWB1 did not perform as good as it
is performing here.

2) The c.f. of Ry+LZWl or Ry+ZLW2 are close to the c.f. of
Ry+LZW3. Similarly, LZWl and LZW2 give c.f. close to the

www.manaraa.com

184

Table 8.24. Compression factors of group 8 using all methods

Image
Method blokS blok6 boxes lines testl usamap

FAX 109, .03 24, .54 69, .57 32, .07 49 .60 1. 56
LZW 27, .97 10, ,98 16, ,06 15, .19 12 .79 6. 57
LZW+R8 15, .47 11, ,80 21, ,30 15, .41 15 .01 7. 64
LZW+R4 16. .79 14, .00 23. ,39 16, .68 14 .61 7. 27
LZWl 51, .78 60. ,61 58. .18 81. ,22 26 .19 6. 36
LZW1+R8 36, .87 24. ,84 38, ,37 52, ,81 18 .99 7. 33
LZW1+R4 37, .91 27, ,35 44, .94 55, .75 21 .84 7. 51
LZW2 56. .74 63. ,49 65. ,04 82, .47 30 .49 6. 37
LZW2+R8 41. ,99 25. ,44 54. ,05 54, ,05 20 .22 7. 36
LZW2+R4 37, .12 31. ,94 43. ,36 54, ,98 22 .75 7. 26
LZW3 60, ,15 66. ,12 68. ,67 101. ,27 29 .88 6. 82
LZW3+R8 49. .38 28. ,07 55. ,75 65. ,84 27 .65 8. 26
LZW3+R4 46. .11 42. ,11 59. ,93 73, ,06 25 .54 7. 93
LZW3+LZWB1 70, .18 91. ,95 75. ,47 137, ,93 30 .29 6. 47
LZWB 54, .05 24. ,69 30. ,36 38. ,37 22 .60 NA
LZWBl 46. .11 26. ,53 29. ,47 37, ,65 21 .61 5. 68
LZWB2-A 54, .05 25, ,04 30. ,36 38, ,37 23 .94 NA
LZWB2-B 24. ,92 30. ,36 30. ,36 38. ,37 23 .94 NA

www.manaraa.com

185

c.f. of LZW3. This shows that although LZWl or LZW2 are
not the optimum LZWx, they are close to the optimum
method LZW3 without its complexity.

3) The image "usamap" is an example where FAX fails to take
advantage of the redundancy present in some images.
The redundancy of this image is in the interior of the
map which consists of strings of 0101... etc. that repre
sent the filling of the map. LZWx was able to detect
this redundancy and give a higher c.f. R8+LZW3 has the
highest c.f. for usamap, namely, 8.26. The ratio of the
c.f. of R8+LZW3 to that of FAX is 5.29.

8.7. The Significance of "Extracalls"

The method LZW has a maximum number of symbols that it can recog

nize; this number is the table maximum size. The compressor and de

compressor agree not to put more symbols in the table if the table is

filled up. This means that the LZW method loses its adaptability to the

new input if the table is filled up. To measure the effect of filling

up the table on the compression process, we count the number of the

unsuccessful calls to the table after the table is filled up; this

number is the variable "extracalls" in the results of LZW and the mod

ified LZWs.

In the results of LZW, and its modifications, the extracalls were

averaged for each group. This average value is misleading most of the

time since most of the images do not require extracalls but the average

shows that they do. So, the average of extracalls is meaningful only

if compressing each image In a group requires extra calls.

www.manaraa.com

186

8.8. Table Size

The methods LZVTx assume the maximum size of the LZW table to be

4096, which requires 12 bits to represent each symbol. But the results

show that, for some Images and groups, the number of symbols that are

actually used Is considerably less than the table maximum size. Using

this fact, we propose to limit the size of the table for the Images

or groups that use symbols less than the table maximum size. By limit

ing the table size, we limit the length of each symbol, decrease the

size of the output of LZWx, and, hence. Increase the c.f. For example,

if we let the table maximum size be 1024, the length of each symbol is

only 10 bits; for an image that has a table size less than 1024 the c.f.,

will increase by exactly 20%, ((12/10)-1)100. This table size limita

tion is not arbitrary if we use a fixed addressing or a fixed symbol

length scheme, which we will. In the case of a fixed length symbol,

the table size must be only a number that is a power of 2 since any

other number will result in losing some symbols. For example, if the

maximum table size was chosen to be 2000, LZW needs 12 bits to address

or represent each symbol. But if we use 12 bits, we can represent up to

4096 symbols. So, this 12-bit length of the symbol allows us to use the

symbols 2001 to 4096 which we will lose if we choose the maximum size to

be 2000 symbols.

From the results of Ry+LZWx, we find the following;

1) For all Ry+LZWx, the average table size of g5 never ex
ceeded 1024. Hence, the table size of compressing g5 can
be limited to 1024 giving an approximately 20% increase
In the c.f. The Increase is approximate because some of

www.manaraa.com

187

the Images in g5 require more than 1024 symbols.

2) For all Ry+LZWx, the average table size of gl and g2 is
less than 2048. Hence, the table size of compressing
gl and g2 can be limited to 2048 giving an approximately
9% increase in the c.f.

3) For RS+LZWx (x=l, 2, and 3), the average table size of
g3 is less than 2048. Hence, as in the above point, the
table maximum size can be set to 2048.

4) For doc4a and romtxt using R8+LZW2, the tables size are
1710 and 1907, respectively, and the c.f. are 7.33 and 6.46,
respectively. If we let the table maximum size be 2048,
the c.f. of doc4a and romtxt will be 8 and 7.05, respective
ly. These new c.f. are very close to the c.f. if the image
was sent as an ASCII code. This is an important result
because it shows that, as we mentioned in last chapter,
we can get a c.f. very close to and sometimes better than
the c.f. of pattern recognition without worrying about the
difficulties of pattern recognition.

It should be noted that the way the code for the LZWx was written

makes it easy to change the code in order to let the table maximum size

be adaptive but no more than 4096.

8.9. Remarks about R8 and R4

R8 and R4 were designed with the assumption that it is easy to find

the characters' height and then divide the screen accordingly; neverthe

less, it was envisioned that even if this information is not known,

these two methods will still give a high c.f. The image frnch2a proves

our vision because, although the image is in a textual format that is

different than the one R8 and R4 was designed for, the ratio of the re

sulted c.f. to the c.f. when using FAX is 1.77 which is a considerable

increase.

www.manaraa.com

188

Finding the height of the text lines is a matter that can be easily

solved. In fact, in some of the pattern recognition techniques, finding

the height of each character is one feature, among many features, that

should be extracted. Refer to [11] and [8],

www.manaraa.com

189

9. CONCLUSION

In this work, the author developed a number of new improved com

pression algorithms, an extended test data base, an analysis of library

needs, and a variety of test results. From this work, a number of

conclusions were drawn as enumerated below.

1) For easy graphics images, i.e., images containing long
runs of black pels and short runs of white pels, FAX
gives high c.f. that is satisfactory to the goal of this
research. For textual screens and complex graphics FAX
performs poorly.

2) The LZW method was simulated and gave a c.f. better than
that of FAX for the images for which FAX did poorly.
But LZW was not as good as FAX for the easy graphics
images.

3) Three new methods, that use the fact that the input to
LZW is a long string of pels of a scanned screen, were
proposed and investigated. The first method, LZliB, counts
the run-lengths of the screen and sends them to LZW. The
second method, LZWBl, uses part of the run-lengths used
in the first method and adds to them codes for some of the
most probable two and three runs. The third method, LZWB2,
counts the run-lengths as in the first method; in addition
to that, it initializes the LZW table with some of the
most probable two and three run-lengths. Each of these
proposed methods showed an improvement in the c.f. It
was explained that in the case of colored images, it
would be expected from these methods to give a better c.f.

4) An improvement, LZW3, in LZW, as suggested in [43], was
simulated, and, in general, a gave c.f. higher than LZW.
LZW3 needs long c.t., so we proposed two versions that
avoid the long searches required by LZW3. These two pro
posals, LZWl and LZW2, give c.f. close to that of LZW
but much shorter c.t.

5) Two improvements in the way LZWs scan the screen were
suggested. These improvements, R8 and R4, work with any
of the above LZWs. They produced higher c.f. than when
using the LZWs alone and even in some cases gave smaller
d. t.

www.manaraa.com

190

6) Combining two or three images in the compression using
Ry+LZWx (for x = 0, 2, 3) was investigated and, in general,
produced a higher compression factor than compressing
each image alone.

7) The library survey that was presented in Chapter 3 showed
that about 50% of the library material was in text format.
The detailed format of the text varies from one library
material, e.g., a book or a magazine, to another.

8) Using some of the proposed methods, e.g., R8+LZW2, it
was possible to reach a c.f. for a textual screen that
is close to or even higher than the c.f. of compression
methods that employ a pattern recognition technique.
The proposed methods are much simpler to implement, need
much less computation, and are more adaptive to the data
change.

From the above observations, we reach the conclusion that R8+LZW3

should be used unless we are compressing a screen that is full of easy

graphics. In this case of easy graphics screens, the system should be

able to compress the screen using FAX and inform the receiver of the

change in the compression method. The library system can handle the

long c.t. of R8+LZW3. The d.t. of R8+LZW3, which is in the range of 1 to

2 s, is acceptable for the library system. The c.t. of LZW3 is higher

than that of other LZWx methods but, as was mentioned at the beginning

of the research, the compression in the library system is done once so

the c.t. is allowed to be long. For real time compression, LZWl or LZW2

should be used instead of LZW3.

The system should also be able to detect the needed maximum size

of the table and signal the receiver accordingly.

www.manaraa.com

191

9.1. Suggestions for Future Work

The following points are suggested and should be investigated:

1) The maximum size of the LZW table should be Increased
over 4096 to compress many images at the same time or
to compress colored images. Increasing the table size
increases the c.t., d.t., and, hopefully, the c.f. Long
c.t. is tolerable in the library system. Since both
the d.t. and the c.f. increase at the same time, there
is a trade-off that needs to be investigated.

2) The modifications of LZWBs to work on colored images.

3) The use of method BIG to compress an actual page which
usually consists of more than one screen.

4) The success of LZW for this type of data indicates that
more methods in the field of data compression via textual
substitution should be investigated as image compression
methods.

5} LZW builds its table using the first character that has
not been sent yet. This gives LZW a look-ahead feature
that raises its c.f. The methods LZWl, LZW2, and LZW3
do not have this look-ahead feature so their d.t. is
shorter than LZW, but this feature may raise their c.f.,
specifically for textual screens. So, a modified LZWl-
LZW3 that include the look-ahead feature should be in
vestigated.

6) The application of LZWx in more than one pass that may in
crease the c.f. This may be better than increasing the
table size.

7) Implementing the LZWx in hardware. [43] reported on a
hardware implementation but with no details.

8) The use of Ry+LZWx for library material images captured
using a camera or a scanner. The c.f. obtained in this
thesis using FAX for the screen images are much smaller
than the values reported for images scanned at high
resolution and compressed using FAX. So, the c.f. for
scanned documents using Ry+LZWx should be investigated.

9) Applying Ry+LZWx to images other than library material
like astronomical and medical images.

www.manaraa.com

192

10) Changing the FAX modified Huffman table, although we
think it will not be beneficial as we induced before.

11) Improving FAX so that it can use the information from
lines before the previous line in order to code the
current line, and from parts other than the parts next
to each other.

12) Compressing the output of FAX, after modifying this
output, using any of the LZWx methods.

13) The extension of both FAX and Ry+LZWx to colored images.

14) Developing a method similar to R4 but whose block height
is only 4 pels. Developing similar methods with different
block height.

15) Using a hashing function to speed up the search in the
LZW table in order to decrease the c.t. Examples of simple
hashing functions are the following:

a) The number of characters, and not symbols, in the
string.

b) The count of the values of the characters in the
string.

c) The third character in the string.

For the kind of strings we get in the 137 table while
compressing the library material Images, it is envisioned
that any of these simple functions will perform success
fully.

www.manaraa.com

193

10. REFERENCES

1. Costigan, D. M. Electronic Delivery of Documents and Graphics.
New York: Van Nostrand Reinhold Company, 1978.

2. Rosenheck, B. M. "Fastfax, a second generation facsimile system
employing redundancy reduction techniques." IEEE Transactions
on Communication Technology, 18, No. 6 (December 1970):772-779.

3. Netravali, A. N., F. W. Mounts, and E. G. Bowen. "Ordering tech
niques for coding of two-tone facsimile pictures." The Bell
System Technical Journal, 55, No. 10 (December 1976):1539-1552.

4. Musmann, H. G., and D. Freuss. "Comparison of redundancy reducing
codes for facsimile transmission of documents." IEEE Transactions
on Communications, 25, No. 11 (November 1877);1425-1433.

5. Mounts, F. W., E. G. Bowen, and A. N. Netravali. "An ordering
scheme for facsimile coding." The Bell System Technical Journal,
58, No. 9 (November 1979):2113-2128.

6. Huang, T. S. "Coding of two-tone images." IEEE Transactions on
Communications, 25, No. 11 (November 1877):1406-1424.

7. Hartke, D. H., W. M. Sterklng, and J. E. Shemer. "Design of a
raster display processor for office applications." IEEE Transac
tions on Computers, 27, No. 4 (April 1978):337-348.

8. Ismail, M. G., and R. J. Clarke. "Adaptive block/location coding
of facsimile signals using subsampling and interpolation for pre-
and postprocessing." IEEE Transactions on Communications, 29, No.
12 (December 1981)-.1925-1933.

9. Yamada, T. "Edge-difference coding — a new, efficient redundancy
reduction technique for facsimile signals." IEEE Transactions on
Communications, 27, No. 8 (August 1979);1210-1217.

10. Costigan, D. M. "Facsimile comes up to speed." IEEE Communications
Magazine, 18, No. 3 (May 1980):30-35.

11. Pratt, W. K., P. J. Capitant, W. H. Chen, E. R. Hamilton, and R. H.
Wallis. "Combined symbol matching facsimile data compression sys
tem." Proceedings of the IEEE, 68, No. 7 (July 1980):786-796.

12. Yasuda, Y. "Overview of digital facsimile coding techniques in
Japan." Proceedings of the IEEE, 68, No. 7 (July 1980):830-844.

www.manaraa.com

13

14

15

16

17

18

19

20

21

22

23

194

Henter, R., and A. H. Robinson. "International digital facsimile
coding standards." Proceedings of the IEEE, 68, No. 7 (July 1980):
854-867.

Doherty, B. "Comparison of facsimile data compression schemes."
IEEE Transactions on Communications, 28, No. 12 (December 1980):
2023-2024.

Kim, J. K., and P. Segin. "A conditional incremental-runlength
code based on two-dimensional Markov model." IEEE Transactions
on Communications, 29, No. 10 (October 1981):1527-1532.

Johnson, 0., and A. N. Netravali. "Progressive transmission of
two-tone images." IEEE Transactions on Communications. 29, No. 12
(December 1981):1934-1941.

Netravali, A. N., and E. G. Bowen. "A picture browsing system."
IEEE Transactions on Communications, 29, No. 12 (December 1981):
1968-1976.

Teramuka, H., K. Ono, S. Ando, Y. Yamazaki, S. Yamamato, and K.
Matsuo. "Experimental facsimile communication system on packet
switched data network." IEEE Transactions on Communications, 29,
No. 12 (December 1981):1942-1951.

Matsumoto, M., H. Ochi, and S. Yoshino. "A high-speed facsimile
apparatus for satellite communication." IEEE Transactions on
Communications. 29, No. 12 (December 1981):1952-1958.

Bodson, D., and R. Schaphorst. "Error sensitivity of CCITT standard
facsimile coding techniques." IEEE Transactions on Communications,
31, No. 1 (January 1983);69-81.

Silver, D. M., and D. A. H. Johnson. "Facsimile coding using
symbol-matching techniques." Proceedings of the IEEE, 131, No. 2
(April 1984);125-129.

Johnson, 0., J. Segen, and G. L. Cosh. "Coding of two-level pic
tures by pattern matching and substitution." The Bell System
Technical Journal. 62, No. 8, Part 1 (October 1983):2513-2545.

Anderson, K. L., F. C. Mintzer, G. Geortzel, J. L. Mitchel, K. S.
Pennington, and W. B. Pennebaker. "Binary-image-manipulation
algorithms in the image view facility." IBM Journal of Research
and Development. 31, No. 1 (January 1987):16-31.

www.manaraa.com

195

24. Davisson, L. D. "Universal noiseless coding." IEEE Transactions
on Information Theory, 19, No. 6 (November 1973):783-795.

25. Rissanen, J. "A universal data compression system." IEEE Transac
tions- on Information Theory, 29, No. 5 (September 1973);576-664.

26. Rissanen, J. "Universal coding. Information, prediction, and
Estimation." IEEE Transactions on Information Theory, 30, No. 4
(July 1984):629-636.

27. Fitingof, B. M. "Optimal coding in the case of unknown and changing
message statistics." Problems of Information Transmission, 2, No.
2 (Summer 1966):l-7.

28. Fitingof, B. M. "The compression of descrete information." Prob
lems of Information Transmission, 3, No. 3 (Fall 1967);22-29.

29. Rissanen, Jorma, and Glen G. Langdon. "Universal modeling and
coding." IEEE Transactions on Information Theory, 27, No. 1
(January 1981);12-23.

30. Krichevsky, Raphail E., and Victor K. Trofmov. "The performance
of universal encoding." IEEE Transactions on Information Theory,
27, No. 2 (March 1981):199-207.

31. Davisson, Lee D., Robert J. McEliece, Michael B. Pursley, and Mark
S. Wallace. "Efficient universal noiseless source code." IEEE
Transactions on Information Theory, 27, No. 3 (May 1981):269-279.

32. Ziv, J. "Coding of sources with unknown statistics — part I:
Probability of encoding error." IEEE Transactions on Information
Theory, 18, No. 3 (May 1972):384-389.

33. Lempel, A., and J. Ziv. "On the complexity of finite sequences."
IEEE Transactions on Information Theory, 22, No, 1 (January 1976):
75-81.

34. Ziv, J., and A. Lempel. "A universal algorithm for data compres
sion." IEEE Transactions on Information Theory, 23, No. 3 (May
1977):337-343.

35. Ziv, J. "Coding theorems for individual sequences." IEEE Transac
tions on Information Theory, 24, No. 4 (July 2978):405-412.

36. Ziv, J., and A. Lempel. "Compression of individual sequences via
variable-rate coding." IEEE Transactions on Information Theory,
24, No. 5 (September 1978):530-536.

www.manaraa.com

196

37. Rodeh, M., V. R. Pratt, and S. Even. "Linear algorithm for data
compression via string matching." Journal of the Association for
Computing Machinery, 28, No. 1 (January 1981):16-24.

38. Storer, J. A., and T. G. Szymanskl. "Data compression via textual
substitution." Journal of the Association for Computing Machinery,
29, No. 4 (October 1982):928-951.

39. Gilbert, E. N., and C. L. Monma. "Multigram codes." IEEE Transac
tions on Information Theory, 28, No. 2 (March 1982):346-348.

40. Longdon, G. G., Jr. "A note on the Zlv-Lempel model for compressing
individual sequences." IEEE Transactions on Information Theory,
29, No. 2 (March 1983):284-287.

41. Welch, T. A. "A technique for high-performance data compression."
Computer, 17, No. 6 (June 1984):8-19.

42. Mahlab, D. "The complexity of data compression algorithms." Sec
tion 2.1.1, pp. 1-4. In the 14th Convention of Electrical and
Electronics Engineers in Israel Proceedings, Tel Aviv, 26-28 March
1985.

43. Grelss, I. "Adaptive data compression using self-synchronized
parsing algorithm." Section 2.2.5, pp. 1-4. In The 14th Conven
tion of Electrical and Electronics Engineers in Israel Proceedings,
Tel Aviv, 26-28 March 1985.

44. Lempel, A., and J. Ziv. "Compression of two-dimensional data."
IEEE Transactions on Information Theory. 32, No. 1 (January 1986):
2-8.

45. Shokely, James E. Introduction to number theory. New York: Holt,
Rlnehart and Winston, Inc., 1976.

www.manaraa.com

197

11. ACKNOWLEDGMENTS

The author wishes to express his sincere appreciation to Dr.

Arthur V. Pohm for his encouragement and guidance during the work

leading to this thesis. The unlimited encouragement of Dr. Pohm helped

the author overcome many difficulties and obstacles encountered during

this research.

Dr. T. Smay suggested to the author to write the programs code

in both C and assembly languages instead of assembly language alone.

The author appreciates this suggestion that helped simplify the coding

of these programs.

Acknowledgment must be made to the Saudi Arabian Embassy and the

Saudi ambassador, Prince Bander Bin Sultan, for the grant that the

author used to buy the hardware and software used in this work.

The author also wishes to thank Mr. Ahmad Sayes, one of the

author's best friends, for helping him in debugging some of the pro

grams and drawing many of the images that the author used in the data

base.

The author would like also to thank Maggie Wheelock for typing the

manuscript of this thesis.

Special thanks are due to my wife for her understanding, patience,

and unfailing encouragement, and to my two sons Osama and Ziad for their

love and patience; and to my lovely daughter Rooaa who, with her lively

playing and smiling face, helped ease many of my difficult times.

www.manaraa.com

198

APPENDIX A. IMAGES USED IN THE DATA BASE

www.manaraa.com

THE SLEREXE COMPANY LIMITED
SiPOSS UNE BOOLE DOSEST BHBB EES

nUFHONE BOOIS #19) 6KD . TELEX 123456

Our réf. 358/PJC/EAC 18ih January1 1972.

Sr. P.M. Qindall,
Htnins Surveys Lu.i
Nolrosd Read,
kadimg,
Berks.

Figure 12.1. Image docla

www.manaraa.com

Dear Pete,

Ferait He to introduce you to the facility of facsiwile
transHissioB.

IH facsiHile a pLotocel! is caused to perfora a ruter scan over
the subject copy. The variations of print density on the document
cause the photocell to qenerate an analogous electrical videc signal.
This signal is used to Modulate a carrier, which is transmitted to a
remote destination over a radio or cable coHwinications link.

At the rejttte terainaL diHodulation reconstructs the video
signal, which is used to Modulate the density of print produced hy a
printing device. This device is scanning in a raster scan synchronized
with that at the transmitting teminal. As a result, a facsimile
copy of the subject docuwent is produced.

Probably you have uses for this facility in your organization.

Vniifc ciiftflffplii

N>
O
O

Figure 12.2. Image doclb

www.manaraa.com

URAMNMCCTCTST

/'al.
F.J. CROSS
Croup leader - Facsimle Research

N3
O

Riflbtirfd h Bidrnd N#, S04U
RiglBUnr OMIw N mrg Un#, Hf*d F##an

Figure 12.3. Image doclc

www.manaraa.com

32/<F

I
RSII

3 I 2 A

Primeriers
if f ai SB
tjAveltrmJ

in. HÎV. sdtc/ies to
O
to

miUm

Figure 12.4. Image doc2a

www.manaraa.com

SînF
X
i

-A/V"
ISOA

rrimoLhlj
circuLit

«MM

Figure 12.5. Image doc2b

10

6
•M—l+V

>10 fi

1 1 1
ro
o
w

www.manaraa.com

TD

-W r
ISON

IVimcLh-y
clrcu.it

L& cuLrruLai\T JLRLV&rclircuLlt,
to
O

Y

22-9-71

Figure 12.6. Image doc2c

www.manaraa.com

IL'ordre de lancement et de realisation des applications fait l'objet Je decis
niveau de la Direction Generale des lelecoiwunications. Il n'est certes
construire ce swstew intégré "en bloc' mis bien au contrain de procéder
paliers successifs. Certaines applications, dont la rentabilité ne pourra e
seront pas entreprises. ActuelleHent. sur trente applications qui ont pu
definiesi six en sont au stade de l'exploitation, six autres se sont vu donne
leur realisation.
Chaque application est confiee a un "cbef de projet", responsable suc
conception, de son analgse-programwation et de sa wise en oeuvre dans un
La generalisation ultérieure de l'application realisee dans cette reaion-pil
résultats obtenus et fait l'objet d^une decision de la Direction Generale
chef de projet doit des le depart considérer que son activité a une vocation
refuser tout.particularisH. regional, Il est aide d'une, équipé d'analy
et entoure d'un "groupe de conception" charge de rediger le docuwent d
objectifs globaux" puis le "cabier des cbmes" de l'application, qui sont
a tous les services utilisateurs potentiels et aux chefs de projet des autr
Le groupe de conception coMPrend 6 a 16 personnes représentant les se
divers concernes par le projet, et coHporte obligatoirewent un bon analyste
plication.

II - L'IMPLANTATION GEOGKAGHiaUE D'UN mm INFORMATIQUE MMOKMANT

L'organisation de l'entreprise française des telecoiwunications repose sur

Figure 12.7. Image doc4a

www.manaraa.com

20 regions. Des calculateurs ont etf iHplantes dus le passe au mins dans,
iHportantes. On trouve ainsi des Hachines Bull Gaiwa 30 a Lyon et Marseil
a Lille. Bordeaux, Toulouse et Montpellier, un GE 437 a Hassy, enfin q
Bull 300 T1 a programes caUes etaient recetwent ou sont encore en s
regions de Nancy, Nantes, Limoges, Poitiers et Rouen ; ce parc est essent
pour la. compatibilité telepLonique, . , ..
A l'avenir, si la plupart des fichiers nécessaires aux applications decrites
etre seres entewps différé, un certain nombre d'entre eux devront necessai
cessibles, voir mis a jour en temps reel : parais ces derniers le ficLier
abonnes, le ficMer des renseignements, le fichier des circuits, le ficLie
abonnes contiendront des quantités considerables d'information.
Le volume total de caractères a gerer en phase finale sur un ordinateur
welques 500 000 abonnes a ete estime a un milliard de cvacteres au moin
tiers des donnees seront concemees par des traitements en temps ree
Aucun des calculateurs enumeres plus haut ne permettait d'envisager de
L'intégration progressive de toutes les applications suppose la creation d'un
pour toutes les informations, une veritable "Banques de donnees" repart
de traitement nationaux et régionaux, et qui devra rester alimentee, mise a
nence, a partir de la base de l'entreprise, c'est-à-dire les chantiers, le
guichets des services d'abonnement, les services de personnel etc.
L'etude des différents fichiers a constituer a donc permis de définir les pr
teristiques du reseau d'ordinateurs nouveaux a mettre en place pour aborder
du system informatif. L'obligation de faite appel a des ordinateurs de trois
très puissantes et dotes de volumneuses mémoires de masse, a conduit a en

ro
o
ON

Figure 12.8. Image docAb

www.manaraa.com

tielleMent le mowtre.", , . ,i^
L'iHplantation Je sept centres Je calcul interroaicnaux constituera un
d'une part le désir de reduire le coût econonique de renseHble de taciliter
des eguipes d'infornaticiens, et d'autre part le refus de creer des centres
difficiles a gerer et a diriger, et posant des problenes délicats de securi
ient des traitements relatifs a plusieurs regions sur chacun de ces sept c
de leur donner une taille relativement hoHogene. Chaque centre "cerera"
lion d'abonnes a la fin du lileme Plan.
La mise en place de ces centres a dekte au debut de l'annee 1971 un ordina
la Compagnie Internationale pour l'Informatique a ete installe a Toulouse e
ttene machine vient d'etre mise en service au centre de calcul interregion

ro
o

Figure 12.9. Image docAc

www.manaraa.com

Cela est d'autant plus valaUa que TA/ est plus

Îrand. A cet égard la figure 2 represente la vraie courbe onnant |<^(/)i en fonction de / pour les valeurs numé
riques indiquées page precedente.

4
1» fw&l

FIg, 2

Dans ce cas, le filtre adapte pourra etre constitue,
conforNBwent a la figure 3, par la cascade

d'un filtre passe-bande de transfert unite pour
fo < f < fo •A/ %% de transfert quasi nul pour
f < fo et f> fo + AA filtre ne Modifiant pas la Phase

N)
O
00

Figure 12.10, Image doc51a

www.manaraa.com

des conponants le traversant :

J L L-O

Ha. 9

— filtre suivi d'une ligne a retard (LAK) disper
sive ayant un tews de propagation de groupe i r
décroissait linéairement avec la frequence / suivant
l'expression

Td = To + t/o-/J^(avec T o > T }

(voir fig. 4)

i

T*.....

\T:

to
o
VO

Figure 12.11. Image doc51b

www.manaraa.com

IW

w

to
M
O

Figure 12.12. Image docSIc

www.manaraa.com

telle ligne a retail est donnee par :

^ s — Sn r To èf

**0

Et cette phase est bien l'oppose de
a un déphasage constant près (sans iNportance)
et a un retard To près (inevitable),
Un signal utile S i t) traversant un tel filtre adapte

donne a la sortie (a un retard To yres et un dépha
sage près de la porteuse) un signal dont la transfpriiee
de Murier est reelle. constante entre _fo et fwA/,
et nulle de part et d'autre de fo et defoAf, c'est-
à-dire un signal de frequence wrteuse fo+A7/2 et
dont l'enveloppe a la fonte indiquée a la figure 5.
ou l'on a represente siwultanement le signal S(t)
et le signal Sit) correspondant obtenu a la sortie
du filtre adapte. On comprend le now de recepteur
a compression d'impulsion donne a ce genre de
filtre adapte : la " largeur " (a 3 dB) du signal cow

Figure 12.13. Image doc5ra

www.manaraa.com

prine étant égalé a l/Ufj le rapport Je compression

m)

Etvihpp* 4# k (t)

• 14 |JB

Af- 5MHz

T - 12^8

M lU
Emiigppt d#

R'IM

i

v to
H to

Figure 12.14. Image doc5rb

www.manaraa.com

On saisit physiquenent le phenonene de CON-
pression en réalisant que lorsque le signal S(t) entre
dans la ligne a retard (LAS) la frequence qui entre
la prewiere a l'instant 0 est la frequence basse fo,
qui net un tewp To pour traverser. La frequence f

T

entre a l'instant t = et elle wet un temps

7o-(f-fo)-^pour traverser* ce qui la fait ressortir
Ai

a l'instant To également, Ansi donc le signal S i t) to
H w

Figure 12.15. Image docSrc

www.manaraa.com

QlESnONS - MEMOUNDUM HI

wo

x
wtmm

y

r y

i C&«J5.x' ' \x
m •

e

1
y Cft-fifi
/ CW5

•

e

Figure 12.16. Image doc6a

www.manaraa.com

ccnr 4337

ro
H ON

Figure 12.17. Image doc6b

www.manaraa.com

Figure 12.18. Image doc8

www.manaraa.com

varwnws

n

N
K

Figure 12.19. Image frnch3a

www.manaraa.com

11 ' 111 ' I ' I ' I ' I ' I ' I '

[QNTRQL
BEPOBT

(3)

11

INPUT
!L_

ON-LINE
EDIT POSTING

A

PURGE
TO C

HISTORY

1 PC-DRAW 1

s s B

BBŒSOOO

ISBBBF

fTSFLNS f
UIRSTEB^ ^

ZCIRCIE aSAUE 4L1NE sUsE tHWftTI TE&ND 811E8UCi 9Sn.ECÏ IB 246 088

to H»
vo

Figure 12.20. Image flowchrt

www.manaraa.com

«OLD

CLOCK

iHspa
=E>—HLOM

1HLS5H

Z C ^ R

=D— ̂
iHsoe

1HL5D4

RESET

t
• O

1 •
D D

t> +

"V'v̂

% O 0

@D D|
Conversion Schenatic

IM 2CH 3S 4L 5ER 6RT 7E« SUP 9 A20 088

to
ro
o

Figure 12,21. Image electrc

www.manaraa.com

INVOICE NUHBEB 5EB1RL NUMBER
DATE

END USER

NICROGRAR, INC

DEALER DIST.

SALESPERSON

EDUC. CORP.

;OLD TO!
INE iiansDP ALJ5UMIMAN.
ONPANY

SHIP TO:
J»R A. POHNw

ADDRESS « 1
ADDRESS # 2
ADDRESS # 3
HONE

}RDERS: DESCRIPTION

EXT

QUANTITY UNIT PRICE ANOUNT
M
to

• UPS
• FED EXP
• RIBBRN
• TEXPRC
• US HRIL
• OTHER .

PC-DRAW
JR-DRAW
DEMO (PC/JR)
UPGRADE (PC/JR)...
LIGHT PEN (PC/JR).
JR PLOTTER SUPPORT
OTHER
SHIPPING ê HANDLING,

Figure 12.22. Image ordrfnn

www.manaraa.com

ECOLE POLYTECHtIQUE FEDERALE DE LAUSANNE
V E1D6. ÏECHNRCHE HOQBGHULE - LAUSANNE

mm^ FEDERAL Dl LOSANiA
Dipfflirifli lilidrfcili

LMofn dl
Trdiinfi di affuni

111 A * BilM*
CH-WLOWOk»
TMW (02(21 41 SI
NB271̂

vnt w MK/op

Messieurs,

II,..; IL

Figure 12.23. Image frnchla

Federation International de
Docunentation
7 Hofuag

La Hawe
Pays-Bas

Lonan k 2 JlHlist 1979

www.manaraa.com

In a BOH, the address lines and the output word bit lines fpoM a crossed array o
r lines, i.e. a grid structure. At each wid intersection is placed a device Wi
sde.Lipolar, or HOS transistor) or not, depending on whether the corresponding -
mi hit is to he 1 or 0. (In cases where Ihere is no special interest in the ty
pe of device, the coupling between address line and hit line is often shown siiip
ly By a dot at the grid intersection.) In a prograMwable RON <PRON) the nanufact
iirer locates a connecting device at every grid intersection. However, in series
with each such device there is provided a fusihle link. Any particular fusible 1
ink is located at the intersection of sowe line Zi and sowe line Hi. BY waking c
snnection to Zi and Ui and passing an adequately large current through the link
, the link can be burned out. Thus, the user of such a PBON way bum out link a
s necessary, leaving transistors only on locations required to establish the hbh
m storage desired. One type of.erasable or alterable ROM uses floating gate F
m transistors. These are transistors in which at norwal operating voltage the
gate is entirely insulated and isolated froH electrical connection to any other
?art of the integrated-circuit chip. It turns out to be possible to establish a
negative charge on these gates by the application of hiyh voltage between source
and drain. The negative charge left on the gate by such treatment leaves the co
^responding transistor with a conducting channel. The RON can be erased by expos
ire TO ultraviolet light, which serves to discharge any charged gate. Consider t
hat we want to perforw the arithnetic operation of Multiplication. As we have se
en in Sec. 11,16, Multiplication can be perforwed by a sequence of shifting oper
itions, i.e. Multiplying by powers of two, and a sequence of additions. On the o
iner hand, we Hay view a Multiplication table as a truth table. Thus, the entry

ro
to w

Figure 12.24. Image romtxt

www.manaraa.com

Deux IclateHents de taille se sont produits en 1968, ï Paris e'
Mai, i Prague en août, l'un pour le socialisne dans la liberie, l'autn
pour la liberté dans le socialiswe. Une fois depouillfs de quelques ap
parences et oripeaux, les deux objectifs socialisHe et liberie apparais
sent bien ceux de la grande Majorité de l'buwanitf fvolule. En dehors
de rAmérique du Nord, peu nombreux sont ceux qui osent les répudier
ouvertement. Du moins personne ne se prononce-t-il contre la justice s
ciale, ni pour la mise en condition ou en tutelle des individus, ni
meme pour la socifti de classes.

Ceux qui ont peur du socialisms ne sont pas tous des proprié
taires endurcis de grandes usines ou de centaines d'hectares, nais
d'accablants precedent leur font craindre pour la plus precieuse des
propriftfs, celle de disposer de soi-meme. Et ceux que n'anthousiasme
pas l'expression "mode libre" ont bien présentes a l'esprit les exac
tions que recouvre ce beau drapeau.

Apres deux siecle de recherches, de revolutions, de theories,
d'eiriences en tous sens, aucun point n'apparaît sur le planete, aui
ilot, ou les deux objectifs socialisme et liberti soient concilies de
façon satisfaisante.

Pendant un siecle ou presque, la démocratie, appelle dans 1
suite démocratie bourgeoise ou dlmocraite, occidentale, selon le degn
de sympathie gui lui est porté, a vécu sous la banniere de la liberie,

ro
M

Figure 12.25. Image frnch2a

www.manaraa.com

In these .equations we have, ignored the uplifier inyut iitpedance Si. This

Rf
Uo = — Us

R
and the short-circuit current is

(2.4-1)

lo :
Vs

— — Ui =
Us A RT

R + Rf Ro R* Rf Ro R + Rf
Us (2.4-2)

RNs/(R f Rf), For this relationship Between Ui and Us to le valid it is only
lecessary that Ri Le large in coMyarison with the parallel cowhination of R
ind Rf, a requirwent which in practice invariaWy satisfied.

rhe second tem in Eg. (2.4-2) is overwhelwingly larger than the first ter#
because A is very large. Hence, when the first terw dropped, the output • J ## # " " • m m w m

resistance Zo is
Zo : Uo / lo : Ro(liI)f/II)/A = Ro (1 - Af)/A <2.4-3)

Figure 12.26. Image pagel

www.manaraa.com

Ferait we to introduce you to fusiHile
transHissan.

In facsiNile a photocell is caused to perfom a raster scan over
the subject copy. The variations of print density in the docuwent
iause the photocell to generate an analogous electrical video signal,
[his signal is used to Modulate a crrier, which is transHitted to a
MNote destination over a radio or cahle coNwunioations link.

At the rewote terwinal, dewodulation reconstructs the video
signal, whicb is usfd to %wdu|ate the.dengity of print produced k.a ,
printing device. This device is scanning in a raster scan synchronized
iith that at the transwitting terwinal. As a result, a facsiwile
!opy of the suhject document is produced.

Prohahly you have uses for this facility in your organisation.

Yours sincerely,

P.J. CROSS

N> ls>
G\

Figure 12.27. Image docl-2

www.manaraa.com

tatalcHppsbits=totalciipp5bits4ciimfactop[i];
cHppsfactopCi hxsize/cHppsractopLi J j

if<tend>tstapt) , , ̂ ,
CMppstiHe=tend-tstapt;

Ise
cHppstiHe=(fi000-tsiapi)t<end;

wintfCcflivPission ended\n");
^op(i=i;i<=ysize;ii=l)

j^pintf<"%8u",CNPPsfactopE:I): /* f -> u

iv^factopixsizel^sizel/tohlciippsliitsj
vintfCavg coHppission factopcXd ,totalcwpsdh:ts:%lu \n",avgfactop, totalCNP!PS&
its)J
pinuCcopMPission i'mzYm \n"iCHppstiw);

ro
to •vj

Figure 12.28. Image cprog

www.manaraa.com

HÎniHUM input voltage in opdep to change state, the rise tiw of the
input signal I Hust be less than sone HaxinuH value. FOP exanple,
Gonsidep that a level change at S OP H of 0.75 V is needed to change
the state of the flip-flop! then if the input voltage changes by 3 U
and tau = 2 ns, the pise tine T Hust be less than 8 ns.

Sd <H ̂

logic
level 1

Rd^ h

(a)

Q

Q

Sd Kd Qntl

0 8 Qn

0 1 0

1 8 1

1 1
Not
used

(b)

FIGURE 9.8-3
(a) Edge-tpiggered flip-flop using HAND gates and <b) truth table.

Figure 12.29. Image pdraw3

www.manaraa.com

SCIENTIFIC WRITER

HiwhEst.wint. quality. .Inteiactive.text
composition! ./&i!{cs>.loMtoCf
piMlMiMi. micromiâamiB,. ta
non,. multiple. sub. and. suyevsompts.

M(Q(iKË/L'£.ËiifiiiMlf:

V'D.=.p 9'B.=.0

9xE,=.-^ 9xK.=.^+j

(a =

Figure 12.30. Image sciencel

composition...lol^ej
proportional, sracinjr,. hyphena-
ÏjiiL.sfifi.ieâcl&yiaL'm.<^

t

AJIA
N

i % = hs }
2H.+.3H..—K.17,6.MeV
HgSOfl.+.Fe..—•..FeSOfl.+.Hj

www.manaraa.com

1
2

WRl 1 ILK." .^Ulie.N 1 If lU

Highest.pMHt.quality..ImteMu:Ëw.W.oomposit:o«,.J63f%.&olJkce,

pofiClinMi- micropDsitioning,. true, ppopoptional. mcing,. hyphena-
Uohi . multiple. sub. and. superscripts,.. XjDU.Stt.£xafifly.

GLUCQSE.-.The.product.of.PhQtQsynthesis:^

0 OH H OH OH H
W I I I I I
C-C-C-C-C-C-OH
/ I I I I I
H H OH H H H

Bemw.:

C-C

(>
c-c

V'D.a.p VB,= 0 9XE.=.- 9xK=.^+J

Insert
h'ess <F1> 6) cAtiofg a mm

Pms <AU F10> to exit
Mm 1. Function-key commands

2. Keypad cursor movement
Mem 3. Micropositioning & mise

DEMO Page 1
4. General/lbotnote symbols
5. Building-block characters
6. Greek and script symbols
7. Mathematical characters
8. Scientific and engineering

Free Mew: 30694
Font NediuH
Lspace 2 halfsp
Margin 0 0
Row 34/ 80
Coluwn 65/640

ro
w
o

Figure 12-31. Image science2

www.manaraa.com

Us
+

Figure 12.32, Image opampl

AUi

I to
w

FIGURE 2.4-1

Circuit used to calculate output iwreJance

www.manaraa.com

R

r-AAV

KT

•VW

u;o
t

lli

AUi

-0"AAA/ *
Uo

FIGURE 2.4-1

Circuit used to calculate output iHpedance

The output iHpedance can he calculated frow fig. 2.4-1 as the ratio of
the open-circuit output voltage Uo to the load current lo when the load is
short circuit . We have that the open-circuit voltage is

N3
CO
to

Figure 12.33. Image opamp2

www.manaraa.com

i)

D
hO
w
to

Figure 12.34. Image ecZl

www.manaraa.com

-UP

ï>-

-Uee
Figure 7.13-3

(a) The driven gates luHped at the end of a Hatched line; (I) a line Hatched

ro
w 4>

Figure 12.35. Image ec22

www.manaraa.com

V
0 «

Diskless User

J {
< I

; ^

Figure 12.36. Image ne

T

«
0

mnmiEiis:

4

Server

I
< n

ff
0 e

PrinieFS

TePHinal

PC User
to
w Ln

www.manaraa.com

DOCUMQII

RESVHC PERIOD
CODED BIT

LOST RUMS
(PELS)

LOST PELS
(PELS) DISPLACNENI

PERCENTAGE
5 PELS

DOCUMQII

AVREAGE MEDIAN AVREAGE NEDIAM AUREAGE NEDIAM

DISPLACNENI
PERCENTAGE
5 PELS

1 26 18 391 54 215 21 28%

4 24 16 122 29 77 13 39%

5 24 17 217 54 133 22 29%

7 27 17 140 69 69 33 29%

ro
CO
o\

Figure 12.37. Image tablel

www.manaraa.com

N)
W

Figure 12.38. Image usai

www.manaraa.com

-1.5
90.00 92.00 94.00 96.00 98.00 100.00

ro
w
00

Figure 12.39. Image lotssin

www.manaraa.com

Rl a

D

Figure 12.40. Image frnch3b

ro
w vo

www.manaraa.com

llliiiiL
to

O

Figure 12.41. Image barchrt

www.manaraa.com

N3

Figure 12.42. Image test2

www.manaraa.com

y/N

ro 4>
ro

Figure 12.43. Image test3

www.manaraa.com

to 4N
W

Figure 12.44. Image test4

www.manaraa.com

JA = p d p d d

JÛ' a cosi

to

Figure 12.45. Image test5

www.manaraa.com

Nî
•P-Ui

Figure 12.46. Image diagl

www.manaraa.com

I

to
o\

Figure 12.47. Image diag2

www.manaraa.com

Figure 12.48. Image diag3

www.manaraa.com

Figure 12.49. Image diag4

www.manaraa.com

N>
VO

Figure 12.50. Image diag5

www.manaraa.com

Figure 12.51. Image diagSs

AA

www.manaraa.com

1 d hi 1 r

Figure 12.52. Image diagô

hO
Ln

www.manaraa.com

Figure 12.53. Image netwrkZ

Ni Ui
ro

www.manaraa.com

HiniHUH input voltage in order to change state, the pise tine of the
input signal T Hust he less than sowe waxiwuM value. For exwple,
consider that a level change at S or R of 0.75 V is needed to change
the state of the flip-flop; then if the input voltage changes hy 3 U
and tau = 2 ns, the rise tine T Must he less than 8 ns.

R

Figure 12.54. Image pdrawl

www.manaraa.com

N3
Ln

Figure 12.55. Image usa2

www.manaraa.com

FIEOSEIK:

II
1

Maxmen'slmtfims:

9'D.=.P V'B=.0
9xE.=.-^ 7XH.=.|^+J

•

1 }
(A =

to
Ln
Ln

Figure 12.56. Image science3

www.manaraa.com

Mini MUM input voltage in order to change state, the rise tiiie of the
input signal I Must k less than sowe MaxiNuw value. For exaMple,
consider that a level change at S or R of 0.75 V is needed to change
the state of the fliHloPl then if the input voltage changes k 3 U
and tau : 2 ns, the rise liMe T Must he less than 8 ns.

Sd

logic
level 1

M<Hh

Q

Q

Sd Sd Qnfl

e fl Qn

0 1 0

1 Q

1 1
Not
used

Figure 12.57. Image pdraw2

www.manaraa.com

'mMêi I l il;»!"'' ;

WH4|iiitiit

in-;.,: - - 'r ,1 UllW.. '

Jlh^ kîSi

fil.
% m I

iL':!,,

I'll,"
'il,

Figure 12.58. Image bignames

www.manaraa.com

Figure 12.59. Image sun

www.manaraa.com

5

to Ui
vo

Figure 12.60. Image hazard

www.manaraa.com

VMir CitaHMfeiH

MfS

UkMw ka

r At i\t UM

N W lint* aKfidtoi gyawa rui 0til ^8L

PREVIEW PAGE

FILE
PAGE TYPE

PAGE
BEGIN SECTION

END SECTION
MAGNIFICATION

SAMPLE.DOC
BODY
2
L.1.3
1.1.4
S

NEXT PAGE: 3
REVERSE VIDEO: NO

Figure 12.61. Image manscl

www.manaraa.com

VM* IrisHMkipi

Mil II mrnrnt IMr

1
!

BEsb

_JWk UU— IrJU. M in iM in m
lis m IS IH

1
!

BEsb

IJI C#mmunl*w s
r.

Mb i UlU fidHi Jùntff ImUfe llwv TB"
Ik* ID u •) Tl

n tt • 1 «1 Irnirfir 1 1 II II 1 Ï
1 1 1 1 1 I

-UL _*L

Figure 12.62. Image mansc2

5m5?35itofft55»

PREUIEU PRGE

FILE: SAMPLE.DOC
PAGE TYPE: BODV

PAGE: 3
BEGIN SECTION: 1.1.4

END SECTION: L.S.I
MAGNIFICATION: S

NEXT PAGE: 4
REVERSE VIDEO: NO

www.manaraa.com

J'"j'tl" t l"'j'"y'l" "'l"'!

ilM#

ill

iri'si-ff
,rhr f

to o>
to

Figure 12.63, Image fig2

www.manaraa.com

HGHG

Figure 12.64. Image fig4

HGHG CJHH JH .

JHJHJHK KJH KJH FHG

www.manaraa.com

** I

m D D
WHWWW M M WWW

D

to
o\
4>

Figure 12.65. Image fig6

www.manaraa.com

Figure 12.66. Image fig?

www.manaraa.com

Figure 12.67. Image figS

www.manaraa.com

Figure 12.68. Image blok3

www.manaraa.com

Figure 12.69. Image blok6

www.manaraa.com

ho
G\
VO

Figure 12.70. Image boxes

www.manaraa.com

Figure 12.71. Image lines

www.manaraa.com

Figure 12.72. Image testl

www.manaraa.com

Figure 12.73. Image usamap

r

ro

N3

www.manaraa.com

273

APPENDIX B. PROGRAM LIST OF THE CCITT ONE

DIMENSIONAL COMPRESSION TECHNIQUE

www.manaraa.com

274

The C programs in this appendix and the following appendices

were compiled with Microsoft C Compiler version 4.0 and used the

library functions of this compiler.

The assembly programs in this appendix and the following

appendices were assembled with Microsoft Assembler version 4.0.

13.1. File Main.c

/*

cmprs_line(uncmprsdbufr):

* init_screen(): Function to initialize the screen, by setting

the mode and choosing the screen to display.

•' getCxl,yl,x2,y2,buffer): Takes the portion of the screen with

'• the x,y coordinates and saves it in

the buffer.

Apply the CCITT one-Dimensional

compression technique, using a modified

Huffman table, to compress each line of

the specified portion of the screen and

put the result in the uncompressed

buffer.

scrfilebufr: Array to hold the output of getO. The first 2 bytes
hold the "xlength" of the block; the second two bytes

hold the "ylength" of the block. The size of

"scrfilebufr" is set to the maximum size of the

blocks we want to capture.

xsize : Horizontal length, in bits, of each line.

ysize : Block height in bits.

tstart : Time at start of compression or decompression.

tend : Time at end of compression or decompression,

cmprstime : Compression time.

dcmprstime : Decompression time.

A/

//include <stdio.h>

//include <memory.h>

//include <dos.h>

//include <io.h>

//include <fcntl.h>

//include <malloc.h>

//define LINT_ARGS
//define screensize 16384
//define XMAX 640
//define YMAX 200
//define HI_RES 6
//define TEXT_MODE 3
//define ulong unsigned

void get(int,int, , int,int,char

www.manaraa.com

275

unsigned

void

unsigned

void

static

static

static

static

cmprs_line(char '•);

dcmprs_line_ld() ;

gttimeC);

print_results(char int, int, int, int,

unsigned, unsigned, float);

float

ulong

unsigned

int

char

avgfactor ;

totalcmprsbits=0;

cmpr stime,dcmpr s time;

/* window coordinates.

xl,yl,x2,y2;

/" figure input file.
datafile[41];

*/

mainCargc,argv)

int argc;

char *argv[];

{

static

static

static

unsigned

unsigned

unsigned

register

if(argc < 6)
{

char

unsigned

char

unsigned

scrfilebufr[4+(XMAX/8)''-(YMAX)] ;

cmprsbufr[XMAX][(YMAX+32)/l6];

"uncmprsbufr;

xsizeinbytes,xsize;

tstart.tend;
cmprsfactor[200];

i,ysize;

/* No data were entered at the

/" command line. */

}
else

{

}

printfC"enter xl yl x2 y2 \n");

scanf("%d %d %d %d",&xl,&yl,&x2,&y2);

while((getchar()) ! = '\n ') /•'< Read the end of the line ''</

/'•' marker. '•/

xl=atoi(argv[2]); yl=atoi(argv[3]);

x2=atoi(argv[4]); y2=atoi(argv[5]);

if(argc > 1)

strcpyC datafile, argv[l]);

/:'(Read data from the input file*

init_screen(argc); /* and dump it to the screen. •<

uncmprsbufr= scrfilebufr;

uncmprsbufr+=4; /* Skip over "xsize" and "ysize"'-

/* Get the specified portion of

/* the screen into "scrfilebufr"*

www.manaraa.com

276

getCxl ,yl ,x2,y2, (char ''Oscrf ilebufr) ;

for(i=0;i<=55000;i++) ; I* A delay Loop. */

setscmode(TEXT_MODE);

ysize=y2-yl+l;

xsize=x2-xl+l;

xsizeinbytes= (xsize/8)+((xsize%8)>0) ;

/* First two numbers in the */

/* "screenfilebufr" represent */

'•'(unsigned ''Oscrfilebufr=xsize; I* the width and the height of */
'•'(unsigned *)(scrfilebufr+2)=ysize;/* of the block. ''V

printf("starting to compress \n");

tstart=gttime() ; /'•' Get the starting time for '•'/

/'•: the compression. Initialize '•'/

I* "comprsbufr" and the other "I

/'•' static variables. */
init_cmprsdblk((unsigned ''Ocmprsbufr) ;

init_line_parm(xsize);
for(i=l;i<=ysize;i++)

{
cmprsfactor[i]=cmprs_line(uncmprsbufr);

/'•' Point to the next uncom- "I
uncmprsbufr+=xsizeinbytes; I* pressed line on the screen. '•'/
}

tend=gttime() ; /'•' Get the time at the end of ''V

I* the compression. */
for(i=l;i<=ysize;i++)

{
totalcmprsbits=totalcmprsbits+cmprsfactor[i];

cmprsfactor[i]=xsize/cmprs factor[i];
}

if(tend>tstart)

cmprstime=tend-tstart;

else

cmprstime=(6000-tstart)+tend;

printf("compression endedXn");

for(i=l;i<=ysize;i+=l)

{ h' Print the results on the "I

/'•: screen. "I
printf("%8u",cmprsfactor[i]);
}

avgfactor=(float) xsize ''' ysize/totalcmprsbits;

/:•' Initialize "scrnfilebufr" to -V

/'•: ASCII zero. '•'/
memset((serfilebufr+4),'\0',16000);

printf(" starting to decompress \n");

tstart=gttime(); I* Start of the decompression.

init_dcmprsbfr((serfilebufr+4),xsize);

www.manaraa.com

277

init_cmprs(cmprsbufr);
for(i=0;i<ysize;i++)

dcmprs_line_ld();

tend=gttime(); /* End the decompression. */

if(tend>tstart)

dcmprstime=tend-tstart;

else
dcmprstime=(6000-tstart)+tend;

/* If no argument was entered

!" at the command line then '•'/
if(argc < 2) /- display data to the screen. -/

{
setscmode(HI_RES);

put(xl,yl,serfilebufr);

getcharO ;
setscmode(TEXT_MODE);

}
print_results(datafile.xl,yl,x2,y2,cmprstime,dcmprstime,avgfactor);
}
/,v END mainO 'V

/,v END main.c */

13.2. File Cmprsln.c

I*
Vc===

* FUNCTIONS :
I'C
* cmprs_lastbits(word, no. of bits, color) : Compress the bits that

* did not fit into the word boundary (connect with the previous

* bits in the whole words portion of the line to be compressed.)

* get_cmprs_reslt() : Returns the no. of compressed bits since the

* last time we zeroed "cmprscounter". This function is in the

* file "update.c", which in turn has the updateO function that
* updates the compressed line after each compression.

* init_lastbits (no. bits that did not fit into the line boundary) :

* Pass the number of the last bits to the file "clast.c".

* swapbyts(from, to , number of words) : Swap the high and low byte

* of each word stored in 'from' and store the result in 'to'; do

* it for the passed number of words.
*

* VARIABLES :
Vc

oldlineptr : Pointer to the current line of uncompressed buffer.

* newlineptr ; Pointer to the compressed line.

* xsize : Horizontal length, in bits, of each line.

* currentword : Pointer to current position, in words ,

in the "uncmprsbufr. "

* lastbits : Number of bits in the last word of the uncompressed

* line if the number of bits in a line does not fit on

www.manaraa.com

278

* the word boundary.

" nmbrwords : Word length of the portion of the uncompressed line

* that fits in the word boundary.

* color : Color of the current bit.

* lastcolor : Color of the last bit processed in the whole words

* portion of a line.

* bitcolor ; Color of the current bit (temporary storage.)

'• word : Current word in the uncompressed line.

* bitpos : Index to the position in "word".

bitpos = 16 for the left-most bit and

" 1 for the right-most bit.

*/

//include

//define

//define

//define

//define

<dos.h>

LINT_ARGS

BLACKBIT

WHITEBIT

ENDBITS

unsigned get_cmprs_reslt() ;

void init_lastbits(unsigned);

void init_cmprsdblk(unsigned '•) ;

void update_cmprsdblk(unsigned,int);

void cmprs_lastbits(unsigned.unsigned,int);

void swapbyts(unsigned unsigned *,unsigned);

static unsigned lastbits,nmbrwords;

/,'c====================== cmprs_line() :*/
unsigned

char

{

unsigned

int

int
unsigned

register

cmprs_line (oldlineptr)

"Oldlineptr;

'•'currentword ;

wordcount;

color,lastcolor,bitcolor ;
bitcontr=0;

unsigned word,bitpos;

wordcount=nmbrwords; /* Initialize the variables. */

currentword=(unsigned ''Ooldlineptr;

set_cmprscontr_to_zero();

swapbyts((unsigned ''Ooldlineptr, (unsigned *) oldlineptr,nmbrwords);
word=''«cur rentword ;

if ((word)&0x8000) /* Is bit 16 in "word" white ?

{ /* Yes, bit 16 was white. */

update_cmprsdblk(0,BLACKBIT);
color=WHITEBIT;
}

www.manaraa.com

279

else

{ /* Bit 16 was black. */
color=BLACKBIT;

/'• Negate the word so we can */
word=~word; I* check for the new color. */
}

/îV We assume "xsize" >= 16, to */

/* take care of "xsize" < 16. We*/

bitpos=16; /* have to modify the code here.*/

while(color<ENDBITS) /* While not end of line, do. */
{

/* While the color is the same */

/'• and we are still inside */
h'< "currentword", do. */

whileC (word&0x8000) && (bitpos > 0))
{
bitcontr++;

bitpos — ; /* Bit position in a word. */

word=word<<l; /* Get the next bit in bit 16. */
}

ifCbitpos > 0) /* Still inside "currentword" ? */
{
update_cmprsdblk(bitcontr,color);
word=~word;

color=(coior) ? 0 : 1;

bitcontr=0;
}

/'• Done with all the bits in *

else /* the current word. *
{
bitpos=16; /* Start again with bit 16 *

currentword++; /* of the next word. *

/* If the color is black then *

/* negate the word pointed to by*

/* "currentword" to check for *

/* the color later. *

word= (color) ? *currentword : "('''currentword) ;

/* Test for the end of the line *

/* marker. *
if(—wordcount == 0)

{ /* Save the last color in this *

/* line. *

lastcolor=color;

/* Signal "eol" to the outer *

/* loop. *

color=ENDBITS;
}

}

www.manaraa.com

280

ifClastbits == 0) /* Does the line fit in the word*/

/* boundary ? */

update_cmprsdblk(bitcontr,lastcolor);
else

cmprs_lastbits(*currentword,bitcontr,lastcolor);

if(color>ENDBITS)

printf(" ****** error in color, color=%d /n",color);

/* Return the number of bits */
return(get_cmprs_reslt()); /* in that compressed line. */
}
/* END cmprs_line() */

/*====================== init_line_parm() =========================;v/

/* Initialize some static variables to the appropriate values. */
/ yt============!===, 'c /

void init_line_parm(xsize)

unsigned xsize;

{
nmbrwords=xs ize/16 ;

lastbits=xsize & OxOOOf; /* Let "lastbits" = "xsize" % 16*/

init_lastbits(lastbits);
}
/* END init_line_param() */

/* END cmprsln.c */

13.3. File Cupdt.c

/*

* STATIC VARIABLES :
it

* bitsleft : Number of bits still vacant in the compressed word,

* it starts with 16 bits left in the word.

* cmprscounter : Count the number of bits in the compressed block

* which is filled from left to right.

* cmprsdwordptr: Pointer to the current word position in the

* compressed block.

*/

static int bitsleft;

static unsigned cmprscounter;

static unsigned *cmprsdwordptr;

/* This is function update_cmprsdblk(bitcounter, color), where */

www.manaraa.com

281

/bitcounter is the number of consecutive bits of current color.
/Vc===.

void update_cmprsdblk(uncinprsdbitscont.color)
unsigned
register

{
struct

static

uncmprsdbitscont;
int color:

FAXDATA
{

struct
0x35,8,
Oxf,4,
0x34,6,
0x17,7,
0x18,7,
0x14,8,
0x2b,8,
0x52,8,
0x59,8,
0x34,8,
0x64,8,

};

FAXDATA

0x7,6,
0x13,5,
0x35,6,
0x3,7,
0x2,8,
0x15,8,
0x2c,8,
0x53,8,
0x5a,8,
Oxlb,5,
0x65,8,

unsigned

int

I* Code for a sequence of bits
/* of type color and run-length
/* = // of the uncompressed bits,

bits ;
I* Length of the code in the
I* bits.

length;

/* Initialize "FAX".
I* black data , FAX[
I* white data.

FAX[2][74]={ {
0x7,4, 0x8,4, 0xb,4, 0xc,4,
0x14,5, 0x7,5, 0x8,5, 0x8,6,
0x2a,6, 0x2b,6, 0x27,7, Oxc,7,
0x4,7, 0x28,7, 0x2b,7, 0x13,7,
0x3,8, Oxla,8, Oxlb,8, 0x12,8,
0x16,8, 0x17,8, 0x28,8, 0x29,8,
0x2d,8, 0x4,8, 0x5,8, 0xa,8,
0x54,8, 0x55,8, 0x24,8, 0x25,8,
0x5b,8, 0x4a,8, 0x4b,8, 0x32,8,
0x12,5, 0x17,6, 0x37,7, 0x36,8,
0x68,8, 0x67,8} , {

*/
••••I

FAX[0][
1] [] = =

0xe,4,
0x3,6,
0x8,7,
0x24,7,
0x13,8,
0x2a,8,
Oxb,8,
0x58,8,
0x33,8,
0x37,8,

0x37,10,
0x2,4,
0x7,7,
0x8,10,
0x17,11,
0x68,12,
0xd4,12,
Oxda,12,
0x64,12,
0x38,12,
0x2c,12,
0xc9,12,
0x6d,13,

0x2,3,
0x3,5,
0x4,8,
0x67,11,
0x18,11,
0x69,12,
0xd5,12,
Oxdb,12,
0x65,12,
0x27,12,
0x5a,12,
0x5b,12,
0x4a,13}

0x3,2,
0x5,6,
0x7,8,
0x68,11,
Oxca,12,
0x6a,12,
0xd6,12,
0x54,12,
0x52,12,
0x28,12,
0x66,12,
0x33,12,
} ;

0x2,2,
0x4,6,
0x18,9,
0x6c,11,
Oxcb,12,
0x6b,12,
0xd7,12,
0x55,12,
0x53,12,
0x58,12,
0x67,12,
0x34,12,

0x3,3,
0x4,7,
0x17,10,
0x37,11,
Oxcc,12,
Oxd2,12,
0x6c,12,
0x56,12,
0x24,12,
0x59,12,
Oxf,10,
0x35,12,

0x3,4,
0x5,7,
0x18,10,
0x28,11,
Oxcd,12,
Oxd3,12,
0x6d,12,
0x57,12,
0x37,12,
0x2b,12,
0xc8,12,
0x6c,13,

register unsigned code;
int length;

I* Code for the run of the pels.*/
I* Length of the above code */

www.manaraa.com

282

unsigned multiple; /* = "uncmprsdbitscont" / 64. */
unsigned bitcont; /* Local run-length. */

/* To get the least significant */
static unsigned maskl=0x003f; /* 6 bits. */

/* Is "uncmprsdbitscont" a */
/* multiple of 64 ? */

if ((multiple=(uncmprsdbitscont»6))>0)
{

/'•' Compress the multiple of */
bitcont=multiple+63; /* 64 part. */

code=FAX[color][bitcont].bits ;

length=FAX[color][bitcont].length;

cmprscounter=cmprscounter+length;

/* Is old "bitsleft" > length ? =•/
if ((bitsleft=bitsleft-length)>0)

I* Put the new code at the •</

!'•' current compressed word, '•/

I* using the new "bitsleft" to */

/* put it in the correct '•'I
/'•' position. "/

(*cmprsdwordptr) | =code«(bitsleft) ;

else /:'(The old "bitsleft" <= length.*/

{ /* Negate "bitsleft" and put the*/

/* part of the code that fills */

/* the word in the compressed */

/* word. */
(*cmprsdwordptr)|=(code) » (-bitsleft);

/* Move to a new word and put */

/* the rest of the code in a */

/* new compressed word, filling */

/* from the left to the right. */
*(++cmprsdwordptr)=(code) «

(bitsleft = (16 + bitsleft));
}

/* Now compress the part that */

/* is less than 64 bits. */

/* If the no. of bits = 640 we */
if(multiple<10) /* skip putting the zero part. */

{
/* "bitcont" is the remainder of*/

/* dividing "uncmprsdbitscont" */

/* by 64. */
bitcont=uncmprsdbitscont & maskl;

/* Get the corresponding code */

/* and the "code-length". */
code=FAX[color][bitcont].bits;

length=FAX[color][bitcont].length;

www.manaraa.com

283

/* Update "cmprscounter" by the*/

"code-length". */

cmprscounter=cmprscounter+length;

I* If there are still more *!

I* unprocessed bits in the */

/vt current word then put the */

/* compressed bits in the */

/'• corresponding part of the *!

I* word in the compressed buffer*/
if((bitsleft=bitsleft-length)>0)

(*cmprsdwordptr) | =code«(bitslef t) ;

else

{ /* Otherwise split the code */

/* among the current and next */

/* words of the compressed */

/* buffer. */
((*cmprsdwordptr))|=(code) » (-bitsleft);

(*++cmprsdwordptr)=(code) «

(bitsleft = (16 + bitsleft));
}

}
}

/* Run-length was less than */

else /* 64 bits. */
{

/* Get the corresponding number */

/* of bits and "run-length" */

/* then update "cmprscounter". */
code=FAX[color][uncmprsdbitscont].bits ;

length=FAX[color][uncmprsdbitscont].length;

cmprscounter=cmprscounter+length;

/* Same case as the one before. */
if ((bitsleft=bitsleft-length)>0)

(*cmprsdwordptr) | =code«(bitslef t) ;

else
{
((*cmprsdwordptr))|=(code) » (-bitsleft);

(*++cmprsdwordptr)=(code) «

(bitsleft = (16 + bitsleft));
}

}

* UPDATE_CMPRSDBLK() */

* Initialize the compression buffer pointer to the first word of */

* the space allocated, set the compression counter to zero and */

* start with the most left bit of the first word in the compressed*/

* buffer. */
î'f = = = = == = =3 = !== ===3=== = ss = = = =! === ====:=3 = = =====5 =====s==s ====! = =====:== = =:=ïz= = = = = = 5'c /

www.manaraa.com

284

void init_cmprsdblk(newblkptr)

unsigned *newblkptr;

cmprsdwordptr=newblkptr;

bitsleft=16;

cmprscounter=0;

/,v END INIT_CMPRSDBLK() '•-/

/A==================== get_cmprs_reslt() ==========================vt/

/'•< This function returns the number of compressed bits since last '''/

/* initialization of "cmprscounter".
/ Vc===yc/

unsigned get_cmprs_reslt()

return(cmprscounter);

/A END get_cmprs_reslt() */

/''«================= set_craprscontr_to_zero() ======================!'c/

/* Set_cmprscontr_to_zero() : it sets "cmprscounter" to zero. Use it*/

/* if you are compressing a block and want to get "cmprscounter" */
/* for each line alone. */
/ î'c = ====== ======== = ==== = ========== = ======= ====== = = === = ===:= = = === = = = = = ,V/

void set_cmprscontr_to_zero()

cmprscounter=0;

/,v END set_cmprscontr_to_zero() '•/

/,'c END cupdt.c */

13.4. File Clast.c

//include <dos.h>

//define LINT_ARGS
//define BLACKBIT 0
//define WHITEBIT 1
//define ENDBITS 2
//define flip(word) \

{ \

inregs.x.ax=word; \

inregs.h.bl=inregs.h.al; \

inregs.h.al=inregs.h.ah; \

inregs.h.ah=inregs.h.bl; \

word=inregs.x.ax; \
}

void update_cmprsdblk(unsigned, int);

www.manaraa.com

285

static unsigned lastbits;

/ Vc============================ CMPRS_LASTBITS =====================

/'•' The bits left in the last word after compressing the whole

/'•' screen should be handled as a special case. First the word

/* should be flipped, or swapped. It would not be necessary to

/'•' check for the word boundary since we are sure that the number

/* of bits left is less than 16.
/'''===

cmprs_lastbits(word,bitcontr,color)

unsigned

bitcontr ;

color ;

word; /'•' Last word.

/" Counter of bits left

/* Last color.

register

unsigned

int

{

struct bits
{

unsigned rest :15;

unsigned bitl6 :1 ;
} ;

union
{
struct bits b;

unsigned w;

} wordbitsl;

union REGS inregs;

int bitcolor;

register int bitpos;

flip(word)

bitpos=0;

whileCcolor < ENDBITS)
{

wordbitsl.w=word; /* Last word.

/'> Loop until either "color"

/* changes or all bits are
/" processed.

while((wordbitsl.b.bitlô == color) &&

(bitpos < lastbits))
{

bitcontr++;

bitpos++;

/* Get the next bit.
wordbitsl.w = word = word « 1;

}
if(bitpos < lastbits)

{ /* The color changed, hence

/'•' update the compressed buffer
update_cmprsdblk(bitcontr,color);

www.manaraa.com

286

I* Let "color" = new color. */

color=wordbitsl.b.bitl6;

I* Start looking for a new run. */
bitcontr=0;

}
else

{ I* All bits were processed, */

/'• update the compressed buffer

I* and exit the main loop. */
update_cmprsdblk(bitcontr,color);
color=ENDBITS;

}
/it END cpmrs_lastbits() -/

/'•'====================== init_lastbits() ==========================vc/

/* Initialize "lastbits" to the no. of bits in last word of the

/* uncompressed line. */
/,'C======:===,V/

void init_lastbits(lastcont)

unsigned lastcont;

{
lastbits=lastcont;
}
/,v END init_lastbits() */

I* END clast.c */

13.5. File Dcmprsln.c

//include <stdio.h>

//include <io.h>

//include "colordef.h"

int update_cmprs(int);

int uncmprs_blak(), uncmprs_white();

int match_blak(int *,int *), match_white(int int '•);

int update_dcmprs_blakmk(int), update_dcmprs_whitemk(int);

int update_dcmprs_blakreg(int), update_dcmprs_whitereg(int);

/* This function decompresses or decodes one horizontal line using ''f/

/* the CCITT one-dimensional coding standard. The function •>''/

/* consists of a while loop to process all the codes in a line. */

void dcmprs_line_ld()
{

/* Each line is assumed to begin*/

www.manaraa.com

287

/* with a black run, if it does */

/* not, then the code of zero '•/

/* black run was inserted before*/

/* the compressed code of the ''•/

/* line at the compression time.*/

/* Decode the compressed buffer */

/* until the end of line is */

/* encountered. */

whileC uncmprs_blak() && uncmprs_white())

}
/* END DCMPRSLNO */

/* When either a make-up or a terminating black code is processed, */

/* both of the compressed and decompressed buffer are updated. The */

/* latter is updated by sending the corresponding number of bits */

/* to that buffer. */
/ yc===,v/

uncmprs_blak()

{
int clrbits,codebits;

register int *clrbitsptr=&clrbits;

register int *codebitsptr=&codebits;

match_blak(clrbitsptr,codebitsptr);

/* In case "clrbit" is */

/* smaller than 0 then a */

/* make-up code was encount- */

/* ered as a first code, so */

/* updated compression and */

/* decompression buffers. */
if(*clrbitsptr<0)

{
*clrbitsptr=-*clrbitsptr;

update_cmprs(*codebitsptr);

update_dcmprs_blakmk(*clrbitsptr);

/* Find new clrbits & codebits */
match_blak(clrbitsptr,codebitsptr);
}

/* Update "cmprsbufr" with the */

/* first terminating code */

/* length encountered. */
update_cmprs(*codebitsptr);

/* Put "clrbits" black pels */

/* in the decompression buffer. */

/* If the line ended return 1 */

/* else return 0. */
return(update_dcmprs_blakreg(*clrbitsptr));

www.manaraa.com

288

}
/* END UNCMPRS_BLK() */

/vt====================== UNCMPRS_WHITE() ==========================Vc

/* When either a make-up or a terminating white code is processed, *

I* both of compression and decompression buffer are updated. The *

/* latter is updated by sending the corresponding number of bits *

/* to that buffer. *
/,V===)V

uncmprs_white()
{

int clrbits,codebits;

register int '•'clrbitsptr=&clrbits ;

register int '•codebitsptr=&codebits ;

match_white(clrbitsptr,codebitsptr);

/* Refer to the comments in */
if(*clrbitsptr<0) /'• function uncmprs_blak. */

{
*clrbitsptr=-*clrbitsptr;

update_cmprs(*codebitsptr);

update_dcmprs_whitemk(*clrbitsptr);

match_white(clrbitsptr,codebitsptr);
}

update_cmprs(*codebitsptr);

returnC update_dcmprs_whitereg(*clrbitsptr));
}
/A END UNCMPRS_WHITE() */

/•it END dcmprsln.c

13.6. File Dupdtc.c

/A

STATIC VARIABLES :

cbitsremain :
is

* currentword :

* nextwordptr :
is

nextword :

rightbitsword

leftbitsword

Bits remained in a given word, initial value is

16 bits.

Holds the current word to be decoded.

Points to the next word to be processed after the

current word.

It is set to the contents of word pointed to by

"nextwordptr". After each code match, "nextword" is

masked so that it will contain the unused portion,

it is right justified.

The rest of it is filled with zeros.

: Masks to get 1st bit, 1st and 2nd bits and so on.

: Masks to get 16th bit, 16th and 15th bits and so on.

www.manaraa.com

289

;;==:=====================

*/

static unsigned currentword;
static unsigned nextword,''<nextwordptr;
static unsigned cbitsremain;
static unsigned rightbitswordC]={0,0x0001,0x0003,0x0007,

OxOOOf.OxOOlf,0x003f,
0x007f.OxOOff.OxOlff,
OxOSff,0x07ff.OxOfff,
Oxlfff,0x3fff,0x7fff,
Oxffff};

unsigned leftbitsword []={0,0x8000,OxcOOO.OxeOOO,
Oxf000,Oxf800,OxfcOO,
OxfeOO.OxffOOiOxffSO,
OxffcO,OxffeO,OxfffO,
Oxfff8,Oxfffc,Oxfffe,
Oxffff};

/ i'c======================== UPDATE_CMPRS() =========================V;/

/* This function updates "currentword", which is a window into the -/
/* compressed buffer. */
/"'•==='''/

update_cmprs(codelngth)
int codelngth;

{ /* Variable "tempword" is not
/* necessary, it is used to
/* speed processing.

register unsigned tempword;
register int difference;

tempword = currentword;
tempword <<= codelngth; /••'' Get rid of this code. -/

/* Can the vacant place in ••'/
/* "currentword" be filled from »/
/'•' what is left in nextword? */

if((difference = cbitsremain-codelngth) > 0)
{ /* Yes, "bitsremain" is big ••'/

/* enough. •''/

/* Copy the new bits of the code*/
/* into the places vacant due to*/
/* the mathed code. */

tempword |= nextword»(difference);
}

else
{ /* No, the code bits remaining */

/* in "nextword" can't fill the */

www.manaraa.com

290

/* places vacated due to the *
/* matched code.

/* Correct "difference". *
difference =- difference;

/* Copy all the code bits in •'<
/vc "nextword" to their correct *
/* positions in "tempword". *

tempword 1= nextword << (difference);
/iv Advance "nextwordptr" and *
/•:< copy its content to '•
/'•« "nextword". • *

nextword = '•(++nextwordptr) ;
/* Adjust "difference" then use *
/* it to copy the necessary *
/* part from the new "nextword"
/" into "tempword". *

tempword |= nextword >> (difference=(16- (difference)));
}

/* Mask the used part to zeros. *
nextword &= rightbitswordCdifference];
cbitsremain = difference; /•' Update "cbitsremain". *
currentword = tempword; /* Update "currentword". *
}
/* END UPDATE_CMPRS *

/ vt======================== init_cmprs

init_cmprs(cmprsbfrptr)
unsigned *cmprsbfrptr;

{
cbitsremain = 16;
currentword = *(cmprsbfrptr);
nextword = *(nextwordptr=cmprsbfrptr+l);
}
/" End init_cmprs ''«/

/
/
/
/
/
/
/
/
/
/
/
/

======================= MATCH_BLAK ==============================)'t

It looks at the content of "currentword"(currentword is a window*
that slides on the "cmprsdbfr") from left to right (up to bit *
9) and tries to match the first four bits with a code of black *
runs whose length is four bits. If no match is found it tries *
to match the first 5 bits and so on until it finds a match. The *
last bits to be looked at are the first 8 bits. It is assumed *
that a match should be found otherwise an error message is sent *
to the screen and the program is halted. *
It returns the length of the matched code and the length of *
the corresponding run in locations pointed to by "codebitsptr" *
and"clrbitsptr" respectively. *

www.manaraa.com

291

match_blak(clrbitsptrjcodebitsptr)
register int '''clrbitsptr ;
int *codebitsptr;

{
/* Huffman table for the black */
/* codes. It is read from */
/* right to left with the 'V
/* vacant bits filled with */
/•>'! zeros in every word. */

static unsigned BLK_CODES[] =
{

/* BARRAY_4 bits. */
0x7000,0x8000,OxbOOO,OxcOOO,OxeOOO,
OxfOOO,

/* BARRAY_5 bits. */
0x9800,OxaOOO,0x3800,0x4000,OxdSOO,
0x9000,

/* BARRAY_6 bits. */
OxlcOO,0x2000,OxOcOO,OxdOOO,0xd400,
OxaSOO,OxacOO,OxScOO,

/'•- BARRAY_7 bits. */
0x4e00,0x1800,0x1000,0x2e00,0x0600,
0x0800,0x5000,0x5600,0x2600,0x4800,
0x3000,0x6e00,

/* BARRAY_8 bits. */
0x3500,0x0200,0x0300,OxlaOO,0x1bOO,
0x1200,0x1300,0x1400,0x1500,0x1600,
0x1700,0x2800,0x2900,0x2a00,0x2b00,
0x2c00,0x2d00,0x0400,0x0500,OxOaOO,
OxObOO,0x5200,0x5300,0x5400,0x5500,
0x2400,0x2500,0x5800,0x5900,0x5a00,
0x5b00,0x4a00,OxAbOO,0x3200,0x3300,
0x3400,0x3600,0x3700,0x6400,0x6500,
0x6800,0x6700

/* Run-lengths corresponding '•/
/* to the codes in "BLK_CODES". ''•/
1* Make-up runs are stored as '•/
/* negative values to */
/* distinguish them from */
/* the terminating runs. */

static int BLK_RUNS[] =
{ /* BC0DE_4 bits, */

* /

'V/

/'•' BCODE 4 bits.
2 ,3 ,4 ,5 ,6 ,7 ,

/'•' BCODE 5 bits.
8 ,9 .10 ,11 ,-64 , ,-128

/'•' BCODE 6 bits.
1, 12, 13, 14, 15, 16, 17, -192

/* BC0DE_7 bits.

www.manaraa.com

292

18, 19, 20, 21, 22, 23, 24, 25, 26,
27, 28, -256,

BC0DE_8 bits. */
0, 29, 30, 31, 32, 33, 34, 35, 36,
37 , 38, 39, 40, 41, 42, 43, 44, 45,
46, 47, 48, 49, 50, 51, 52, 53, 54,
55, 56, 57, 58, 59, 60, 61, 62, 63,
-320, -384, -448, -512, -576, 640

} ;
h' The black codes are grouped '•/
/* in the "BLK_CODES" array *!
/" according to their length. -V
/* Their corresponding runs are */
/* stored in "BLK_RUNS" array. '•/
/* The first element in ••/
/* "BGROUPS" is equal to the no.*/
/" of the pairs. First no. in ••/
/" each pair is the length of ''•/
/* the code in bits. Second no. ''•/
/* is the number of codes with ••/
/* this length.

static int BGROUPSl]={5, 4,6, 5,6, 6,8, 7,12, 8,42 };
register word;

word = currentword;
switch (1)

{
case 1:
{ /* Find the first part of "word"*/

/'• that can be matched to a code*/
/* of a black run. When a match */
/* occurs return the "clrbits" */
/* and "codebits". */

if(match_all_bits(word,BLK_CODES,BLK_RUNS,BGROUPS,
clrbitsptr,codebitsptr))

break;
}
default : {

printfC"Wrong code encountered in 'match_blak'\n");
exit(O) ;
}

}
}
/* END MATCH_BLAK */

/)':======================= MATCH_WHITE =============================V«
/* Codes of length =2, 3, 4, 5, 6, 7, 8, 9 are processed in a *
/* tree data structure in order to find a match for them with the *
/* first 2, 3,...9 left bits of "currentword". Whenever a match is *
/* found we exit from the tree. If no match is found in the tree, *

www.manaraa.com

293

the function looks at the content of currentword (current word
is a window that slides on the "cmprsdbfr") from left to right
(up to bit 4) and tries to match the first ten bits with a code
of white runs whose length is ten bits. If no match is found
it tries to match the first 11 bits and so on until it finds a
match. The last bits to be looked at are the first 13 bits. It
is assumed that a match should be found otherwise an error
message is sent to the screen the and program is halted.
The function returns the length of the matched code and the
length of the corresponding run in locations pointed to by
"codebitsptr" and "clrbitsptr" respectively.

match_white(clrbitsptr,codebitsptr)
int ''«clrbitsptr, ̂codebitsptr ;

{

static unsigned

static int

1;

WHITE_RUNS[] =
{

/* See comment for "BLK_CODES".
WHITE_CODES[] =
{

/* Codebits = 10.
OxOScO, 0x0600, 0x0200, 0x03c0,
OxOdcO,

/* WARRAY_11 bits.
OxOceO, OxOdOO, OxOdSO, 0x06e0,
0x0500, 0x02e0, 0x0300,

/•>'< WARRAY_12 bits.
OxOcaO, OxOcbO, OxOccO, OxOcdO,
0x0680, 0x0690, 0x06a0, 0x06b0,
0x0d20, 0x0d30, OxOdSO, OxOdôO,
0x0d70, 0x06c0, 0x06d0, OxOdaO,
OxOdbO, 0x0540, 0x0550, 0x0560,
0x0570, 0x0640, 0x0650, 0x0520,
0x0530, 0x0240, 0x0370, 0x0380,
0x0270, 0x0280, 0x0580, 0x0590,
0x02b0, 0x02c0, 0x05a0, 0x0660,
0x0670, 0x0c80, 0x0c90, 0x05b0,
0x0330, 0x0340, 0x0350,

/* WARRAY_13 bits.
0x0360, 0x0368, 0x0250

'•7

V

/* See comment for "BLK_RUNS". */

/* WCODE_10 BITS. */
16, 17, 18, -64, 0,

/* WC0DE_11 bits. */
19, 20, 21, 22, 23, 24, 25,

/* WC0DE_12 bits. •>'</
26, 27, 28, 29, 30, 31, 32, 33,
34, 35, 36, 37, 38, 39, 40, 41,

www.manaraa.com

294

};

42, 43, 44, 45, 46, 47, 48, 49,
50, 51, 52, 53, 54, 55, 56, 57,
58, 59, 60, 61, 62, 63, -128, -192,
-256, -320, -384, -448,

/* WC0DE_13 bits. *
-512, -576, 640

static unsigned WGROUPS[]={4, 10,5, 11,7, 12,44, 13,3 };
register unsigned tmpword,word;

word = currentword;
switch (l)

{
case 1;
{
if(word & 0x8000)

{
if(word & 0x4000)

*clrbitsptr = 2;
else

*clrbitsptr = 3;
*codebitsptr = 2;
break;
}

if(word & 0x4000)
{
if(word & 0x2000)

*clrbitsptr=4;
else

*clrbitsptr=l;
'•codebitsptr=3 ;
break;
}

if(word & 0x2000)
{
if(word & 0x1000)

*clrbitsptr=5;
else

'•clrbitsptr=6;
*codebitsptr=4;
break;
}

if(word & 0x1000)
{
if(word & 0x0800)

{
*clrbitsptr=7;
*codebitsptr=5;
break;
}

Bit 16 = 1.

Bit 15 = 1 hence code=2.*

Bit 15 = 0.

Code length = 2.

Bit 15 = 1.

Bit 14 = 1.
Code = 4 .
Bit 14 = 0.
Code = 4.
Code length = 3.

Bit 14 = 1.

Bit 13 = 1.
Code = 5.
Bit 13 = 0.
Code = 6.
Code length = 4,

Bit 13 = 1.

Bit 12 = 1.

Code = 7.
Code length = 5.

www.manaraa.com

else /'V Bit 12 = 0. '•7
{ /* Bit 11 = 1.
if(word & 0x0400)

/* Code = 8. ,v/
Aclrbitsptr=8 ;

else /* Bit 11 = 0.
/* Code = 9.

*clrbitsptr=9 ;
codebitsptr=6; / Code length = 6.

{ *codebitsptr=7

*clrbitsptr=10; break; }

*clrbitsptr=ll; break; }

break;
}

}
/* By reaching this points it */
/* means that only 4 zero bits '''/
/* were found. */

/•:• mask with 1111 1110 00... ''7
/* to handle runs 10, 11, 12 */

if((tmpword=(word&0xfe00)) == 0x0800)
{ *codebitsptr=7

if(tmpword==0x0a00)
{ *codebitsptr=7

if(tmpword==0x0e00)
*clrbitsptr=12; break; }

/* */
/* mask with 1111 1111 00... ='/
/'•' to handle runs 13, 14, 15 */

if((tmpword=(word&0xff00)) == 0x0400)
{ *codebitsptr=8; ''«clrbitsptr=13; break; }

if(tmpword==0x0700)
{ *codebitsptr=8; '•clrbitsptr=14; break; }

if((word&Oxff80)==0x0c00)
{ *clrbitsptr=15; *codebitsptr=9; break; }

/*
/'•' find the first part of
/* "word" that can be matched
/* to a code of a white run.
/'•' When a match occurs return
/" the "clrbits" and "codebits"

if(mateh_a1l_bi ts(word,WHITE_CODES,WHITE_RUNS,WGROUPS,
clrbitsptr.codebitsptr))

break;
}
default : {

printf(
" Wrong code encountered in 'match_white'\n");

exit(O) ;
}

www.manaraa.com

296

/* END MATCH_WHITE() ''=/
/,v END dupdtc.c */

13.7. File Dupdtd.c

* STATIC VARIABLES :
it

dbitsremain : Bits remaining in a given byte, initial value is
* 8 bits.
* xsize : Horizontal dimension of the block = length of
* each line.
* xlength : Counter for number of bits processed in the
* current line.
* linestart : Points to the start byte of every line in
* compressed buffer.
" currentbyteptr : Points to the current byte, in the decompression
* buffer, to be filled.
* currentbyte : Equals the contents of byte pointed to by
* "currentbyteptr".
* leftbitsbyte ; An array of masks to get the 16th bit, the 16th
* and 15th bits, and so on.
rightbitsbyte : An array of masks to get the 1st bit, the 1st

* and 2nd bits, and so on.

*/

//include <memory.h>
//define uchar unsigned char

static int dbitsremain;
static int xsize, xlength;
static char "linestart;
static uchar -currentbyteptr, currentbyte;
static uchar rightbitsbyte[]=

{0,0x01,0x03,0x07,0x0f,0x1f,0x3f,0x7f,Oxff};
static uchar leftbitsbytei] =

{0,0x80,0xc0,0xe0,0xf0,Oxf8,0xfc,Oxfe,Oxff};

/* Put into the decompression buffer "dcmprsbufr" the exact number */
/* of white bits that equals the passed run length. */

update_dcmprs_whitereg(cIrbits)
/* Number of white bits to be */

register int clrbits; /* added to the buffer. -/

{

www.manaraa.com

297

register int difference;
unsigned nmbrbytes;

difference = clrbits-dbitsremain;
if(clrbits >= (dbitsremain+8)) /''• Can we use memsetO ? *

{ /* YES we can, hence set the '•
/* remaining bits of the current*
/* byte to I's. *

*currentbyteptr |= rightbitsbyte[dbitsremain];
/'• Divide by 8 to get the number*

nmbrbytes=(difference)»3; /* of bytes that need to be *
/* updated. *
/* Set "nmbrbytes" bytes to ones*

memset(++currentbyteptr,Oxff.nmbrbytes);
currentbyteptr +=nmbrbytes; /* Advance the pointer position*

/* If the difference was not *
/* divisible by 8 then there *
/* are some bits to be set *
/* to ones in the next byte. *

if((difference=difference &0x7) !=0)
*currentbyteptr=leftbitsbyte[(difference)];

dbitsremain=8-(difference);
}

else /* No we can not use memsetO. */
{
if(difference < 0)

{ /* Only few bits need to be set *
/* to one within the current *
/* byte, hence OR contents of *
/* "currentbyteptr" with the *
/* mask that is shifted left by *
/* the negated difference. *

*(currentbyteptr) 1= (rightbitsbyte[clrbits] «
(dbitsremain-clrbits));

dbitsremain -=clrbits;
}

else /* There are some bits in the *
/* current and next byte to be *
/* set to one . *

{
/* Set those bits left in *
/* the current byte to I's *

'•'currentbyteptr | =rightbitsbyte[dbitsremain] ;
/* Set the required bits of the *
/* next byte to one. *

*(++currentbyteptr) =leftbitsbyte[difference];
dbitsremain = 8 - (difference);

}
/* If the end of the line is *

www.manaraa.com

298

if((xlength+=clrbits) >= xsize)

{
xlength=0;

/*
/*

if(dbitsremain!=8)
{
dbitsremain=8;
++currentbyteptr;
}

linestart=currentbyteptr;
return(O);
}

reached then initialize the */
variables to process the next*/
line. '•/

If "dbitsremin"=8 this means */
that "currentbyteptr" is '•/
pointing to the first byte of*/
the next line and, of course,*/
"dbitsremain" is correct. */
So start a new line. */

else
return(1); /* Line did not end yet.

END UPDATE_DCMPRS_WHITEREG()

* /

-* /

)V==================== update_dcmprs_blakreg =====================

* Put into the decompression buffer "dcmprsbufr" the exact number
* to black bits that equals the passed run length. Since initially
* every bit in the buffer is set to zero, it is enough to advance
* the pointer by the run length.

update_dcmprs_blakreg(clrbits)
register int clrbits;

{
register
unsigned

int difference;
nmbrbytes;

difference=clrbits-dbitsremain;
ifCclrbits >= (dbitsremain+8))

{
/* Update more than two bytes. */

/* No need to set the remaining */
/* bits of the current byte */
/* to O's since the buffer is */
/* initialized to zero's. */

/* Divide by 8 to get the number*/
nmbrbytes=(difference)»3; /* of bytes to be updated. */

/* Advance the pointer position.*/
currentbyteptr +=nmbrbytes+l;

/* By ANDING "difference" with*/

www.manaraa.com

299

/* 0000 0111 we get the bit */
/* position to start with in*/
/* the next process. */

dbitsremain=8-(difference &0x7);
}

else /* Update one or two bytes. */
{
if(difference<0)

/* Only few bits need to be ••/
/* set to zero within the */
/* current byte, hence advance */
/'• "dbitsremain" by "clrbits", */
/* thus bits = run-length are */
/* set to zero in the current ••/
/* byte. '•/

dbitsremain -=clrbits;
else

{
/'• Advance "dbitsremain" by */
/* "clrbits", thus bits = run- */
/* length are set to zero in */

++currentbyteptr; /* the current and next byte. */
dbitsremain=8- (difference);
}

}
/* If the end of line is reached*/
/* then initialize the variables*/

if((xlength+=clrbits) >= xsize) /* to process the next line. */
{
xlength=0;

/* If "dbitsremin"=8 this means */
/* that "currentbyteptr" is */
/* pointing to first byte of */
/* the next line and, of course,*/
/* "dbitsremain" is correct. */

if(dbitsremain!=8) /* So start a new line. */
{
dbitsremain=8;
++currentbyteptr;
}

linestart=currentbyteptr;
return(O);
}

else
return(l); /* Line did not end yet. */

}
/* END UPDATE_DCMPRS_BLAKREG() */

/ vc==================== update_dcmprs_whitemk ======================)V/

update_dcmprs_whitemk(clrbits)

www.manaraa.com

300

int clrbits;

{
register int difference;
register unsigned nmbrbytes;

/* Refer to the comments in the '•/
/* function update_dcmprs_Mhitereg.'''/

difference=clrbits-dbitsremain;
*currentbyteptr |= rightbitsbyte[dbitsremain];
nmbrbytes=(dif f erence)»3;
memset(++currentbyteptr,Oxff,nmbrbytes);
currentbyteptr +=nmbrbytes;
if((difference=difference &0x7) !=0)

'•currentbyteptr=leftbitsbyte[(difference)];

dbitsremain=8-(difference);
xlength +=clrbits;
return(1);
}
/,v END UPDATE_DCMPRS_WHITEMK() 'V

/ 5V==================== update_dcmprs_blakmk =======================!'t/

update_dcmprs_blakmk(clrbits)
register int clrbits;

{
register int difference;
unsigned nmbrbytes;

/* Refer to comments in function •-/
/'•' update_dcmprs_blakreg. '•</

difference=clrbits-dbitsremain;
nmbrbytes=(diff erence)»3;
currentbyteptr +=nmbrbytes+l;
dbitsremain=8-(difference &0x7);
xlength +=clrbits;
return(l);
}
/,v END UPDATE_DCMPRS_BLAKMK() */

/* Even number of bytes only. */
/* If the line length is odd do */

static unsigned bytelinelngth; /* not process the last byte. */

/A======================== init_dcmprsbfr =========================:v/

init_dcmprsbfr(dcmprsbfrptr,sizexbits)
unsigned char *dcmprsbfrptr;
int sizexbits;

www.manaraa.com

301

{
linestart=currentbyteptr=dcmprsbfrptr;
bytelinelngth= ((((xsize=sizexbits)/8) /2)*2);
xlength=0;
dbitsremain=8;
}
/,v END INIT_DCMPRSBFR() — -V

I* swap every pair of bytes in every word of the current line. */
/,•:===,•t/

adjst_line()
{
swapbytsClinestart,linestart,bytelineIngth);
}
/,v END ADJST_LINE() '••/
/" END dupdtd.c */

13.8. File Initscrn.c

//include <stdio.h>
//include <memory.h>
//include <dos.h>
//include <io.h>
//include <fcntl.h>
//include <malloc.h>
//define LINT_ARGS
//define SCREENSIZE
//define HI_RES
//define TEXT„MODE

extern int

extern char

16384
6
3

/* window coordinates.
xl,yl,x2,y2;

/figure input file,
datafile[];

=•'/

it ======================== INIT_SCREEN ========================

* init_screen(value) : Function to initialize the whole screen.
It takes its input interactively. If "value" is equal to one

* then the input file was entered at the command line.
it ===

init_screen(value)
int value;

V
'•7

{
char
int
char

char

screenbufr; / Temporary buffer. */
fhl,bytesread.modeval,loop=l;
flag.c;

/,v "src" is a far pointer '>/
far *src; /* initialized to "screenbufr". */

www.manaraa.com

302

if(value <= 1)
{

while(loop)
{

printfC"enter name of data file \n");
getsCdatafile);
printf("your data file is %s \n",datafile);
printf("Are the values entered correct ?\n");
printf("enter Y or N
flag=getchar();
whileC ((flag!='y')&&(flag!='n')))
{

flag=getchar();
printf("enter y or n ");
flag=getchar();

}
while((c=getchar()) !='\n')

if(flag=='y')
loop=0;

}
}
setscmode(HI_RES);

I* do the first bank (even) by */
I* allocating the half total '-/
/" size. '•/

screenbufr=malloc(SCREENSIZE/2);
fhl = 0pen(datafile,0_RD0NLY|0_5INARY);

/* read the first bank. */
bytesread=read(fhi,screenbufr,SCREENSIZE/2);
src=(char far *)(screenbufr+7);

/* The screen format has the first byte */
/* of the 1st bank at offset 8000 of the*/
/* screen segment. Move the data from */
/* the file to that segment. Note that */
/* in the screen segment the bytes */
/* starting at offset 8000 till (8192-7)*/
/* will be filled with whatever the file*/
/* has. This part is not from the */
/* physical screen.

movedata(FP_SEG(src),FP_0FF(srC),OxbSOO,0x0000,
(SCREENSIZE/2)-7);

bytesread=read(fhl,screenbufr,SCREENSIZE/2);
src=(char far *)(screenbufr);

/* The 1st seven bytes of the 2nd half */
/* of the file are a continuation of the*/
/* (192-7) bytes that BASIC took from */
/* the screen memory and dumped it to */
/* the file. So the second half of the */

www.manaraa.com

303

movedata(FP_SEG(src

close(fhl);
freeCscreenbufr);

* screen starts after 7 bytes of the
* 2nd part of the file. By copying the
* second half of the file into offset
* (0x2000-7) we will fill the 7 bytes
* at (0x2000-7) then the 2nd half of
* the screen will be copied to offset
* (0x2000). This fills the odd part of
* the screen. The remaining (192-7) of
* the file will fill offset
* (0x2000+8000) till offset
* (0x2000+8000+(192-7)).
,FP_OFF(src),OxbSOO,(0x2000-7),

SCREENSIZE/2);

END INIT_SCREEN

* Sets the screen to the desired video mode. V =,•:/
nt setscmode(mode)
nt mode;

/'•' set the video mode function.

{
union REGS inregs;
union REGS outregs;

int ret_code,int_no;

/* return the code and the »/
/" interrupt for function '•/
/* "gdosint". "/

/* "set video mode" BIOS */
/* function call. */

inregs.h.ah=0;
inregs.h.al=mode;
ret_code = int86(0xl0,&inregs,&outregs);

/* return the code to check for ''</
/* any errors. */

return(ret_code);
}
/it END SETSCMODE -
/,v END initscrn.c

-Vc/

* /

13.9. File Gttime.c

//include <dos.h>
//define LINT_ARGS
//define INT_TIME Oxla

www.manaraa.com

304

/,•:========================== GTTIME ===============================yc

/* It returns the current time, only the seconds and the hundredths*
/* of a second. The return value is the addition of the two, in *
/* hundredths of a second. *
/5V============== === ==== = = ======================= = = = ======= ==== ==== = 5'C

unsigned gttimeO

{
union REGS inregs;
union REGS outregs;
unsigned tc;

inregs.h.ah=0x2c;
intdosC&inregs,&outregs);
tc = (outregs.h.dl) + (100 * outregs.h.dh);
return(tc);
}
/,v END GTTIME () */
/•' END gttime.c */

13.10 File Print.c

//include <io.h>
//include <stdio.h>

/* Print the results to the output file. The data to be printed out*
/* are the compression time, the decompression time and the *
/* compression factor. *
/a===,V

print_results(thefile.xl,yl,x2,y2,cmprstime,dcmprstime,avgfactor)
char thef ile[41]•;
unsigned xl,yl,x2,y2;
unsigned cmprstime,dcmprstime;
float avgfactor;
{
FILE *outfile;

printf(" Compression factor is %f \n", avgfactor) ;
printf(
"Compression time is %u in l/lOO of a second \n", cmprstime);

printf(
"Decompression time is %u in 1/100 of a second \n", dcmprstime);

/* Send data to table.dat file. */
if((outfile = fopen("table.dat", "r")) == NULL)
{

/* Open the file for writing. */
/* Print the table heading too. */

outfile = fopen("table.dat", "w") ;

www.manaraa.com

305

fprintf(outfile,
"File name xl yl x2 y2 cmprs cmprs ");

fprintfCoutfile,"dcprs \n");
fprintf(outfile,

" fetor time ");
fprintf(outfile,"time \n");
fprintf(outfile,

" II).

fprintf (outf ile, " \n") ;
}

else
{ /'•' Appending. */
outfile = fopen("table.dat", "a") ;
}

/'•' Output formats. '•/
fprintf (outf ile, "%-20s %3u %3u %3u %3u 7.6.2f %4u %5u\n",

thefile, xl, yl, x2, y2, avgfactor, cmprstime, dcmprstime);
fclose(outfile);
}
/* END PRINT_RESULTS() */
f* END print.c */

13.11. File Geth.asm

NAME
TITLE

_TEXT
_TEXT
CONST
CONST
_BSS
_BSS
_DATA
_DATA
DGROUP

.DATA
EXTRN
MASK2

SEGMENT
ENDS
SEGMENT
ENDS
SEGMENT
ENDS
SEGMENT
ENDS
GROUP
ASSUME

GET
GET GRAPHIC SCREEN GETH

BYTE PUBLIC 'CODE'

WORD PUBLIC 'CONST'

WORD PUBLIC 'BSS'

WORD PUBLIC 'DATA'

CONST, _BSS, _DATA
CS: _TEXT, DS: DGROUP, SS: DGROUP, ES: DGROUP

GTSETMOD
_DATA ENDS
PUBLIC

BUFFER
YO
Y2

SEGMENT WORD PUBLIC 'DATA'
_CHKSTK:NEAR
DB OFFH
DB 080H,OCOH,OEOH,0 FOH,0 F8H,0 FCH,0 FEH
DB 0

_get,MASK2

EQU [BP+12]
EQU [BP+6]
EQU [BP+10]

INPUTS ;
POINTER TO MEMORY BUFFER.
Y OF UPPER LEFT CORNER.
Y OF LOWER RIGHT CORNER.

www.manaraa.com

306

INXO EQU [BP+4]
INX2 EQU [BP+8]

XO EQU [BP-2]

SORC_INC EQU [BP-4]

S0RC_INDX2 EQU [BP-6]

DEST_INDX2 EQU [BP-8]
SHFT_RGT EQU [BP-IQ]
LINE_CNTR EQU [BP-12]
PXLENGTH EQU [BP-14]

ODDORG = 02000H

WORK VARIABLES :
X OF THE BYTE IN WHICH IS
THE UPPER LEFT CORNER OF
THE BLOCK
0 <= XO <= 79 BYTES.

SOURCE INCREMENT AFTER
EACH LINE MOVE. DEST_INC =
DX, IT ISN'T DEFINED HERE
BUT WE NEED IT TO SKIP
LINES OF THE OTHER BANK.
SOURCE (SCREEN) OFFSET
OF THE FIRST BYTE.
DESTINATION (BUFFER) OFFSET
OF THE FIRST BYTE IN THE
2ND BANK. SEE FINDPARAM
NO. OF LINES IN EACH BANK.

_BSS SEGMENT word public 'BSS'
EVEN

; "LAST_MASK" IS A VARIABLE TO BE
; INITIALIZED FROM THE VALUES IN
; "MASKl". "LAST_MASK" IS USED IN
; "BLOKX" AND "XBLOK". IT IS OF BYTE
; SIZE. IN FUNCTION PUT() "BLOKX"
; WILL HAVE "RIGHT_MASK" OF SIZE
; BYTE AND "XBLOK" WILL HAVE
; "LAST_MASK" OF SIZE WORD, SO IT IS

LAST_MASK DB ? ; DIFFERENT FROM THIS "LAST_MASK".
EVEN

LTl DB ?
RTl DB ?
BITl DW ?
_BSS ENDS

GET PROC NEAR
PUSH BP
MOV BP.SP
MOV AX,14
CALL chkstk
PUSH DI
PUSH SI
PUSH ES
PUSH DS
PUSH DX
PUSH CX

www.manaraa.com

307

PUSH BX
PUSH AX

GET_SMODE:
MOV
INT
CMP
JNE
MOV
MOV
MOV
JMP

HIGH_RES:
CMP
JNE
MOV
MOV
MOV
JMP

NOT_GRAPH:
JMP GT_DONE

FIND_PARAMS :
CALL FINDPARAM

COMMENT A
FIND_PARAMS WILL RETURN "DX = XLENGTH" (CASEL AND CASE3_B) OR
"XLENGTH-1" (FOR CASE 2 AND CASE3_A) WHERE "XLENGTH"= NO. OF BYTES
NEEDED TO STORE EACH LINE.
BX = COUNTER FOR Y LINES= NO. OF LINES IN THE FIRST BANK.
CX = KIND OF BLOCK.

AH, 15
16
AL,4
HIGH_RES
RT1,2
LT1,1
WORD PTR BIT1,3
FIND_PARAMS

AL,6
NOT_GRAPH
RTL ,3
WORD PTR BIT1,7
LTL ,0
FIND_PARAMS

INIT_BUFFER:
MOV
MOV
MOV

MOV
STOSW
MOV
SUB
INC

STOSW
MOVE_SETUP:

MOV
SUB
MOV
MOV
SHR

MOV
MOV

AX.DS
ES,AX
DI,BUFFER

AX,PXLENGTH

AX,Y2
AX,YD
AX

AX,80
AX,DX
SORC_INC,AX
AX.YO
AX,1

SI.DX
BL,80

LET ES = DS.

DI = ADDRESS OF THE 1ST BYTE IN
THE BUFFER. STORE "XLENGTH" IN THE
1ST WORD OF THE BUFFER.
"XLENGTH" IS IN PELS.

AX = Y2-Y0 + 1.
STORE "YLENGTH" IN THE 2ND WORD OF
THE BUFFER.

"SORC_INC" = 80 - SIZE.

AX = NUMBER OF THE 1ST LINE ON THE
SCREEN.
STORE "DX" IN "SI".

www.manaraa.com

308

MUL
MOV
ADD
MOV
AND
JZ

ADD

MOV
ORG_EVEN:

MOV
ADD
MOV
MOV
ADD
ADD
MOV

MOV
SUB
INC

MOV
SHR

MOV
AND
ADD

CMP
JBE

MOV
MOV
CLD

CHOOSE: JCXZ
CMP
JNZ

RIGH_TBAD:
CALL
JMP

LEFT_BAD:
CMP
JNZ
CALL
JMP

BL
DX.SI
AX,XO
BX,YO
BX,1
ORG_EVEN

AX.ODDORG

BX,80

; RESTORE "DX".
; AX = (YO/2) * 80 + XO.

; IF BL = 1 THEN YO IS ODD.
; IF BL = 0 THEN YO IS EVEN.
; YO IS ODD SO ADD THE ORIGIN OFFSET
; OF THE ODD BANK INTO THE SCREEN
; SEGMENT.

SI,AX
AX,BX
S0RC_INDX2,AX
AX,BUFFER
AX,4
AX,DX
DEST_INDX2,AX

AX,Y2
AX,YO
AX

BX,AX
AX,1

LINE_CNTR,AX
BX,1
BX.AX

BX,0
Y_ERROR

AX,0B800H
DS,AX

ALLJOK
CX,1
LEFT_BAD

SI = SOURCE INDEX OF THE FIRST BANK
IF YO IS ODD THEN S0RC_INDX2 =
SOURCE INDEXI + 80.
DEST_INDX1 WAS ALREADY INITIALIZED
TO 4 AFTER WE FILLED THE FIRST TWO
WORDS OF THE BUFFER.
DEST_INDX2 = BUFFER + 4 (DUE FIRST
TWO WORDS) + DX (DUE TO THE FIRST
LINE)

; BX = AX = Y2-Y0 + 1 = "YLENGTH"
; IN PELS.
; AX = NO. OF LINES IN THE SECOND
; BANK.
; SO STORE IT IN THE LINE COUNTER.
; IF "YLENGTH" IN PELS WAS ODD THEN
; BX = 1, HENCE ADD IT TO THE LINE
; COUNTER.
; STORE THE RESULT IN BX, WHICH WE
; USE AS Y LINES COUNTER.
; IF BX (i.e. NO. OF Y LINES IN THE
; FIRST BANK) <= 0 THEN Y VALUES
; WERE WRONG)
; LET DS = B800 = SCREEN SEGMENT.

; JUST TO MAKE SURE.

GTBLKX
GT_DONE

CX,2
X_ERROR
GTXBLKX
GT_DONE

www.manaraa.com

309

MOV
JMP

MOV
JMP
CALL

POP
POP
POP
POP
POP
POP
POP
POP
MOV
POP
RET
ENDP

FINDPARAM
MOV
MOV
MOV

SHR

MOV
MOV
SUB
INC

MOV
MOV
SHR
AND
JNZ

LEFT_OK:
AND

JNZ
SUB

RET
RIGHT_X:

X_ERROR:

Y_ERROR;

ALL_OK:
GT_DONE:

GET

AX,1
GT_DONE

AX,1
GT_DONE
GTBLK

AX
BX
CX
DX
DS
ES
SI
DI
SP,BP
BP

PROC NEAR
AX.INXO
BX,AX
CL.RTL

AX,CL

XO,AX
DX,INX2
DX,BX
DX

SI,DX
PXLENGTH.DX
DX.CL
BX.BITL
LEFT_X

SI.BITL

RIGHT_X
CX.CX

; STORE "XLEFT" (PELS) IN AX AND BX

BITS 0,1 SPECIFY ONE PEL OUT OF 4
GET RID OF THEM TO GET THE BYTE
COORDINATES
STORE THE RESULT IN XO. XO = THE
BYTE IN WHICH "XLEFT" (PELS) LIES
DX = "XRIGHT" (PELS).

SI = DX = XRIGHT - XLEFT + 1
XLENGTH (PELS).

DX = XLENGTH IN BYTES.

XLEFT IS AT THE BYTE BOUNDARY, SEE
IF XRIGHT IS AT THE BYTE BOUNDARY
TOO
IF XRIGHT IS NOT AT THE BYTE
BOUNDARY
GO TO RIGHT_X.
THE BLOCK IS AT THE BYTE BOUNDARY
50 CX = 0.
DX IS EXACT.

51 = NO. OF PELS IN THE LAST BYTE.

www.manaraa.com

310

MOV
SHL
MOV
MOV

INC
MOV
RET

LEFT_X:
MOV
INC
SUB
MOV
SHL

MOV

AND
JZ

INC

SET_LST_MSK:
MOV
SHL
MOV
MOV
MOV
RET

FINDPARAM

; SI = 1,2,3 (=0 IS A PREVIOUS CASE).
CL,LT1
SI,CL
AL,[SI+MASK2]
LAST_MASK,AL

; DX = NO. OF BYTES NEEDED IN
DX ; THE ARRAY.
CX,1

AX,BIT1
AL
AL,BL
CL,LT1
AL,CL

WE USE SHFT_RGT TO SHIFT THE WORD
IN WHICH A PEL (OTHER THAN ZERO)
IS THE START OF EACH LINE.

BYTE PTR SHFT_RGT,AL
THE SCREEN BYTE THAT WE WANT TO
TRANSFER TO THE BUFFER .
WE SHIFT THE WORD TILL THE DESIRED
BYTE FITS INTO AL.
FOR THE LAST BYTE WE NEED ONLY PART
OF THE BYTE SO WE ZERO THE EXTRA
PELS USING LAST_MASK.

SI,BIT1 ; IF SI = 0 WE HAVE NO EXTRA PELS,
SET_LST_MSK ; HENCE THE LAST BYTE IS COUNTED IN

DX.
DX ; INCREMENT DX TO TAKE THE LAST BYTE

OUT OF DX.
SINCE SI WAS CALCULATED FROM
XLENGTH IT INCORPORATED THE EFFECT
OF XO AND X2 IN THE LAST BYTE OF
THE BUFFER. LAST_MASK TAKES CARE OF
THE EXTRA PELS IN THE LAST BYTE.
THE DIFFERENCE BETWEEN "GET" AND
"PUT" FUNCTIONS IS THAT IN "PUT" WE
WANT TO PRESERVE THE OLD CONTENT OF
THE SCREEN (i.e. THE EXTRA PELS IN
THE LAST BYTE). BUT IN "GET" WE
ZERO THE EXTRA PELS BY LAST MASK.

CL.LTl
SI,CL
AL,MASK2 [SI]
LAST_MASK,AL
CX,2

SI = NO. OF PELS IN THE LAST BYTE.
SI = 0,1,2,3

ENDP

www.manaraa.com

311

GTBLK

LOOPL:

PROC
MOV

PUSH
LOOP2: MOV

MOV
SHR
REPZ
SHR
JNB
LODSB
STOSB

NEXT_LINE:
ADD
ADD
DEC
JNZ

NEXT_BANK:

MOV
POP
CMP

NEAR
CX,2

CX
CX,DX
AX.DX
CX,1
MOVSW
AX.l
NEXT LINE

SI,SORC_INC
DI,DX
BX
LOOP 2

BX,LINE_CNTR
CX
BX,0

JBE GTBLK DONE

MOV

MOV

CHANG_ORIGN;

XOR
LOOP

GTBLK_DONE:
GTBLK

SI,S0RC_INDX2

DI,DEST_INDX2

SI,02000H
LOOPl
RET
ENDP

INITIALIZE THE OUTSIDE COUNTER.

STORE THE OUTSIDE COUNTER.
INITIALIZE THE BYTES COUNTER.
STORE IT IN AX ALSO.
CX = CX/2 = NO. OF WORDS.
MOVE AS WORDS.
IF THE NO. OF BYTES WAS EVEN
THEN GO TO DO THE NEXT LINE.
NO. OF BYTES WAS ODD SO WE HAVE
TO MOVE THE LAST BYTE.

INCREMENT SI AND DI BY SORC_INC.

IF THEIR IS MORE LINES START AGAIN.

REINITIALIZE BX TO THE NO. OF Y
LINES IN THE SECOND BANK.
RESTORE THE ROUND COUNTER.
DOES THE SECOND BANK HAVE ANY
LINES ?
IF NOT, THEN THE BLOCK HAS ONLY
ONE Y LINE AND WE ARE DONE.
ELSE, THE 2ND BANK HAS LINES SO
CONTINUE.
SI POINTS TO THE OFFSET IN THE
SECOND BANK.
DI POINTS TO THE 2ND LINE IN THE
BUFFER

CHANGE FROM EVEN TO ODD BANK
OR VICE VERSA.

GTBLKX

LOOP IX:

L00P2X:

PROC
MOV

PUSH
MOV
DEC
MOV
SHR
REPZ
SHR
JNB

NEAR
CX,2

CX
CX,DX
CX
AX,CX
CX,1
MOVSW
AX,1
ADJUST LAST

DX DID NOT INCLUDE THE LAST BYTE
SO DO THE LAST BYTE OF ADJUST_LAST.
AX = CX = DX = XLENGTH.
CX = XLENGTH/2 (- O/l BYTE).

IF XLENGTH WAS EVEN THEN MOVING
DX BYTES IS DONE, GO TO ADJUST_LAST

www.manaraa.com

312

LODSB
STOSB

ADJUST_LAST:
LODSB
MOV
AND

STOSB
NEXT_LINEX;

ADD
ADD
DEC
JNZ

NEXT_BANKX:
MOV
POP
CMP
JBE
MOV
MOV

CHANG_ORGX:
XOR
LOOP

GTBLKX_DONE:
GTBLKX

GTXBLKX PROC

MOV
XLOOPl:

PUSH
MOV

XL00P2: MOV
DEC

JZ
XL00P3: LODSW

XCHG

SHR
STOSB

CL,ES:LAST_MASK
AL,CL

DX WAS ODD SO WE STILL HAVE TO MOVE
ONE MORE BYTE.

LOAD THE LAST BYTE FROM THE SCREEN.
SET TO 0 THE BITS WE DO NOT WANT.
COPY THE BITS, FILL FROM LEFT TO
RIGHT.
STORE THE RESULT IN THE LAST BYTE
OF THIS LINE.

SI,SORC_INC
DI.DX
BX
L00P2X

BX,LINE_CNTR
CX
BX,0
GTBLKX_DONE
SI,S0RC_INDX2
DI,DEST_INDX2

SI,02000H
LOOP IX
RET
ENDP

NEAR

CX,2

BEFORE INCREMENTING DL WE HAVE
DX = THE NO. OF BYTES EXCEPT
THE LAST BYTE 0 <= (DX = XLENGTH)
<= 79 SO DL = DX = XLENGTH - 1.
NOW WE HAVE DL = XLENGTH + 1,
DL = 1 IF ONLY THE LAST BYTE TO BE
PROCESSED. (1 <= DL <= 80.)

CX
CL,SHFT_RGT
CH,DL
CH

XLAST_BYTE

AH,AL

AX.CL

IF DX WAS ORIGINALLY 0 (i. e . WE
HAVE ONLY ONE BYTE, WHICH IS THE
LAST ONE) THEN WE HAVE TO MOVE ONLY
THIS LAST BYTE SO GO TO LAST_BYTE.

LOAD A WORD FROM THE SCREEN.

SHIFT IT TO THE RIGHT TILL THE
DESIRED BYTE FITS INTO AL.
STORE THIS BYTE INTO THE BUFFER.
SI WAS INCREMENTED BY 2 TO GET

www.manaraa.com

313

DEC
DEC
JNZ

XLAST_BYTE:
LODSW
XCHG
SHR
AND
STOSB
DEC

XNEXT_LINE:
ADD
ADD
DEC
JNZ

XNEXT_BANK;
MOV
POP
CMP
JBE
MOV
MOV

CHNG_XORG:
XOR
LOOP

GTXBLK_DONE:
GTXBLKX
_TEXT
END
/,v

SI
CH
XL00P3

AH.AL
AX.CL
AL,ES:LAST_MASK

SI

SI,SORC_INC
DI.DX
BX
XL00P2

BX,LINE_CNTR
CX
BX,0
GTXBLK_DONE
SI,S0RC_INDX2
DI,DEST_INDX2

SI,02000H
XLOOPl
RET
ENDP
ENDS

BYTES 3,4 (i.e. WE GOT 1,2).
SO DECREMENT SI
IF THE BLOCKS ARE DONE THEN END
THE LOOP, IF NOT LOOP AGAIN.

END geth.asm

13.12. File Puth.asm

PUBLIC MASK1,_PUT,FIND_PARAMS_P
DGROUP GROUP _BSS,_DATA

ASSUME DS:DGROUP
EXTRN CHKSTK:NEAR
_DATA SEGMENT word public
MASKl DB ?

DB
EVEN

MASK3 DW
DW
DW
DW
DW
DW
DW

'DATA'

07FH,03FH,01FH,OOFH,007H,003H,001H

07F80H,0FFBFH,0FF9FH,0FF8FH,0FF87H,0FF83H
OFF81H,OFF80H,03FCOH,OFFDFH,OFFCFH,OFFC7H
0FFC3H,OFFClH,0FFC0H,O7FC0H,01FE0H,0FFEFH
0FFE7H,0FFE3H,OFFEIH,OFFEOH,07FE0H,03FE0H
00FF0H,0FFF7H,0FFF3H,0FFF1H,0FFF0H,07FF0H
03FF0H,01FFOH,007F8H,0 FFFBH,0FFF9H,0FFF8H
07 FF8H,03FF8H,01FF8H,00FF8H,003FCH,OFFFDH

www.manaraa.com

314

DW
DW
DW
EVEN

PTMODSET DB
DATA ENDS

OFFFCH,07FFCH,03FFCH,OlFFCH,OOFFCH,007FCH
001FEH,OFFFEH,07 FFEH,03FFEH,01FFEH,OOFFEH
007FEH,003FEH

_BSS SEGMENT
EVEN

word public 'ESS'

DW ?

LAST_MASK
DW 7

RIGHT_MASK
DB 7

LT2 DB 1
LT3 DB 7
BITl DW 7
RTl DB ?
ADJSTl DB 7
LT4 DB 7
_BSS ENDS

IXO EQU [BP+4]
YO EQU [BP+6]
BUFFER EQU [BP+8]
DEST_INC EQU [BP-2]
S0RC_INDX2 EQU [BP-4]
DEST_INDX2 EQU [BP-6]
LINE_CNTR_P EQU [BP-8]
SHFT_LFT EQU [BP-IO]
BANK EQU [BP-12]
XO EQU [BP-14]

STRNG_MASK AND LAST_MASK ARE
INITIALIZED IN "FINDPARAMS"
FROM THE VALUES IN MASK3
RESPECTIVELY.
THEY ARE USED IN THE XBLOCK CASE.
TO BE INITIALIZED IN
"FINDPARAM", FOR THE CASE OF
"BLOCKX", FROM VALUES IN "MASKl".

BANKS COUNTER.

TEXT

_PUT

ODDORG=02000H
SEGMENT BYTE PUBLIC 'CODE'
ASSUME CS:_TEXT
PROC NEAR
PUSH BP
MOV BP.SP
MOV AX,14
CALL chkstk
PUSH DI
PUSH SI
PUSH ES
PUSH DS
PUSH AX

www.manaraa.com

315

PUSH BX
PUSH CX
PUSH DX

GETSC_MODE:
MOV AH, 15
INT 16
CMP AL,4
JNE HIGH_RES_P
MOV RT1,2
MOV LT2,1
MOV LT3,5
MOV BIT1,3
MOV ADJSTl,16
MOV LT4,2
JMP FIND_PARAMS_P

HIGH_RES_P:
CMP AL,6
JNE NOT_GRAPH_P
MOV RT1,3
MOV LT2,0
MOV LT3,4
MOV BIT1,7
MOV ADJSTl,0
MOV LTA,1
JMP FIND_PARAMS_P

NOT_GRAPH_P:
JMP PUT_DONE

FIND_PARAMS_P:
CALL FINDPARAM_P

MOVE_SETUP_P:
MOV AX,80
SUB AX,DX
MOV DEST_INC,AX
MOV AX,YO
SHR AX,1
MOV BL,80
MOV DI,DX
MUL BL
MOV DX,DI
ADD AX,XO
MOV BX,YO
AND BX,1
JZ ORG_EVEN_P
ADD AX.ODDORG
MOV BX,80

ORG_EVEN_P: MOV DI.AX
ADD AX.BX
MOV DEST_INDX2,AX
MOV AX,SI
ADD AX,DX

DEST_INC = 80-SIZE (= SCREEN_INC.)

BX = 0 OR 80.

www.manaraa.com

316

MOV
MOV
MOV
SHR
MOV
AND
ADD

CMP
JBE
MOV
MOV
MOV

CHOOSE_P:
JCXZ
CMP
JNZ

G_RIGHT_BAD_P;
CALL
JMP

G_LEFT_BAD_P:
CMP
JNZ
CALL
JMP

X_ERR0R_P:
JMP

Y_ERR0R_P:
JMP

G_ALL_OK_P:
CALL

PUT_D0NE:
POP
POP
POP
POP
POP
POP
POP
POP
MOV
POP
RET

_PUT ENDP

S0RC_INDX2,AX
AX,LINE_CNTR_P
BX,AX
AX,1
LINE_CNTR_P,AX
BX,1
BX,AX

BX,0
Y_ERROR_P
BYTE PTE BANK,2
AX,OB800H
ES,AX

G_ALL_OK_P
CX,1
G_LEFT_BAD_P

PUTBLKX
PUT_D0NE

CX,2
X_ERROR_P
PUTXBLKX
PUT_D0NE

PUT_DONE

PUT_D0NE

PUTBLK

DX
CX
BX
AX
DS
ES
SI
DI
SP.BP
BP

AX = NO. OF Y LINES IN THE SECOND
BANK. STORE IT IN THE LINE COUNTER.
IF "YLENGTH" WAS ODD THEN BX = 1,
HENCE THE FIRST BANK HAS ONE MORE
LINE THAN THE SECOND.

INITIALIZE THE BANKS COUNTER.

FINDPARAM_P PROC NEAR
MOV SI,BUFFER
LODSW
MOV DI.AX

SI POINTS TO THE BUFFER.

DI HERE IS USED AS A GENERAL
REGISTER. LET DI="XLENGTH" (PELS),

www.manaraa.com

317

LODSW

MOV LINE_CNTRJ
MOV DX,DI
MOV CL,RT1

SHR DX,CL
MOV AX,IX0
SHR AX,CL
MOV X0,AX
MOV BX,IX0
AND BX,BIT1

JNZ LEFT_BAD_P

AND DI,BIT1
JNZ RIGHTX_P
SUB CX,CX
RET

RIGHTX P;
MOV
SHL
MOV

MOV
INC
MOV
RET

LEFT_BAD_P:

MOV
INC
SUB
MOV
SHL
MOV
AND
JZ

CL,LT2
DI,CL
AL.MASKl [DI]

RIGHT_MASK,AL
DX
CX,1

AX.BITl
AL
AL.BL
CL,LT2
AL,CL
SHFT_LFT,AL
DI.BITl
SET LST MSKP

LET "LINE_CNTR" HOLD THE TOTAL NO.
OF Y LINES, i.e. "YLENGTH".
DX = "XLENGTH" (PELS).

LAST TWO BITS SPECIFY THE EXTRA
PELS. GET RID OF THEM.
DX = "XLENGTH" (-1 IF WE HAD
EXTRA PELS.)

BX PELS OF XO (i.e. BX = 0,1,2,3.)
IF THE BLOCK DID NOT START AT PEL 0
(i.e. WITHIN BYTE) GO TO LEFT_BAD_P
DI = NO. OF EXTRA PELS
(0,1,2 OR 3 PELS.)
EXTRA PELS ? IF SO, GO TO RIGHTX_P.
NO EXTRA PELS (DI=0.)

NOTE THAT RIGHT_MASK IS A BYTE, BUT
LAST_MASK IS A WORD (THIS
LAST_MASK DIFFERS FROM THE ONE USED
IN "GET" FUNCTION.)

SHFT_LEFT SHIFTS A BYTE FROM THE
BUFFER IN AX TILL IT STARTS AT THE
PEL WERE XO (OR THE BLOCK)
STARTS. STRNG_MASK WILL ZERO THE
BITS OF A COPY OF THE SCREEN
CORRESPONDING TO THIS BYTE.
"ORING" AX AND THE MASKED WORD
GIVES US THE CORRECT WORD TO
PUT ON THE SCREEN.

www.manaraa.com

318

INC
SET_LST_MSK_P:

DEC
MOV
SHL

ADD
MOV
SHL
MOV

MOV
MOV
MOV
MOV

END_FIND_P:
FINDPARAM_P

PUTBLK
LOOPl:
L00P2_P: MOV

MOV
SHR
REPZ
SHR
JNB
LODSB
STOSB

NEXT_LINE_P:
ADD
ADD
DEC
JNZ

NEXT_BANK_P:
MOV
CMP
JZ
MOV
MOV

CHNG_ORG_P:
XOR
DEC
JNZ

PUTBLK_DONE:
PUTBLK

PUTBLKX
LOOP1X_P:

DX

BX
CL,LT3
BX.CL

BL.ADJSTl
CL,LT4
DI.CL
AX,MASKS[BX+DI]

LAST_MASK,AX
AX,MASK3 [BX]
STRNG_MASK,AX
CX,2
RET
ENDP

BX <= 7*16 =112 SO WE CAN USE BL
INSTEAD OF BX.

THE LAST_MASK HAS ZERO BITS
STARTING AT THE PEL OF XO
(DEFINED BY BX.) AND CONTINUES
FOR THE NO. OF EXTRA BITS
(DEFINED BY DI.)

PROC NEAR

CX,DX
AX.DX
CX,1
MOVSW
AX,1
NEXT_LINE_P

DI,DEST_INC
SI,DX
BX
L00P2_P

BX,LINE_CNTR_P
BX,0
PUTBLK_DONE
DI,DEST_INDX2
SI,S0RC_INDX2

DI,02000H
BYTE PTR BANK
LOOPl
RET
ENDP

PROC NEAR

www.manaraa.com

319

L00P2X_P:
MOV
DEC
JZ
MOV
SHR
REPZ
SHR
JNB
LODSB
STOSB

ADJST_LASTX_P:

LODSB
MOV
AND
OR
STOSB

NEXT_LINEX_P:
ADD
ADD
DEC
JNZ

NEXT_BANKX_P:
MOV
CMP
JZ
MOV
MOV

CHNG_ORGX_P:
XOR
DEC
JNZ

PUTBLKX_DONE:
PUTBLKX
PUTXBLKX

MOV
XL00P1_P:

MOV
PUSH
DEC

JZ
XL00P2_P;

CX,DX
CX
ADJST_LASTX_P
AX,CX
CX,1
MOVSW
AX,1
ADJST_LASTX_P

; WE DO NOT CHECK IF LAST BYTE IS
; FULL BECAUSE THAT CASE IS HANDLED
; IN "BLOCK" AND NOT "BLOCKX".

AH.ES:[DI]
AH,RIGHT_MASK
AL,AH

DI,DEST_INC
SI,DX
BX
L00P2X_P

BX,LINE_CNTR_P
BX,0
PUTBLKX_DONE
DI,DEST_INDX2
SI,S0RC_INDX2

DI,02000H
BYTE PTR BANK
L00P1X_P
RET
ENDP
PROC NEAR
CL,SHFT_LFT

WE DID NOT NEED THIS IN "BLOCKX"
BECAUSE REP_STRING WILL TAKE CARE
OF IT AS FOLLOWS : DX=0 SO "REPZ"
WILL NOT MOVE ANYTHING. SINCE ZERO
IS AN EVEN NUMBER THE PROGRAM WILL
JUMP TO THE NEXT LINE WITHOUT
MOVING AN EXTRA BYTE.

CH.DL
DX
CH

XLAST BYTE P

www.manaraa.com

320

XOR AH,AH
LODSB
SHL AX,CL
XCHG AH,AL
MOV DX,ES:[DI]
AND DX,STRNG_MASK
OR AX.DX
STOSW
DEC DI
DEC CH
JNZ XL00P2_P

XLAST_BYTE_P:
XOR AH,AH ; FILL AH WITH ZEROS.
LODSB ; AL = BYTE FROM THE BUFFER THAT NEED

; TO BE PUT ON THE SCREEN STARTING AT
; THE PEL XO.

SHL AX,CL ; THE SHIFT WILL PUT IT IN AX AT
XCHG AH,AL ; THE SAME PLACE. THE OTHER BITS IN

; AX WILL BE ZEROS.
MOV DX,ES;[DI]
AND DX,LAST_MASK ; DX = ZEROS IN THAT PART OF THE

; BYTE, OTHER BITS ARE SET TO ONES.
OR AX,DX ; AX = NEW SCREEN WORD. PUT IN

; PLACE WITHOUT CHANGING OTHER BITS.
STOSW ; PUT THE WORD ON THE SCREEN.
DEC DI ; ADJUST DI TO PUT THE NEXT BYTE.

; (SAY DO WORD 1+1/2 INSTEAD OF
; WORD 2.)

NEXT_XLINE_P:
ADD DI,DEST_INC
POP DX
ADD SI,DX
DEC BX
JNZ XL00P1_P

XNEXT_BANK_P:
MOV BX,LINE_CNTR_P
CMP BX,0
JZ PUTXBLK_DONE
MOV DI,DEST_INDX2
MOV SI,S0RC_INDX2

CHNG_XORG_P:
XOR DI,02000H
DEC BYTE PTR BANK
JNZ XL00P1_P

PUTXBLK_D0NE: RET
PUTXBLKX ENDP
_TEXT ENDS

END
/is END puth.asm '•'/

www.manaraa.com

321

13.13. File Swap.asm

; SWAP LOW AND HIGH BYTES IN EACH WORD
NAME SWAP
TITLE SWAP BYTES IN EACH WORD
DGROUP GROUP CONST, _BSS, _DATA

ASSUME CS; _TEXT, DS: DGROUP, SS: DGROUP, ES: DGROUP
PUBLIC _swapbyts
FROMADDRS EQU [BP+4] ; PARAMETERS PASSED.
TOADDRS EQU [BP+6]
WORDCONT EQU [BP+8]
_TEXT SEGMENT

_swapbyts PROC NEAR
PUSH BP ; SAVE REGISTERS.
MOV BP,SP
PUSH DI
PUSH SI

; PUT THE NUMBER OF WORDS TO BE
MOV CX,WORDCONT ; SWAPPED IN CX.
MOV SI,FROMADDRS ; SOURCE OPERAND IS ADDRESSED BY SI

; DESTINATION OPERAND IS
MOV DI,TOADDRS ; ADDRESSED BY DI.

; LOOP UNTIL THE NUMBER OF WORDS
LOOPl: ; IN CX BECOMES ZERO.

; TRANSFER A WORD FROM THE
; SOURCE [(Si)] TO AX, THEN

LODSW ; LET SI=SI+2.
XCHG AH,AL ; SWAP THE LOW AND HIGH BYTES

; TRANSFER A WORD OPERAND FROM
; AX TO DESTINATION (DI)

STOSW ; THEN LET DI=DI+2.

; FIRST LET CX=CX-1 THEN
LOOP LOOPl ; IF CX=0, EXIT LOOPl.
POP SI ; RESTORE THE REGISTERS.
POP DI
MOV SP,BP
POP BP
RET

_swapbyts ENDP
_TEXT ENDS
END
/•it END swap.asm

www.manaraa.com

322

13.14 File Mtchbts.asm

NAME
TITLE
DGROUP

_DATA
EXTRN
DATA

MTCHBITS
TO MATCH PASSED BITS TO A PATTERN IN APPROPRIATE ARRAYS.
GROUP CONST, _BSS, _DATA
ASSUME CS: _TEXT, DS: DGROUP, SS: DGROUP, ES: DGROUP
SEGMENT WORD PUBLIC 'DATA'
_LEFTBITSWORD: WORD
ENDS

PASSED PARAMETERS.
PUBLIC _match_ .all_bits
WORD EQU [BP+4]
COLORARRAY EQU [BP+6]
CODEARRAY EQU [BP+8]
GROUPARRAY EQU [BP+10]
CLRBITSPTR EQU [BP+12]
CODEBITSPTR EQU [BP+14]
GROUPCOUNT EQU [BP-2]

_match_all_bits
PUSH
MOV
PUSH
PUSH
PUSH

- PUSH
POP
MOV
MOV
MOV

LOOPl:

ADD

MOV

SHL
MOV

AND
ADD

PROG
BP
BP,SP
DI
SI
ES
DS
ES
DI,COLORARRAY
BX,GROUPARRAY
DX,[BX]

BX,2

SI,[BX]

NEAR

SI,1
AX,WORD

AX,_LEFTBITSWORD[
BX,2

PUT THE NUMBER OF GROUPS IN THE
COUNTER DX.

ADVANCE INDEX (BX) TO THE FIRST
ELEMENT OF PAIRS IN "GROUPARRAY".
GET THE LENGTH IN BITS OF THE
CODES TO LOOK FOR.
MULTIPLY BY 2 TO GET THE INDEX
OF THE MASK IN BYTES SINCE
MASK IS AN ARRAY OF UNSIGNED
NUMBERS (i.e. WORDS)
COPY THE WORD WE ARE LOOKING FOR.
"LEFTBITSWORD" IS THE MASK. IF
SI IS EQUAL TO 3 FOR EXAMPLE
THEN ONLY THE 3 MOST LEFT
BITS ARE NOT MASKED WHILE THE
REMAINING BITS ARE SET TO ZEROS.
SI]
ADVANCE "GROUPARRAY" INDEX TO
GET THE SECOND ELEMENT OF THE
CURRENT PAIR WHICH TELLS THE NUMBER
OF CODES IN "COLORARRAY" THAT

www.manaraa.com

323

NO MATCH;

MOV CX,[BX]

REPNE SCASW

JNE NO MATCH

MOV AX,[BX-2]
MOV SI.CODEBITSPTR
MOV [SI],AX

SUB DI.COLORARRAY
MOV BX.CODEARRAY
MOV AX,[BX+DI-2]
MOV SI.CLRBITSPTR
MOV [SI],AX
MOV AX,1
JMP DONE

DEC DX

LOOPl
AX,AX
ES
SI
DI
SP,
BP

BP

HAS THE SAME NUMBER OF BITS.
KEEP SCANNING FOR A MATCH
WITH THE WORD IN AX UNTIL MATCHED
OR CX IS DECREMENTED TO ZERO.
z=0 MEANS THAT CX WAS
DECREMENTED TO ZERO AND THUS
NO MATCH OCCURRED.
BY REACHING THIS POINT THE
z FLAG WAS NOT SET TO ZERO
AND THUS A MATCH OCCURRED.
SO THE LENGTH OF THE CODE IS
RETURNED IN THE WORD POINTED
TO BY "CODEBITSPTR".
TO GET THE INDEX OF THE MATCHED
PATTERN IN "COLORARRAY" SUBTRACT
THE CURRENT POSITION FROM THE BASE
OR THE HEAD OF THE ARRAY.
FIND THE CODE IN "CODEARRAY" OF
THE SAME INDEX IN "COLORARRAY".
THE RUN LENGTH IS RETURNED IN THE
WORD POINTED TO BY "CLRBITSPTR".
THE RETURNED VALUE OF FUNCTION = 1.

JNZ
SUB

DONE: POP
POP
POP
MOV
POP
RET

_match_all_bits ENDP
_TEXT ENDS
END
/,'c END mtchbts .asm

DECREMENT THE GROUPS COUNTER
IF THERE ARE MORE GROUPS
GO TO LOOPI TO PROCESS THEM.
RETURNED VALUE OF FUNCTION = 0.

www.manaraa.com

324

APPENDIX C. PROGRAM LISTINGS OF THE CODE OF THE

CCITT TWO DIMENSIONAL COMPRESSION TECHNIQUE

www.manaraa.com

325

The files in this listing make use of the files in the following
sections :

- Appendix B: 13.4. and 13.7. - 13.14.

14.1. File Main.c

* The heading and comments are the same
as those in file main.c appendix B section 13.1

*/

//include
//include
//include
//include
//include
//include
//define
//define
//define
//define
//define
//define
//define

void
unsigned
float
void

<stdio.h>
<memory.h>
<dos.h>
<io.h>
<fcntl.h>
<malloc.h>
LINT_ARGS
SCREENSIZE
XMAX
YMAX
HI_RES
TEXT_MODE
ulong

16384
640
200
6
3
unsigned long

get(int,int,int,int,char *);
cmprs_line(char ;
get_avgfactor();
print_results(char *, unsigned, unsigned, unsigned,

unsigned, unsigned, unsigned, float);

static

static
static
static

main(argc,argv)
int argc;
char *argv[];
{
unsigned

int
char
char
unsigned
char

xl,yl,x2,y2;
datafile[41];
serf ilebufr[4+(XMAX/8)'KYMAX)] ;
cmprsbufr[XMAX][(YMAX+32)/l6];
'•'uncmprsbufr ;

register

if(argc
{

unsigned
xsizeinbytes,xsize;
i.ysize;

< 6)

printfCenter xl yl x2 y2 \n");
scanf("%d %d %d %d",&xl,&yi,&x2,&y2);
while((getchar())!='\n')

www.manaraa.com

326

}
else
{

xl=atoi(argv[2]); yl=atoi(argv[3]);
x2=atoi(argv[4]); y2=atoi(argv[5]);

}
if(argc > 1)

strcpyC datafile, argvEl]);
I* Read the data from the input */

init_screen(argc); /* file and dump it to the */
!'•' screen. */

uncmprsbufr= serfilebufr;
uncmprsbufr+=4; /* Skip over "xsize" and "ysize"*/
get(xl ,yl ,x2,y2, (char '"Oscrf ilebufr) ;
for(i=0;i<=2000;i++) ; /* A delay loop. */
setscmode(TEXT_MODE);
ysize=y2-yl+l;
xsize=x2-xl+l;
xsizeinbytes= (xsize/8)+((xsize%8)>0) ;

/'• First two numbers in the */
''«(unsigned '"Oscrfilebufr=xsize; /"screenfilebufr" represent 'V

/'• the width and the height of */
/''• the block. *!

''Kunsigned *)(scrfilebufr+2)=ysize;
printf("starting to compress ");
init_cmprsdblk((unsigned ''Ocmprsbufr);
init_uncmprsdblk((serfilebufr+4),xsize,ysize);
init_line_parm(xsize);
cmprs_blk_2d();
memset((serfilebufr+4),'\0',16000);
printf(" starting to decompress \n");
init_dcmprsbfr((serfilebufr+4),xsize);
init_cmprs(cmprsbufr);
init_dcmprs_blk_2d(xsize,ysize,serfilebufr+4);
dcmprs_blk_2d();

/'(If no argument was entered 'V
if(argc < 2) /* at the command line then '«/
{ /* display the data to the

/screen. */
setscmode(HI_RES);
put(xl,yl,serfilebufr);
getchar();
setscmode(TEXT_MODE);

}
print_results(datafile, xl, yl, x2, y2, get_cmprstime(),

get_dcmprstime(), get_avgfactor());
}
/,v END MAIN 'V
I* END main.c 'V

www.manaraa.com

327

14.2. File Cmprs2d.c

/*
* Refer to file "cmprsln.c" in appendix B section 13.2
* for comments on functions and variables.
*/

^include
//include
//include
//include

//define
//define
//define
//define
//define
//define

unsigned
float
unsigned
unsigned
void
void
void
void

<stdio.h>
<v2tov3.h>
<malioc.h>
<memory.h>

"KFACTOR"
of lines

1 = maximum number */
coded in the 2-d */

code after coding in the 1-d.*/
KFACTOR 2
BLACKCHAR '0'
WHITECHAR '1'
BLACK 0
WHITE 1
switch_aO_al_colors {tmpcolorchar=aOcolorchar;\

aOcolorchar=alCOlorchar;\
alcolorchar=tmpcolorchar ;}

gttimeC);
get_avgfactor();
get_cmprs_reslt();
cmprs_line_ld();
set_cmprscontr_to_zero();
init_uncmprsdblk(char *, unsigned, unsigned);
update_cmprsdblk(unsigned,int);
updt_cmprsblk_code(unsigned,int);

static unsigned
static unsigned
static unsigned
static unsigned
static char
static unsigned long

•«uncmprsdwordptr ;
nmbrlines,xsize.xmaxplsl;
evenxsize.xsizeinbytes;
cmprstime;
"prvslinestart;
totalcmprsbits = 0;

î't ======================= CMPRS_BLK_2D ==========================

* This function compresses a block of the screen using MREAD
* standard. For complete description of the details of MREAD see
* section 4.3. Each line is assumed to be from pel 1 to pel
* "xsize". Pel 0 is an imaginary pel before the line. Pel
* "xmaxplsl" is an imaginary pel after the line.
* Black changing element means first black pel after a run of
* white pels.
* aO : The reference or starting changing element in the coding
* line. At the start of the coding line, aO is initialized

www.manaraa.com

328

to an imaginary black changing element at pel 0.
al : The next changing element to the right of aO on the coding

line. This has an opposite color of aO.
a2 ; The next changing element to the right of al on the coding

line.
bl : The next changing element on the reference line to the

right of aO and having the same color as al.
b2 : The next changing element on the reference line to the

right of bl.
If any of the coding elements al, a2, bl, b2 is not detected
at any time during the coding of the line, then it is set to
pel "xmaxplsl".

void cmprs_blk_2d()
*/

{
unsigned
char
char
char
register
unsigned
unsigned
unsigned
int
char

i,j; /" Loop counters.
*refrenceline;
'•code line;
"tmpptr;
unsigned aO,al;
bl,b2,k;
a2,a0al,ala2;
tstart.tend;
aOcolor,alcolor,tmpcolor;
aOcolorchar,alcolorchar,tmpcolorchar;

*/

tstart=gttime();
refrenceline=malloc(xsize+2);
codeline=malloc(xsize+2);

k=0;

refrenceline[0]=BLACKCHAR;

L++)

'• k should be set to zero *
* before we enter the loop »

and thus the first line
* (reference line) would "
* be One-Dimensionally coded. *

* This initialization is needed*
* so that the first search for "

bl works correctly. "
* Keep looping until all the •<
* lines in the page or the -
* screen are processed. *
* Is this line to be 2-d coded?*
* Line should be 2-d coded. *

for(i=l; i <= nmbrlines;
{
if(k != 0)

{
set_cmprscontr_to_zero();
swapbits_to_string(uncmprsdwordptr,codeline+1,xsize);
swapbits_to_string(prvslinestart,refrenceline+1,xsize);
aO = 0;
aOcolorchar=BLACKCHAR;

/I'c Loop while not end of line

www.manaraa.com

329

while(aO < xmaxplsl)
{ I* Detect "alcolor". */
alcolorchar = (aOcolorchar == WHITECHAR ?

BLACKCHAR : WHITECHAR);
/* Detect al. */
I* To detect al, a2, bl, and b2 */
/* we equate the number of bytes*/
/''< we search to ("xmaxplsl" - ='«/
I* index of the 1st byte to be */
/* searched.) This is equivalent*/
/* to [(xsize-index of 1st byte */
/* to be searched) + 1]. */

if (tmpptr=memchr(&icodeline[a0+l],alcolorchar,
xmaxplsl-aO))

al=tmpptr-codeline;
else

al=xmaxplsl;
whileCl)

{
/* Detect bl. */

if(refrenceline[aO] == alcolorchar)
{

/* Pel refrencelinetaO] has */
/* the same color as al then pel*/
/* refrenceline[aO+l] can't */
/* be a changing element of */
/* "alcolor". Hence : */
/* (1) search for the first */
/* changing element of "aOcolor"*/

if (tmpptr=memchr(&irefrenceline[aO+l],
aOcolorchar,xmaxpls 1-aO))

{
/* (2) search for the first */
/* changing element of "alcolor"*/
/* after "tmpptr". */

bl=tmpptr-refrenceline;
if(tmpptr=memchr(tmpptr+l,alcolorchar,

xmaxpls1-bl))
bl=tmpptr-refrenceline;

else
bl=xmaxplsl ;

}
else

bl=xraaxplsl;
}

else
{

/* Pel refrenceline[aO] has the */
/* same color as aO, then pel */
/* refrenceline[aO+1] can be a */

www.manaraa.com

330

I* changing element of "alcolor"*/
I* Hence find it. */

f(tmpptr=memchr(&refrenceline[aO+l],
alcolorchar,xmaxplsl-aO))

bl=tmpptr-refrenceline;
Ise

bl=xmaxplsl;

I* Detect b2. */
f(tmpptr=memchr(&refrenceline[bl+l],

aOcolorchar ,xtnaxplsl-bl))
b2=tmpptr-refrenceline;

Ise
b2=xmaxplsl;

I* If b2 < al then we have to
/* do pass mode coding. Thus
/'•' this mode is identified when
I* the position of b2 lies to
/'•' the left of al. The purpose
/* of this mode is to identify
I* the white or black runs on
/* the reference line which are

not adjacent to the corres-
I* ponding white or black runs
/* on the coding line.

f(b2 < al)
{ updt_cmprsblk_code(0xl,4); aO=b2;}

Ise
{
if(abs((int)al-(int)bl)<=3)

{ /* Vertical mode coding : when '•/
/* this mode is identified, the "••/
/* position of al is coded '•'!
I* relative to the the position */
/* of bl. The relative distance *!
/* albl can take one of seven 'V
/* values each of which is »/
/* represented by a separate »/
/* codeword. */

switchC(int)(al-bl))
{

/'•' al to the left of b2 by '>/
/''f 3 bits. "/

case -3:{
updt_cinprsblk_code(0x2,7) ;
break;
}

/* al to the left of b2 by ••/
/* 2 bits. */

case -2:{

www.manaraa.com

331

updt_cmprsblk_code(0x2,6);
break;
}

/* al to the left of '•/
I* b2 by 1 bits. */

case -1:{
updt_cmprsblk_code(0x2,3) ;
break;
}

/* al just under bl. */
case 0:{

updt_cmprsblk_code(Oxl,1);
break;
}

/" al to the right of '•/
/b2 by 1 bit. */

case 1:{
updt_cmprsblk_code(0x3,3);
break;
}

I* al to the right of =•/
/* b2 by 2 bits. */

case 2:{
updt_cmprsblk_code(0x3,6);
break;
}

I* al to the right of -/
/" b2 by 3 bits. */

case 3:{
updt_cmprsblk_code(0x3,7);
break;
}

default:printf(
"error in vertical \n");

}
aO=al;

switch_aO_al_colors / * MACRO '•'!
}

else
{ /'•> Horizontal Mode Coding : »/

/* If the vertical mode coding »/
/* can't be used to code the :'V
I* position of al, then its
/* position must be coded by */
/* the horizontal mode coding. '•/
/* Detect a2. */

if(tmpptr=memchr(&codeline[al+l],
aOcolorchar,xmaxplsl-al))

a2=tmpptr-codeline;
else

www.manaraa.com

332

a2=xmaxplsl;
aOal=al-aO;

/'•c If the horizontal mode coding*/
/Vc is used to code the first */
/,V element on the coding line, */
/:'(then the value of aOal is */
/ * replaced by aOal-1 to ensure */
/'•< that the correct run-length */

value is transmitted, because */
/'V the first element was not */
/'•' real but an imaginary black */
/ ' • changing element. */

if(aO == 0)
aOal -=1;
I* Flag "codeword" of the '•/
I* horizontal mode = '0001'. */

updt_cmprsblk_code(Oxl,3);
update_cmprsdblk(aOal,

aOcolorchar-BLACKCHAR);
update_cmprsdblk(a2-al,

alcolorchar-BLACKCHAR);
a0=a2;

}
break;

}
}
k— ;
totalcmprsbits+=get_cmprs_reslt();
uncmprsdwordptr = (unsigned *)

((char ''Ouncmprsdwordptr + xsizeinbytes) ;

else
{ /* k = 0, so the current line */

I* should be coded by the '•'!
I* One-Dimensional coding "/
/* algorithm. */

totalcmprsbits+=cmprs_line_ld();
k = KFACTOR-1;

}
/'•« Update "prvslinestart" to ••/
/* point to the start of the '•'/
/* next line. */

prvslinestart += xsizeinbytes ;
}
free(refrenceline);
free(codeline);
tend=gttime();
if(tend>tstart)

cmprstime=tend-tstart;

www.manaraa.com

333

else

}
/,v -

cmprstime=(6000-tstart)+tend;

END CMPRS_2D() */

/)V ======A============= init_uncmprsdblk

!* initialize local variables.
/* ================

//include
//define
//define
//define
//define

unsigned
void
void
void
void
void

<dos.h>
LINT_ARGS
BLACKBIT
WHITEBIT
ENDBITS

0
1
2

static unsigned

get_cmprs_reslt();
init_lastbits(unsigned) ;
init_cinprsdblk(unsigned *) ;
update_cmpr'sdblk(unsigned, int) ;
cmprs_lastbits(unsigned,unsigned,int);
swapbytsCunsigned unsigned *,unsigned);

lastbits,nmbrwords;

*/
void init_uncmprsdblk(blockstart.xsizein,ysizein)
char *biockstart;
unsigned ysizein,xsizein;

{
xsize=xsizein;
uncmprsdwordptr=(unsigned *) blockstart;
xsizeinbytes=(xsize/8)+((xsize%8)>0);
prvslinestart=blockstart - xsizeinbytes ;
nmbrlines=ysizein;
xmaxplsl=xsize+l;

/* The part of the line that ''•/
/'•' corresponds to words given */

evenxsize=(((xsize/8) /2) *2); /- in bytes. */
}
/it END init_uncmprsdblk */

========= cmprs_line() ==

cmprs_line (oldlineptr)
'•'oldlineptr ;

/*==========:

unsigned
char

{
extern unsigned *uncmprsdwordptr;
unsigned *currentword;
int wordcount;
int color,lastcolor,bitcolor;
unsigned bitcontr=0;

=Vc/

www.manaraa.com

334

register unsigned word.bitpos;

/* Initialize the variables. '•/ wordcount=nmbrwords;
set_cmprscontr_to_zero();
swapbytsC uncmprsdwordptr, uncmprsdwordptr, nmbrwords);
word=''«uncmpr sdwordptr ;
if ((word)&0x8000) /* Is bit 16 in "word" white ? '•/

{
update_cmprsdblk(0,BLACKBIT);
color=WHITEBIT;
}

/* Yes, bit 16 was white.

else
{
color=BLACKBIT;

word=~word;
}

bitpos=16;
while(color<ENDBITS)

{

/'• Bit 16 was black.

/* Negate the word so we can
/* check for the new color.

I* We assume xsize >= 16, to
/* take care of xsize < 16. We
/* have to modify the code here.*/

'•••I

V

/* While not end of line.

/* While color is the same and
I* we are still inside the
/'« current word.

while((word&0x8000) && (bitpos > 0))
{
bitcontr++;
bitpos — ; /* Bit position in a word.
word=word«l; /* Get the next bit in bit 16.
}

if(bitpos > 0) /* Still inside current word ?
{
update_cmprsdblk(bitcontr.color);
word=~word;

1;

*/

color=(color) ? 0
bitcontr=0;
}

else
/* Done with all bits in
/* current word.

/* Start again with bit 16

{
bitpos=16;
uncmprsdwordptr++; /* of the next word.

/'•' If the color is black then *
/* negate the word pointed to by''
/* "uncmprsdwordptr" to check *
/'•' for the color later. *

word=(color) ? ^uncmprsdwordptr :
~('"'uncmprsdwordptr) ;

www.manaraa.com

335

/* Test for the end of the line ''</
/* marker. */

if(—wordcount == 0)
{ /'•' Save the last color in this '•/

/* line. '•</
lastcolor=color;

/'•' Signal eol to the outer loop.*/
color=ENDBITS;
}

}
}

if(lastbits == 0) /* Does the line fit in the word*/
/* boundary ? */

update_cmprsdblk(bitcontr,lastcolor);
else

cmprs_lastbits(*uncmprsdwordptr,bitcontr,lastcolor);
if(color>ENDBITS)

printfC ****** error in color, color=%d /n",color);
/* Return the number of bits */

return(get_cmprs_reslt()); /* in that compressed line. */
}
/* END cmprs_line() */

/)'c====================== init_line_param() ========================5't/

/* Initialize some static variables to the appropriate values. */
/*==*/

void init_line_parm(xsize)
unsigned xsize;

{
nmbrwords=xs ize/16;
lastbits=xsize & OxOOOf; /* Let lastbits = xsize % 16. */
init_lastbits(lastbits);
}
/* END init_line_param() */

/* ===================== get_cmprstime() ========================== */

unsigned get_cmprstime()
{
return (cmprstime) ;
}
/* END get_cmprstime() */

/* ===================== get_avgfactor() ========================= */

float get_avgfactor()
{
return ((float) ((float) xsize* (float) nmbrlines/totalcmprsbits));
}
/* END get_avgfactor() */
/* END cmprsZd.c */

www.manaraa.com

336

14.3. File Cupdt.c

/,v
;•:==

A STATIC VARIABLES :
*

* bitsleft : Number of bits still vacant in "cmprsword", it
* starts with 16 bits left in the word.
* cmprscounter : Count number of the bits in the compressed block
* which is filled from left to right.
* cmprsdwordptr: Pointer to the current word position in the
* compressed block.
JV==^

*/

static int bitsleft;
static unsigned cmprscounter;
static unsigned '''cmprsdwordptr;

/ A================:====== UPDATE_CMPRSDBLK() =======================5V

/* This is the function update_cmprsdblk(bitcounter, color), *
/* where "bitcounter" is the number of consecutive bits of the *
/* current color. '•
/ 5'c =S = = = = = = = =! = = = = = = = = = = = = = = = = =5 = = = = = = = = = = yt

void update_cmprsdblk(uncmprsdbitscont.color)
unsigned uncmprsdbitscont;
register int color;

struct FAXDATA
{

} ;

/* Code for a sequence of bits '''/
/'•• of type color and the run- */
/* length = the no. of the -/
/* uncompressed bits. */

unsigned bits;
/* Length of the code in the */
/* bits. */

int length;

/* Initialize FAX. FAX[0][] == */
/it black data , FAX[1][] == */
/* white data. */

static struct FAXDATA FAX[2][74]={ {
0x35,8, 0x7,6, 0x7,4, 0x8,4, 0xb,4, 0xc,4, 0xe,4,
0xf,4, 0x13,5, 0x14,5, 0x7,5, 0x8,5, 0x8,6, 0x3,6,
0x34,6, 0x35,6, 0x2a,6, 0x2b,6, 0x27,7, Oxc,7, 0x8,7,

www.manaraa.com

337

0x17,7, 0x3,7, 0x4,7, 0x28,7, 0x2b,7, 0x13,7, 0x24,7,
0x18,7, 0x2,8, 0x3,8, 0xla,8, 0xlb,8, 0x12,8, 0x13,8,
0x14,8, 0x15,8, 0x16,8, 0x17,8, 0x28,8, 0x29,8, 0x2a,8,
0x2b,8, 0x2c,8, Ox2d,8, 0x4,8, 0x5,8, Oxa,8, 0xb,8,
0x52,8, 0x53,8, 0x54,8, 0x55,8, 0x24,8, 0x25,8, 0x58,8,
0x59,8, 0x5a,8, 0x5b,8, 0x4a,8, 0x4b,8, 0x32,8, 0x33,8,
0x34,8, 0x1b,5, 0x12,5, 0x17,6, 0x37,7, 0x36,8, 0x37,8,
0x64,8, 0x65,8, 0x68,8, 0x67,8} , {

0x37,10, 0x2,3, 0x3,2, 0x2,2, 0x3,3, 0x3,4,
0x2,4, 0x3,5, 0x5,6, 0x4,6, 0x4,7, 0x5,7,
0x7,7, 0x4,8, 0x7,8, 0x18,9, 0x17,10, 0x18,10,
0x8,10, 0x67,11, 0x68,11, 0x6c,ll, 0x37,11, 0x28,11,
0x17,11, 0x18,11, 0xca,12, 0xcb,12, 0xcc,12, 0xcd,12,
0x68,12, 0x69,12, 0x6a,12, 0x6b,12, 0xd2,12, 0xd3,12,
0xd4,12, 0xd5,12, 0xd6,12, 0xd7,12, 0x6c,12, 0x6d,12,
0xda,12, 0xdb,12, 0x54,12, 0x55,12, 0x56,12, 0x57,12,
0x64,12, 0x65,12, 0x52,12, 0x53,12, 0x24,12, 0x37,12,
0x38,12, 0x27,12, 0x28,12, 0x58,12, 0x59,12, 0x2b,12,
0x2c,12, 0x5a,12, 0x66,12, 0x67,12, 0xf,10, 0xc8,12,
0xc9,12, 0x5b,12, 0x33,12, 0x34,12, 0x35,12, 0x6c,13,
0x6d,13, 0x4a,13} } ;

register unsigned code;
int length;
unsigned multiple;
unsigned bitcont;

static unsigned maskl=0x003f;

/* Code of the run of the pels. »/
/* Length of the above code '•/
/* = "uncmprsdbitscont" / 64. */
/••' Local run-length. '•/

/* To get the least significant */
/* 6 bits. '••/

/* Is uncmprsdbitscont a */
/* multiple of 64 ? */

if ((multiple=(uncmprsdbitscont»6))>0)
{

/* Compress the multiple of
bitcont=multiple+63; /'• 64 part.
code=FAX[color][bitcont].bits;
length=FAX[color][bitcont].length;
cmprscounter=cmprscounter+length;

/* Is old bitsleft > length
if ((bitsleft=bitsleft-length)>0)

/* Put the new code at the
/* current compressed word,
/''« using the new bitsleft to put*/
/* it in the correct position . */

(*cmprsdwordptr) | =code«(bitsleft) ;
else /* The old bitsleft <= length. */

{ /* Negate bitsleft and put part */
/* of the code that fills the */

*/
*/

*/

*/
*/

www.manaraa.com

338

/* word in the compressed word. */
(-'cmprsdwordptr) I =(code) » (-bitsleft);

/* Move to a new word and put '•/
/* the rest of the code in a */
/* new compressed word, filling */
/* from the left to the right. */

*(++cmprsdwordptr)=(code) «
(bitsleft = (16 + bitsleft));

}
/* Now compress the part that */
/'•' is less than 64 bits. •*/
/'• If the no. of bits = 640 we */

if(multiple<10) /•' skip putting the zero part. -</
{

/* bitcont is the remainder of "/
/'• dividing uncmprsdbitscont by '•/
/" 64. "/

bitcont=uncmprsdbitscont & maskl;
/* Get the corresponding code ••••/
/* and the code-length. '"•/

code=FAX[color][bitcont].bits ;
length=FAX[color][bitcont].length;

/* Update cmprscounter by the '•/
/'•' code-length. */

cmprscounter=cmprscounter+length;
/''• If there are still more '•/
/'> unprocessed bits in the '•/
/" current word then put the '•/
/* compressed bits in the '•/
/" corresponding part of the */
/'•' word in the compressed buffer*/

if((bitsleft=bitsleft-length)>0)
(*cmprsdwordptr) |=code«(bitsleft) ;

else
{ • /" Otherwise split the code '•/

/* among the current and the '•/
/* next words of the compressed '•/
/* buffer.

(("Cmprsdwordptr))|=(code) » (-bitsleft);
(î't++cmprsdwordptr)=(code) «

(bitsleft = (16 + bitsleft));
}

/* Run-length was less than */
else /''« 64 bits. */

/* Get the corresponding number */
/* of bits and run-length '•/
/* then update "cmprscounter". */

www.manaraa.com

339

code=FAX[color][uncmprsdbitscont].bits;
length=FAX[color][uncmprsdbitscont].length;
cmprscounter=craprscounter+length;

Same case as before. •«/
if ((bitsleft=bitsleft-length)>0)

(*cmprsdwordptr)|=code<<(bitsleft);
else

{
((''«cmprsdwordptr)) |=(code) » (-bitsleft);
(vc++cmprsdwordptr)=(code) «

(bitsleft = (16 + bitsleft));
}

}
}
/,v UPDATE_CMPRSDBLK() */

/"====================== INIT_CMPRSDBLK() =========================iV/

/'•< Initializes the compression buffer pointer to the first word of ••/
/'• space allocated, sets the compression counter to zero and starts*/
/* with the most left bit of the first word in the compressed
/* buffer.
/'''===i>/

void init_craprsdblk(newblkptr)
unsigned *newblkptr;

{
cmprsdwordptr=newblkptr;
bitsleft=16;
cmprscounter=0;

}
/,V END INIT_CMPRSDBLK()

/i< Updates the compression buffer 'cmprsblk' by going to the next '•'/
/* code after the passed 'code' with 'length' of bits. */
/,V==^== ======;V/

void updt_craprsblk_code(code,length)
register unsigned code;
register int length;

{
cmprscounter=cmprscounter+length; /* Update "cmprscounter".
if ((bitsleft=bit5left-length)>0) /* If old bitsleft > length,

/* then put the new code at the
/* current cmprsdword, using a
/* new bitsleft.

(*cmprsdwordptr) | =code«(bitsleft) ;
else /•>'' Old bitsleft <= length.

{ /* Negate bitsleft and put part
/* of the code that fills the

www.manaraa.com

340

/* word in the "word". */
('•'cmprsdwordptr) I =(code) » (-bitsleft);

/* Move to a new word and put '•/
/* the rest of the code, */
/'•« filling from the left. */

*(++cmprsdwordptr)=(code) « (bitsleft=(16 + bitsleft));
}

/i< End updt_cmprsblk_code */

/A==================== get_cmprs_reslt() ==========================A/
/* This function returns the number of compressed bits since the */
/'•« last initialization of cmprscounter. •••/
/5't===;V/

unsigned get_cmprs_reslt()

returnCcmprscounter) ;

/* END get_cmprs_reslt() */

/ 3't================= set_cmprscontr_to_zero() ======================!'t/

/* Set_cmprscontr_to_zero() : it sets cmprscounter to zero. Uses it */
/* if you are compressing a block and want to get cmprscounter for */
/* each line alone. */
/,':===,'c/

void set_cmprscontr_to_zero()

cmprscounter=0;

/•k END set_cmprscontr_to_zero() '•/
/* END cupdt.c */

14.4. File Dcmprs2d.c

//include
//include
//define

//def ine

//def i ine

//define
//define

<memory.h>
<malloc.h>
findtime(tl) {if(tend>tstart) tl=tend-tstart;\

else tl=6000-tstart+tend;}
update_dcmprs_code(Icolor,llength) \

{{if(lcolor) \
update_dcmprs_whitereg(1length);\

else \
update_dcmprs_blakreg(llength);}}

switchcolor {tmpcolar=aOcolor;\
aOcolor=alcolor; \
alcolor=tmpcolor;}

KFACTOR 2
BLACKCHAR '0'

www.manaraa.com

341

//define
#define
//define
/*
* prvsLinestart
* currentword
* dcmprstime
* xsize, ysize
it

* xmaxplsl
* ymaxplsl
* xsizeinbytes

WHITECHAR
BLACK
WHITE

' 1 '

0
1

A/
char
static
static
unsigned

unsigned
unsigned

Points to the head of the previous line.
Current word of the cmprsdbufr.
Decompression time.
Horizontal and vertical dimensions, in bits,
of the screen block.
xsize + 1.
ysize + 1.
Horizontal dimension, in bytes,
of the screen block.

*prvslinestart;
dcmprstime,ysize,ymaxplsl;
xsize,xmaxplsl,xsizeinbytes;
currentword;

* ====================== dcmprs_blk_2d ==========================

* In this function the first line is One-Dimensionally decoded.
* The reference line is set to point to that line, then the
* following k-1 lines are Two-Dimensionally decoded with respect
* to the reference line which is updated to point to the previous
* line every time a line is decoded.
A ===

void dcmprs_blk_2d()

{
register
unsigned
char

int i,k;
tstart,tend;
''«refrenceline;

refrenceline=malloc(xmaxplsl+l);
tstart=gttirae();

prvslinestart -=xsizeinbytes;

for(i=l; i < ymaxplsl;)
{
dcmprs_line_ld();
i++;

* The reference line is the
* line just before the coding
* line.

* Pointer to the previous line.
* It is updated at the
* beginning of the loop
* and thus it will be set to
* point to an imaginary line
* before the first line in
i'< the screen.
* Loop until all lines are
* processed. The first line
* of k lines is 1-d decoded.

/it One-dimensional decoding. */

www.manaraa.com

342

k = KFACTOR-1;
/* Point to the previous line. '•/

prvslinestart +=xsizeinbytes;
/* Decode k-1 lines, after the */
/* previously Id decoded line, */
/* the using Two-Dimensional */
I* decoding algorithm. */

whileC k— && i < ymaxplsl)
{
swapbits_to_string(prvslinestart,

refrenceline+1, xsize);
/'•« Two-Dimensional decoding. '•/

dcmprs_line_2d(refrenceline);
/'•' Point to the previous line. */

prvslinestart +=xsizeinbytes;
i++;
}

}
end=gttime();
indtime(dcmprstime) /* MACRO
reeCrefrenceline); /* Free allocated memory.

END dcmprs_blk_2d

it ======================= dcmprs_line_2d ======================== *

* With respect to the reference line (previous line) the current*
* line is decoded. The relative positions of aO, al, a2, on the -
* coding line, and bl, b2, on the reference line, determine
* whether the decoding mode is the pass, horizontal or vertical '•
* mode. The decoded line is updated as each mode is realized until*
* the end of line is reached. *
* Before updating the decompression buffer with the run of bits we*
* must note the following point: Since aO, at the start of every *
* line, was set to an imaginary black changing element, then the *
* first black run length should not count this imaginary pel. *
i< === it

dcmprs_line_2d(refrenceline)
char *refrenceline;

{
register unsigned aO;
unsigned al,a2,a0al,ala2;
unsigned bl,b2;
int aOcolor,alcolor,tmpcolor;
char *tmpptr;
static int blackbits,wtbits;
static int *blackbitsptr=&blackbits,*wtbitsptr=&wtbits;

a0=0; /* First pixel in the decoding */
/* line. */

www.manaraa.com

343

refrenceline[aO] = BLACKCHAR ;
aOcolor=BLACK;
alcolor=WHITE;
whileC aO < xmaxplsl)
{ /* Refer to the comments in file*/

/* cmprs2d.c for explanation */
/'•' about the code and how to */
/* detect al, a2, bl, and b2. */

/* Detect bl. */
if(refrencelineEaO] == (alcolor+BLACKCHAR))
{

if(tmpptr=memchr(&refrenceline[aO+l], aOcolor+BLACKCHAR,
xmaxplsl-aO))

{
bl=tmpptr-refrenceline;
if(tmpptr=memchr(tmpptr+1,a1color+BLACKCHAR,xmaxpls 1-bl))

bl=tmpptr-refrenceline;
else

bl=xmaxplsl;
}
else

bl=xmaxplsl;
}
else
{

if(tmpptr=memchr(&refrenceline[aO+1],alcolor+BLACKCHAR,
xmaxplsl-aO))

bl=tmpptr-refrenceline;
else

bl=xmaxplsl;
}

Detect b2. */
if(tmpptr=memchr(&refrenceline[bl+l],aOcolor+BLACKCHAR,

xmaxplsl-bl))
b2=tmpptr-refrenceline;

else
b2=xmaxplsl;

if(currentword & 0x8000) /* Get "bitl" of "currentword". */
{ !'•' Vertical mode(O). '•/
if(a0==0) /* Update the decompression */

I* buffer. */
update_dcmprs_code(aOcolor,bl-(aO+l))

else
update_dcmprs_code(aOcolor,bl-aO)

aO=bl;
switchcolor
update_cmprs(1); /* Codeword = 1. */
}

else

www.manaraa.com

344

{
if(currentword & 0x4000) Bitl = 0, get bit2. */

{ /* Bitl,2 = 01, get bits. 'V
if(currentword & 0x2000)
{ /'• Vertical raode(l). al to the '''/
if(a0==0) /" right of bl by 1 bit. */

update_dcmprs_code(aOcolor,bl+l-(a0+l))
else

update_dcraprs_code(aOcolor,bl+l-aO)
aO=bl+l;
switchcolor
update_craprs(3) ; /'• Codeword = Oil. */
}

else
{ /'• Vertical mode(-l). al to the
if(a0==0) /* left of bl by 1 bit. */

update_dcmprs_code(aOcolor,bl-l-(a0+l))
else

update_dcmprs_code(aOcolor,bl-l-aO)
aO=bl-l;
switchcolor
update_cmprs(3); /* Codeword = 010. -/
}

}
else

{ /* Bitl,2 = 00, get bit3. */
if(currentword & 0x2000)
{ /* Horizontal mode. */
update_cmprs(3) ; /* Codeword = 001. '•/

/* Decode the following two »/
/* codes using One-Dimensional '•/
/* decoding scheme according */

if(aOcolor) /•• to the aO color. ''•/
{ /'•' White code followed by a '•/

/* black one. */
uncmprs_white(wtbitsptr);
uncmprs_blak(blackbitsptr);
}

else
{ /" Black code followed by a */

/* white one. */
uncmprs_blak(blackbitsptr);
uncmprs_white(wtbitsptr);
}

if(a0==0) blackbits++;
/* Bypass the last two hori- */
/* zontal codes. */

aO += blackbits + wtbits;
}

www.manaraa.com

345

else
{ /'•' Bitl,2,3 = 000, get bit4. */
if(currentword & 0x1000)

{ /* Pass mode. Codeword=0001. ••/
if(a0==0)

update_dcmprs_code(aOcolor,b2-(a0+l))
else

update_dcmprs_code(aOcolor,b2-a0)
a0=b2;

update_cmprs(4); /* Update the buffer with 4 bits.*/

else
{

/* Bitl,2,3,4=0000, get bit5. */
if(currentword & 0x0800)

{
/* Bitl,2,3,4,5 = 00001, */
/* get bit6. */

if(currentword & 0x0400)
{ /* Vertical mode(2). al to the -/

I* right of bl by 2 bits. */
if(a0==0)

update_dcmprs_code(aOcolor,
bl+2-(a0+l))

else
update_dcmprs_code(aOcolor,bl+2-aO)
a0=bl+2;
switchcolor

I* Codeword = 000011. ••/
update_cmprs(6) ;

}
else

{ /* Vertical mode(-2). al to the */
/* left of bl by 2 bits. */

if(a0==0)

update_dcmprs_code(aOcolor,
bl-2-(a0+l))

else
update_dcmprs_code(aOcolor,bl-2-aO)
a0=bl-2;
switchcolor
I* Codeword = 000010. */

update_cmprs(6) ;

}
else

{ /'•' Bitl,2,3,4,5 = 00000, '•</
/* get bit6.

if(currentword & 0x0400)
{ /* Bitl,2,3,4,5,6 = 000001, */

www.manaraa.com

346

I* get bit6. "/
if(currentword & 0x0200)

{ /* Vertical mode(3). al to the '•/
I* right of bl by 3 bits. '•/

if(a0==0)

update_dcinprs_code(aOcolor,
bl+3-(a0+l))

else
update_dcmprs_code(aOcolor,

bl+3-aO)
a0=bl+3;
switchcolor

I* Codeword = 0000011. */
update_cmprs(7);
}

else
{ /" Vertical mode(-3). al to the -/
I* left of bl by 3 bits. '•/

if(a0==0)

update_dcmprs_code(aOcolor,
bl-3-(aO+l))

else
update_dcmprs_code(aOcolor,

bl-3-aO)
a0=bl-3;
switchcolor

/'•' Codeword = 0000010. '•/
update_cmpr s(7);
}

}
else

{ /'•• Bit pattern = 000000 should ••/
/* never happen unless there are*/
I* some errors. */

printfC"extra code \n");
exit();
}

}
}

}
}

}
jit END dcmprs_line_2d '•/

I* =================== init_dcmprs_blk_2d ======================== */

/* Initialize local variables to this file. */ / i, === */
void init_dcmprs_blk_2d(xsizein,ysizein,dcmprsbuffere)

www.manaraa.com

347

unsigned xsizein.ysizein;
char '''dcmprsbuf fere;
{
ysize=ysizein;
xmaxplsl=xsizein+l;
xsizeinbytes=(xsizein/8)+(xsizein%8>0) ;
prvslinestart=dcniprsbuf fere ;
xsize=xsizein;
ymaxplsl=ysizein+l;
}
/* END init_dcmprs_blk_2d '•/

/* Refer to the comments in file */
/" dupdtc.c in appendix B section */
/" 13.6 for all the coming code. */

static unsigned currentword;
static unsigned nextword,"nextwordptr;
static unsigned cbitsremain;
static unsigned rightbitsword[]={0,0x0001,0x0003,0x0007,

OxOOOf.OxOOlf,0x003f,
0x007f.OxOOff.OxOlff,
0x03ff,0x07ff,OxOfff,
Oxlfff,0x3fff,0x7fff,
Oxffff};

unsigned leftbitsword []={0,0x8000,OxcOOO,OxeOOO,
Oxf000,Oxf800,OxfcOO,
OxfeOO,Oxff00,Oxf f80,
OxffcO,OxffeO,OxfffO,
Oxfff8,0xfffc,Oxfffe,
Oxffff};

/)'c======================== UPATE_CMPRS() ==========================)'c/

/* This function updates "currentword", which is a window into the ''•/
/* compressed buffer. */
/ Vt===== = === === = = = ==== === = = = ======= = = = = = ========= ===== = = = = = = = = = = = = ==!V/

update_cmprs(codelngth)
int codelngth;

{
register unsigned tempword;
register int difference;

tempword = currentword;
tempword <<= codelngth;
if((difference = cbitsremain-codelngth) > 0)

tempword |= nextword»(difference);
else

{
difference =- difference;
tempword |= nextword << (difference);

www.manaraa.com

348

nextword = *(++nextwordptr);
tempword |= nextword » (difference=(16- (difference)));
1

nextword &= rightbitsword[difference];
cbitsremain = difference; /* Update cbitsremain. '•/
currentword = tempword; /* Update current word. */
returnC tempword);
}
/,v END UPDATE_CMPRS */

/ îV======================== init_cmprs =============================v:/

init_cmprs(cmprsbfrptr)
unsigned '-cmprsbfrptr ;

{
cbitsremain = 16;
currentword = -(cmprsbfrptr);
nextword = "(nextwordptr=cmprsbfrptr+1) ;
}
/,'c End init_cmprs »/

/,•.======================= MATCH_BLAK ==============================>•:/

match_blak(clrbitsptr.codebitsptr)
register int *clrbitsptr;
int ''«codebitsptr;

{
static unsigned BLK_CODES[] =

{
/'V BARRAY_4 bits. */

0x7000,0x8000,OxbOOO,OxcOOO,OxeOOO,
OxfODO,

/'V BARRAY_5 bits. */
0x9800,OxaOOO,0x3800,0x4000,0xd800,
0x9000,

/* BARRAY_6 bits. */
OxlcOO,0x2000,OxOcOO,OxdOOO,0xd400,
0xa800,OxacOO,0x5c00,

/* BARRAY_7 bits. */
0x4e00,0x1800,0x1000,0x2e00,0x0600,
0x0800,0x5000,0x5600,0x2600,0x4800,
0x3000,0x6e00,

/'•' BARRAY_8 bits. */
0x3500,0x0200,0x0300,OxlaOO,0x1bOO,
0x1200,0x1300,0x1400,0x1500,0x1600,
0x1700,0x2800,0x2900,0x2a00,0x2b00,
0x2c00,0x2d00,0x0400,0x0500,OxOaOO,
OxObOO,0x5200,0x5300,0x5400,0x5500,
0x2400,0x2500,0x5800,0x5900,0x5a00,
OxSbOO,0x4a00,0x4b00,0x3200,0x3300,

www.manaraa.com

349

static int BLK_RUNS[] =
{

0x3400,0x3600,0x3700,0x6400,0x6500,
0x6800,0x6700

};
static int BGROUPS[]={5,
register word;

/* BC0DE_4 bits.
2 ,3 ,4 ,5 ,6 ,7 ,

/* BC0DE_5 bits.
8 ,9 ,10 ,11 ,-64 ,-128 ,

/* BC0DE_6 bits. *
1, 12, 13, 14, 15, 16, 17, -192 ,

/* BC0DE_7 bits.
18, 19, 20, 21, 22, 23, 24, 25, 26,
27, 28, -256,

/* BC0DE_8 bits. '''
0, 29, 30, 31, 32, 33, 34, 35, 36,
37 , 38, 39, 40, 41, 42, 43, 44, 45,
46, 47, 48, 49, 50, 51, 52, 53, 54,
55, 56, 57, 58, 59, 60, 61, 62, 63,
-320, -384, -448, -512, -576, 640

4,6, 5,6, 6,8, 7,12, 8,42 };

word = currentword;
switch (1)

{
case 1:
{
if(match_all_bits(word,BLK_CODES,BLK_RUNS,BGROUPS,

clrbitsptr,codebitsptr))
break;

}
default : {

printfC"Wrong code encountered in 'match_blak'\n");
exit(O) ;
}

}

END MATCH BLAK

/ yc======================= MATCH_WHITE ====

match_white(clrbitsptr,codebitsptr)
int '''Clrbitsptr, '''codebitsptr ;

{

static unsigned
/ S e e t h e c o m m e n t f o r B L K _ C O D E S * /

WHITE_CODES[] =
{

/'•' Codebits = 10. '•'/
0x05c0, 0x0600, 0x0200, 0x03c0,

www.manaraa.com

350

OxOdcO,
/* WARRAY_11

OxOceO, OxOdOO,
0x0500, 0x02e0,

/* WARRAY_12
OxOcaO, OxOcbO,
0x0680, 0x0690,
0x0d20, OxOdSO,
0x0d70, 0x06c0,
OxOdbO, 0x0540,
0x0570, 0x0640,
0x0530, 0x0240,
0x0270, 0x0280,
0x02b0, 0x02c0,
0x0670, OxOcBO,
0x0330, 0x0340,

/* WARRAY_13
0x0360, 0x0368,

bits.
OxOdSO, 0x06e0,
0x0300,
bits.
OxOccO, OxOcdO,
0x06a0, 0x06b0,
0x0d50, 0x0d60,
0x06d0, OxOdaO,
0x0550, 0x0560,
0x0650, 0x0520,
0x0370, 0x0380,
0x0580, 0x0590,
0x05a0, 0x0660,
0x0c90, 0x05b0,
0x0350,
bits.
0x0250

/* See the comment for BLK_RUNS."/
static int WHITE_RUNS[] =

{
/* WCODE_10 BITS.

16, 17, 18, -64, 0,
/•>'< WC0DE_11 bits.

19, 20, 21, 22, 23, 24, 25,
/* WC0DE_12 bits.

26, 27, 28, 29, 30, 31, 32, 33,
34, 35, 36, 37, 38, 39, 40, 41,
42, 43, 44, 45, 46, 47, 48, 49,
50, 51, 52, 53, 54, 55, 56, 57,
58, 59, 60, 61, 62, 63, -128, -192,
-256, -320, -384, -448,

/* WC0DE_13 bits. */
-512, -576, 640

};
static unsigned WGROUPS[]={4, 10,5, 11,7, 12,44, 13,3 };
register unsigned tmpword,word ;

word = currentword;
switch (1)

{
case 1:
{
if(word & 0x8000)

{
if(word & 0x4000)

*clrbitsptr
else

/* Bit 16 = 1. •:</

/" Bit 15 = 1 then code=2. */
= 2;

Bit 15 = 0. 'V

www.manaraa.com

351

'•'cirbitsptr = 3;
codebitsptr = 2; I Code length = 2.
break;
}

if(word & 0x4000) /*
{
if(word & 0x2000) /*

clrbitsptr=4; /
else /*

clrbitsptr=l; /
codebitsptr=3; /
break;
}

if(word & 0x2000) /*
{
if (word & 0x1000) /'•

"Clrbitsptr=5 ; /'•
else /*

''*clrbitsptr=6; /*
codebitsptr=4; /
break;
}

if(word & 0x1000) /*
{
if(word & 0x0800) /*

{
"Clrbitsptr=7; /*
codebitsptr=5; /
break;
}

else /*
{ /*
if(word & 0x0400)

/A
'•clrbitsptr=8;

else /* Bit 11 = 0.
I* Code = 9.

*clrbitsptr=9;
codebitsptr=6; / Code length = 6.
break;
}

}
if((tmpword=(word&0xfe00)) == 0x0800)

{ *codebitsptr=7; *clrbitsptr=10; break; }
if(tmpword==OxOaOO)

{ *codebitsptr=7; *clrbitsptr=ll; break; }
if(tmpword==OxOeOO)

{ *codebitsptr=7; *clrbitsptr=12; break; }
if((tmpword=(word&OxffOO)) == 0x0400)

{ >-codebitsptr=8; *clrbitsptr=13; break; }

Bit 15 = 1.

Bit 14 = 1.
Code = 4 .
Bit 14 = 0.
Code = 4.
Code length = 3,

Bit 14 = 1.

Bit 13 = 1.
Code = 5.
Bit 13 = 0.
Code = 6.
Code length = 4.

Bit 13 = 1.

Bit 12 = 1.

Code = 7.
Code length = 5,

Bit 12 = 0.
Bit 11 = 1.

Code = 8.

www.manaraa.com

352

if(tmpword==0x0700)
{ *codebitsptr=8; *clrbitsptr=14; break; }

if((word&Oxff80)==0x0c00)
{ *clrbitsptr=15; '•'codebitsptr=9; break; }

if(match_a1l_bits(word,WHITE_CODES,WHITE_RUNS,WGROUPS,
clrbitsptrjcodebitsptr))

break;
}
default : {

printf(
" Wrong code encountered in 'inatch_white'\n");

exit(O) ;
}

}
}
/,v END MATCH_WHITE

/vc =================== get_dcmprstime() ========================= */

unsigned get_dcmprstime()
{
return(dcmprstime);
}
lit END get_dcmprstime() */
/,'c END dcmprs2d.c */

14.5. File Dcmprsln.c

^include <stdio.h>
//include <io.h>
//include "colordef.h"

int update_cmprs(int);
int uncmprs_blak(int *), uncmprs_white(int »);
int match_blak(int *,int '"0, match_white(int *,int -);
int update_dcinprs_blakmk(int), update_dcmprs_whitemk(int);
int update_dcmprs_blakreg(int), update_dcmprs_whitereg(int);

/,'c

* Refer to the file "dcmprsln.c" in appendix B section 13.5 for
* comments.
*/

dcmprs_line_ld()

{
int clrbits;
register int *clrbitsptr=&clrbits;

www.manaraa.com

353

whileC uncmprs_blak(clrbitsptr) && uncmprs_white(clrbitsptr))

}
/,v END DCMPRSLNO */

/A======================== UNCMPRS_BLAK() =========================Vc/

uncmprs_blak(nmbrblackbitsptr)
int '''nmbrblackbitsptr ;

{
int clrbits.codebits;
register int *clrbitsptr=&clrbits;
register int *codebitsptr=&codebits;

''mmbrblackbitsptr = 0;
match_blak(clrbitsptr,codebitsptr);

if(*clrbitsptr<0)
{
*clrbitsptr=-Aclrbitsptr;
*nmbrblackbitsptr += clrbits;
update_cmprs(*codebitsptr);
update_dcmprs_blakmk(*clrbitsptr);
match_bLak(clrbitsptr,codebitsptr);
}

update_cmprs(*codebitsptr);
*nmbrblackbitsptr += clrbits;
returnC update_dcmprs_blakreg(*cirbitsptr));
}
/,v END UNCMPRS_BLK() i-/

/VT======================= UNCMPRS_WHITE() =========================!>/

uncmprs_white(nmbrwhitebitsptr)
int *nmbrwhitebitsptr;

{
int clrbits,codebits;
register int *clrbitsptr=&clrbits;
register int '•'codebitsptr=&codebits ;

*nmbrwhitebitsptr = 0;
match_white(clrbitsptr.codebitsptr);
if(*clrbitsptr<0)

{
*clrbitsptr=-*clrbitsptr;
*nmbrwhitebitsptr += clrbits ;
update_cmprs(*codebitsptr);
update_dcmprs_whitemk(*clrbitsptr);
match_white(clrbitsptr,codebitsptr);

www.manaraa.com

354

update_cmprs('''codebitsptr) ;
'•'nmbrwhitebitsptr += cirbits ;
return(update_dcmprs_whitereg(''«clrbitsptr)) ;
}
/,v END UNCMPRS_WHITE() */

jit END dcmprsln.c */

14.6 File Bitsrng.asm

NAME bitsrng
TITLE SWAP BYTES THEN CONVERT BITS TO STRING
PUBLIC _swapbits_to_string
DGROUP GROUP _DATA

ASSUME CS: _TEXT, DS: DGROUP, SS: DGROUP, ES: DGROUP
LASTBITS EQU [BP-2]
WORDCONT EQU [BP-4]
EXTRN chkstkrNEAR
_TEXT SEGMENT BYTE PUBLIC 'CODE'

_swapbits_to_string PROC NEAR

LOOP11

LOOP2:

ONE BIT:

PUSH BP
MOV BP,SP
MOV AX,4
CALL chkstk
PUSH DI
PUSH SI
PUSH ES
PUSH DS
POP ES
MOV SI,[BP+4]
MOV DI,[BP+6]
MOV AX,[BP+8]
MOV DX,AX
MOV CX,4
SHR DX,CL
MOV WORDCONT,DX
AND AX.OOOFH
MOV LASTBITS,AX
MOV CX,16
LODSW
XCHG AH,AL
MOV DX,AX
MOV BX,8000H
TEST DX.BX
JZ ZERO_BIT
MOV AX,'1'
STOSB
JMP SHIFT_MASK

www.manaraa.com

355

ZERO_BIT:
MOV
STOSB

SHIFT_MASK:
SHR
LOOP
DEC
JNZ

LAST_BITS:
CMP

AX,'0'

BX,1
LOOP2
WORD PTR WORDCONT
LOOPl

JZ
MOV
LODSW
XCHG
MOV
MOV

LOOP3: TEST
JZ

ONE_BIT_L:
MOV
STOSB
JMP

ZERO_BIT_L:
MOV
STOSB

SHIFT_MASK_L:
SHR
LOOP

BITSTRING_DONE:
POP
POP
POP
MOV
POP
RET

_swapbits_to_string
_TEXT ENDS
END
/,v

BYTE PTR LASTBITS.O
BITSTRING_CODE
CX.LASTBITS

AH,AL
DX.AX
BX,8000H
DX.BX
ZERO_BIT_L

AX,'1'

SHIFT_MASK_L

AX,'0'

BX,1
LOOP 3

ES
SI
DI
SP.BP
BP

ENDP

END bitsrng.asm

www.manaraa.com

356

APPENDIX D. PROGRAM LIST OF METHOD LZW

www.manaraa.com

357

The C programs in this appendix and the following appendices use
the function "Indx" from C Power Packs by Software Horizons Inc.

The files in this listing make use of the files in the following
sections :

- Appendix B: 13.9, 13.11, and 13.12.

15.1. File Main.c

h-<-

/'•c

/'•'
/•>'

/'V

/A
/*=

This program simulates the Lempel-Ziv-Melch approach to compress*
data and then decompress it according to the same approach. *
This alogrithm is adaptive in the sense that it starts with an *
empty table of symbol strings and builds the table during both
the compression and decompression processes. These are one-pass *
procedures that require no prior information about the input *
data statistics and execute in time proportional to the length
of the message. -

//include
^include
//include
//include
//include
//include
//include
//include
//include

//define
//define
//define
//define
//define
//define
//define
//define

<stdio.h>
<memory.h>
<dos.h>
<io.h>
<fcntl.h>
<malloc.h>
<sys\types.h>
<sys\stat.h>
<string.h>

LINT_ARGS

HI_RES

TEXT_MODE '

ALFHABET_SIZE

MAX_SIZE

SCRN_SIZE

uchar
findtime(time)

/* 640x200 graphics mode. */
/•' Text mode. ''«/
/* Sizes of alphabet and */
/" code tables. :'V

6
3
256
4096
16004
unsigned char
{ tend=gttime() ;\
if(tend>tstart) time=tend-tstart;\
else time=(6000-tstart)+tend;}

/* Declare variables :
/* Strings table consists of two parts, the first one is of word ''f
/•>'< type while the other one is of character type. This is due to *
/* the fact that only 20 bits are needed to represent each string *
/* so no more than 3 bytes are needed for this representation. *

static
static

char far data_bufr[32000] ;
char workbufr[SCRN_SIZE]

www.manaraa.com

358

I* Window coordinates. -•/

*/

int xl=0,yl=0,x2=639,y2=199 ;
char datafile[41];
unsigned bufr_size ; /* Holds the screen size in bytes

unsigned gttimeC);
void init_screen(unsigned);
void decompress(char *, char far *, unsigned) ;
void compresse char * , char far * , unsigned *) ;

mainCargc, argv)
int argc;
char *argv[];

unsigned tstart,tend,cmprstime,dcmprstime, temp, i ;
/'• Cmprsfactor = original size '••I
/'• divided by compressed size. */

float cmprsfactor;

if(argc < 6) /* No data was entered at the '•/
{ /* command line. */

printfC"enter xl yl x2 y2 \n");
scanf("%d %d %d %d",&xl,&yl,&x2,&y2);

/'•' Get rid of extra charcaters. */
while((getchar())!='\n')

}
else
{

xl=atoi(argv[2]); yl=atoi(argv[3]);
x2=atoi(argv[4]); y2=atoi(argv[5]);

}
if(argc > 1)

strcpyC datafile, argvEl]);
init_screen(argc) ;

I* Store the original size. */
cmprsfactor = (float)bufr_size ;
init_table() ; /* Initialize buffers and tables. '•/

/'•' Get the data in the screen */
/* memory then display it again. */

get(xl, yl, x2, y2, work_bufr) ;
for(i=0;i<=55000;i++) ; I* A delay loop. */
setscmode(TEXT_MODE);
printfC" Compression is in progress \n") ;
tstart=gttime(); /* Record the start of compression.*/

/* Compress the data in data_bufr using LZW*/
/* algorithm and return the compressed data*/
/* in the data bufr. The work bufr is used */

www.manaraa.com

359

/* for internal manipulation within
/* compresse) and other function it calls. '•
/* The size of the compressed buffer is *
/* returned in bufr_size. '•<
/'• We used data_bufr+4 so we will not *
/* compress the x and y sizes. *

compresse work_bufr+4, data_bufr, &bufr_size) ;
findtimeC cmprstime) I* — MACRO to find cmprstime. *
printfC" Now decompression is in progress \n") ;
init_table() ; /''« Reinitialize the tables.
tstart=gttime() ; /* Record start of decompression. -•

/* Decompress data stored at address *
/•! data_bufr+4 and with size = bufr_size.
/" Use the work_bufr in function decompress*
h" for its internal use. *

decompressC work_bufr+4, data_bufr, bufr_size) ;
findtimeC dcmprstime) !'•' — MACRO to find dcmprstime. '•

/* Display data on the screen to *
setscmode(HI_RES); /* make sure the program is working*
put(xl, yl, work_bufr) ;
for(i=0;i<=55000;i++) ; /* A delay loop. *
setscmode(TEXT_MODE);

/* A dummy variable. *
passparmtrsC datafile, xl, yl, x2, y l , temp=0) ;
printC cmprstime, dcmprstime,

cmprsfactor = cmprsfactor/bufr_size) ;
}
/,v END mainO */
/* END main.c */

15.2. File Cmprs.c

//include
//include
//define
//define
//define
//define

<memory.h>
<malloc.h>
uchar unsigned char
MAX_SIZE 4096
SCRN_SIZE 16004
update_string_table() \

{if(next_code < MAX_SIZE)\
{char_table[next_code] = string.k ;\
int_table[next_code] = string.w ;\
next_code++ ;}}

extern unsigned
extern uchar
extern int
extern unsigned

int_table[] ;
char_table[]
next_code;
extracalls ;

/* int_table[], char_table[] */
/* and next_code are defined */
/* in tables.c */

void adjust_output(uchar *, uchar far *, unsigned, unsigned *);

www.manaraa.com

360

'•'======================== compresse) =============================

* The LZW algorithm is organized around a translation table
that maps strings of input symbols into a fixed length code.

* LZW string table contains strings that have been encountered
* previously in the message being compressed. The input string
* is examined serially symbol-by-symbol in one pass and the
* longest recognized input string is parsed off each time.
*===

compress(compress_io,compress_work, ptr_bufr_size)
uchar
unsigned

*compress_io, far *compress_work
*ptr_bufr_size ;

Compress_io contains data
* needs to be compressed as an
* input, and compressed data
* as output. Compress_work is
" used for work as a temporary
* output of Izw compression

before we pack each code word
* into 12 bit code. Then the
* function adjust_output takes
* it as input and put the
* correct 12 bit codes into
* compress-io.

uchar ''«input;
unsigned far ''«output;
char *ptr_new_output;
unsigned bufr_size;
unsigned newsize ;
register int data_index=0, code;
int out_index=0, found, *ptr_found=&found ;
struct {

uchar k;
unsigned w;

} string ;

input=compress_io;
output=(unsigned far ''Ocompress_work;

/* Read the first element in */
/* the input. -/

string.w = input[data_index++] ;
bufr_size=*ptr_bufr_size; /''« Find bufr_size. */

/->'< Loop while there is more "/
/* input. '':/

whileC data_index < bufr_size)
{

/ R e a d t h e n e x t e l e m e n t . * /
string.k = input[data_index++];

www.manaraa.com

361

/* Function ScanwO scans the '•'!
/* string and returns the code.*/
/* If the passed string is found*/
/* in that case found = 1,
/* otherwise the returned value
/* of found is = 0.

code = scanwC string.w, string.k, ptr_found);
if(found)
{

}
else
{

/* wk exists in the table ;
/* wk —> w i.e. code of new w= */

*/
,v/

,v/

/* code of a location in the
/* int_table that has w and k.

string.w = code ;
continue ;

*/

* wk is not in string table : =
* string.w —> output i.e. send'
code of w to the output. :

output[out_index++] = string.w ;
'* If the tables are not full =
* yet then string —> string '
* table, i.e put w and k in '
* int_table and char_table '
* respectively at position '
'* next_code. '

if(next_code<MAX_SIZE)
update_string_table()

else
extracalls++ ;

/* string.k —> string.w. */
string.w = (unsigned) string.k ;

/* Send the last code to the •</
/* output. "/

output[out_index] = string.w
* Back the output codes from a
* string of words format to a */
* string of 12 bits codes */
* format. The input to ''•/
* adjust_output() is compress_ */
* work. It sends the output */

in the final form in '•/
compress_io. '•/

adjust_output(compress_io ,compress_work,
2*(out_index +1), &newsize);

"Ptr_bufr_size= newsize; /* Send newsize in bufr_size. */

END COMPRESS() */

www.manaraa.com

362

END cmprs.c -*/

15.3. File Dcmprs.c

//include
//include
//include
//define
//define
//define
//define

<memory.h>
<stdio.h>
<malloc.h>
uchar
MAX_SIZE
ST_MAX
SCRN_SIZE

unsigned char
4096
1000
16004

//def ine
/* Add the new string to the string table.

update_string_table() \
{if(next_code < MAX_SIZE)\

{char_table[next_code]=code.k ;\
int_table[next_code] = oldcode;\
next_code++ ;}}

//def i me

/* Return the value of w and
/* passed code.

look_up() \
{code.w = int_table[CODE] ;\
code.k = char_table[CODE];}

k for the

extern unsigned int_table[] ;
extern uchar char_table[] ;

extern int next_code;

static char *stack ;

static unsigned stack_index=0;

char

void

popO;

int_table, char_table and •
next_code are defined •
globally in tables.c •
index of the next code in the-
tables not used yet. •
A stack to be used in the •
abnormal case for storing •
characters till we reach the •
first character of the new
s t r i n g .
F i r s t unused element. Stack •
grows upward. •

* Returns the character at the '•
'* top of the stack. *

readjust_input(uchar far uchar unsigned, unsigned '•)

/* Input is in the form of 12 bits codes stored serially. We have
/* to readjust them to integer format so we can store them and use *
/* them in the int_table.
/Inputsize is the size of input in bytes. "
/* decmprs_io = as input to decmprsO it points to compressed data
/'• decmprs_io = as ouput of decmprsO it points to decompressed *

www.manaraa.com

363

/* data
h' decmprs_work = pointer to a temporary area.
/'•'===

decompress(decmprs_io, decmprs_work ,inputsize)
char Adecmprs_io, far *decmprs_work;
unsigned inputsize;

{
unsigned
unsigned

unsigned
register
register

char
struct {

}
char
unsigned
char

input_index=0;
oldcode,incode;

/'< The size of the compressed
I* data, each is stored in a
I* word, is equal to the output

newsize ; /* size of readjust_input().
unsigned output_index=0;
unsigned CODE ;

/* Final character in the pre-
finchar ; /''' vious String decompression.

char k;
unsigned w;
code; «

*temp_ptr;
far ''«input;
*databufr;

V
V

*/
*/

stack = mallocC ST_MAX); /* Allocate memory for the stack-
I* Adjust the input from 12 bits-
/''• serial codes into an array of-
I* integers and put the size of -
I* the array in "newsize". -

readjust_input(decmprs_work,decmprs_io,inputsize,&newsize);
I* Find the size of the input ^

inputsize=(newsize/2); /* code in words. -
input= (unsigned far ''0 decmprs_work;
databufr=decmprs_io;

/'•• Get the first code of the -
/''f input.

CODE= oldcode= input[input_index++];
look_up() /* MACRO. '•

/* Output the first character,
databufr[output_index]=finchar=code.k;

Keep looping until all codes ''
I* are processed. ''

whileCinput_index< inputsize)
{ /* Get the next input. -

CODE=incode=input[input_index++];
if(CODE >= next_code)

/''« CODE is not defined in the •
{ /* decompression table yet. •

www.manaraa.com

364

push(finchar);
CODE=oldcode;

}
I* Find the components w & '•/
/* k of CODE. */

look_up()
/'•' if w = 0 then we have a code
/" for one of the alphabets. '•/
/* While CODE==code(wk) separate*/
/* the k & w parts of code till '•/
/" CODE = code(k). '•/

while(code.wl=Oxffff)
{

push(code.k);
CODE=code.w;
look_up()

}
/* String now begins with the ••'I
/* last k, and the rest of it. '•/
/" (if string longer than one ••/
/" k) is in the stack. =•/

/* Send k to the output. ••/
databufr[++output_index]=code.k;
finchar=code.k; /* Finchar = first k of the '••/

/* last string. */
/* While the stack is not empty '•'/

while(stack_index) /* send data to the output. */
{
databufr[++output_index]=pop();
}

update_string_table()
oldcode=incode;

}
}
/* END decompressO •••/

/'" PLace an element on the stack. */
/''•==='V/
push(item)
char item; /* Data to be pushed on the */

/" stack. */

if(stack_index >= ST_MAX)
{

printfC " stack overflow in push \n") ;
return ;

}

www.manaraa.com

365

stack[stack_index++] = item ;

}
/* END pushO */

/Vt============================== pop() ============================:•(/

/* Retrieve the top element from the stack. */
/' ' '==='•'/

char popO
{

if(—stack_index < 0)
{

printfC" Stack underflow in pop \n") ;
return ('\0');

}
return stack[stack_index];

}
/,'f END pop() */
/,v END dcmprs.c */

15.4. File Tables.c

//include <stdio.h>
//include <memory.h>
//include <malloc.h>
//define MAX_SIZE 4096
//define ALPHABET_SIZE 256
//define uchar unsigned char

/* Definition of a GLOBAL vars. '•/
unsigned int_table[MAX_SIZE] ;
unsigned char char_table[MAX_SIZE] ;
int next_code ;
unsigned *ptr_int_table=int_table;
unsigned char ''fptr_char_table=char_table ;
unsigned extracalls=0 ;

/* This function initializes every element in int_table to a com- •>'!
/* bination that will never occur. Since the code is only 12 bits
/* long then the 16 bits used to hold these codes are to be <= *

Oxfff. For this reason in this program the Oxffff code is used *
/* to solve the above problem. It should be noted that any combin-
/* ation > Oxfff should work correctly as well. Then the first 256 *
/* character symbols are loaded into the char_table. *

init_table()

{
register int index ;

www.manaraa.com

366

/* Set every byte in the 'V
/* int_table to Oxffff (i.e. '•/
/* every code word = Oxffff) so */
/* that no code will match with */
/* it, because actual codes are */
/* only 12 bits. */

merasetC (char *) int_table,0xff,MAX_SIZE*2);

/* Set 1st 256 of char_table to */
/* be the extended ASCII codes. */

for(index=0; index < ALPHABET_SIZE; index++)
char_table[index] = (short) index ;

}
/*-
/'•<-

next_code = ALPHABET_SIZE;

END init_table()
— END tables.c —

V
V

15.5. File Scanw.asm

INPUT : (PARAMETERS PASSED BY CALLING SUBROUTINE)
1) CHARCODE = CHARACTER PART OF THE CODE.i.e K.
2) INTCODE = UNSIGNED INTEGER PART OF THE CODE, i.e. W.
3) FOUNDADRS = ADDRESS OF CODE, i.e., WHERE WE RETURN THE

CODE WHICH HAS W AND K EQUAL TO INTCODE AND
CHARCODE RESPECTIVELY.

OUTPUT :
1) BOOLEAN VARIABLE "FOUND"; HAS THE FOLLOWING RETURN VALUES

RETURN VALUE = 1 IF A MATCH IS FOUND
0 IF NO MATCH

2) THE DUNCTION RETURN VALUE IS CONTAINS THE INDEX OF THE
FOUND CODE, IF ANY.

; IT NEEDS TO SHARE THE FOLLOWING WITH WHOEVER HAS THEM:
; 1) _ptr_char_table = A POINTER TO 1ST ELEMENT IN CHAR TABLE.
; 2) _ptr_int_table = A POINTER TO 1ST ELEMENT IN INT TABLE.
; 3) next_code = NUMBER OF FIRST FREE CODE IN CHAR TABLE.
; = NUMBER OF FIRST FREE CODE IN INT TABLE.
NAME SCAN
TITLE SCANNING OF THE ALTERNATE TABLE TO FIND A MATCH
PUBLIC _scanw

FOUND_PTR EQU [BP+8] ; PASSED PARAMETERS.
INTCODE EQU [BP+4]
CHARCODE EQU [BP+6]

DGROUP GROUP CONST, _BSS, _DATA

www.manaraa.com

367

ASSUME CS: _TEXT, DS: DGROUP, SS; DGROUP, ES: DGROUP

_DATA SEGMENT
EXTRN _ptr_char_table;WORD
EXTRN _ptr_int_table:WORD
EXTRN _next_code:WORD

PTR_next_code DW
_DATA ENDS

scanw

LOOPl:

PROC
PUSH
MOV
PUSH
PUSH
PUSH
MOV
MOV

MOV
MOV

MOV

MOV
MOV

NEAR
BP
BP,SP
DI
SI
ES
AX,DS
ES,AX

AX.INTCODE
DL,CHARCODE

SI,_ptr_char_table

DI,_ptr_int_table
CX,_next_code

REPNE SCASW

JNE NOMATCH
MOV BX,DI

SUB BX,_ptr_int_tabl
SHR BX,1
DEC BX

CMP DL,[BX+SI]

JE MATCH

INITIALIZE THE REGISTERS TO THE
CORRESPONDING PARAMETERS PASSED
FROM THE CALLING PROGRAM.

THE FOLLOWING THREE VARIABLES ARE
DEFINED SOMEWHERE ELSE.
POINTER TO THE TABLE HOLDING
ELEMENTS OF CHARACTER TYPE. THIS
TABLE HOLDS THE SECOND PART TO BE
EXAMINED IN THE SEARCH.

TABLE USED IN THE SEARCH. IT HOLDS
THE INTEGER PART WE SCAN FOR.

NEXT NUMBER NOT USED IN TABLES YET.
SCAN THE WORD TABLE STARTING FROM
DI UP TO CX ELEMENTS BIT ZERO IS
ZERO. IF ZF= 0 WE FINISHED THE SCAN
BEFORE ANY MATCH. SO GO TO NOMATCH.
ZF=1 SO WE HAD A MATCH. STORE
THE LENGTH OF SCANNED WORDS IN BX.

GET THE NUMBER OF SCANNED WORDS.
ADJUST LOOP STEP (ONE MORE WORD).
SINCE WE HAD A WORD MATCH,
SEE IF WE HAVE CHAR MATCH.
IF YES THEN WE HAVE A COMPLETE
MATCH. SO GO TO MATCH.
CHAR DID NOT MATCH SO TRY AGAIN
AS LONG AS CX (= REMAINING CODES TO
BE SEARCHED) NOT EQUAL TO ZERO.
IF CX REACHED ZERO BEFORE WE HAD
ANY MATCH THEN "JNE NOMATCH" WILL

www.manaraa.com

368

JMP
NOMATCH:

MOV
MOV
JMP

MATCH: MOV
MOV

SUB
SHR
DEC

MOV
SCAN_DONE:

POP
POP
POP
MOV
POP
RET

_scanw ENDP
_TEXT ENDS
END
/Vc

LOOPl

BX,FOUND_PTR
WORD PTR [BX],0
SCAN_DONE
BX,FOUND_PTR
WORD PTR [BX],1

DI,_ptr_int_table
DI,1
DI

AX.DI

ES
SI
DI
SP.BP
BP

DROP US TO NOMATCH:

NO MATCH, SO STORE ZERO IN FOUND,
WHICH IS ADDRESSED BY FOUND_PTR.
SCAN IS DONE.
THERE WAS A MATCH SO STORE 1 IN
FOUND.
MAKE DI = LENGTH OF SCANNED WORDS.

MAKE DI = NUMBER OF SCANNED WORDS.
ADJUST LOOP STEP (ONE MORE WORD.)
SCAN WILL RETURN AX = CODE = NUMBER
OF WORDS SCANNED TILL WE FOUND A
MATCH (i.e. INDEX OF THE MATCHED
ELEMENT IN EITHER TABLE) .

END scanw.asm

15.6. File Scrinit.c

//include <stdio.h>
//include <memory.h>
//include <dos.h>
//include <io.h>
//include <fcntl.h>
//include <malloc.h>
//define LINT_ARGS
//define FALSE 0
//define TRUE 1
//define HI_RES 6
//define TEXT_MODE 3
//define SCREENSIZE 16384
//define STRERR -1 /'V

extern int xl,yl,x2,y2; /,v
extern char datafileU; / *
extern unsigned bufr_size ;

/* Sring error, not found,

*/
A/

/)•(======================= init-screen() ====

/* This function displays figure on screen.

www.manaraa.com

369

/ 5V = = = = === ===== ======= = ===== = ====== ======= === = = = = === = ===== = = = = = = ====5't/

init_screen(value)
int value;

{
char *screenbufr; />'' Temporary buffer. */
int fhl,bytesread,loop=TRUE;
char flag, c;

/'•• "src" is a far pointer */
char far *src; /* initialized to "screenbufr". */
unsigned blksize;

if(value <= 1)
{

whileCloop)
{

printfC"enter name of data file \n");
getsCdatafile);
printfC'your data file is % s \n",datafile);

/" Give the user a chance to •'/
/* correct his mistakes. */

printf("Is the given data correct (y/n)?\n");
flag=getchar();
while((flag!='y')&&(flag!='n') &&

(flagl='Y')&&(flagl='N'))
{

/* Read the end of line. */
while((c=getchar()) !='\n')

printf("enter y or n ");
flag=getchar();

}
/* Read the end of line. */

while((c=getchar()) !='\n')

if((flag=='y')I I(flag=='Y'))
loop=FALSE;

}
}
blksize =((x2-xl+l) * (long)(y2-yl+l))/8 ;
setscmode(HI_RES);

/* Read data from the input file
/* into the buffer, then use this
/data to display the figure on *
/* the screen.
/* Both even and odd banks are
/* read separately. If the file *
/* extension is "cut" then just
/* read data into array and then '''
/* put it to the screen. There is

www.manaraa.com

370

/'•' no need to send the data to the */
/'• screen memory in the latter case*/

/* fhl = file handler of data file.*/
fhl = 0pen(datafile,0_RD0NLY|0_BINARY);

/* Check if file extension = cut.*/
if((lndx(".cut",datafile)) != STRERR)
{

/* Allocate 4 bytes to read x and */
/* y sizes. */

screenbuf r=maHoc(4) ;
/* Read x and y sizes from datafile*/
/* into screenbufr, then put values*/
/* into x2 and y2 respectively. */

bytesread=read(fhl,screenbufr,4);
x2=*(unsigned *)screenbufr;
y2=*(unsigned *)(screenbufr+2);

/* Reallocate the required size of */
/* memory to hold the data in */
/* the input file. */

screenbufr=realloc(screenbufr,
blksize=4+((x2+7)/8)*(y2));

/* Read the data from the file. */
bytesread=read(fhl,screenbufr+4,blksize);
putCxl,yl,screenbufr);

}
else
{

/* Do the first bank (even) by */
/* allocating half the total size. */

screenbufr=malloc(SCREENSIZE/2);
fhl = open(datafile,0_RD0NLY|0_BINARY);

/* Read the first bank. */
bytesread=read(fhl,screenbufr,SCREENSIZE/2);
src=(char far *)(screenbufr+7);

/* Format has the first byte of the 1st */
/* bank at offset 8000 of the screen */
/* segment. Move the data from the file */
/* to that segment. Note that in the */
/* screen segment the bytes starting at */
/* offset 8000 till (8192-7) will be */
/* filled with whatever the file has. */
/* This part is not from the physical */
/* screen. */

movedata(FP_SEG(src),FP_0FF(src),0xb800,0x0000,
(SCREENSIZE/2)-7);

bytesread=read(fhl,screenbufr,SCR%&NSIZE/2);
src=(char far *)(screenbufr);

/* the 1st seven bytes of the 2nd half */
/* of the file are a continuation of the*/

www.manaraa.com

371

/* (192-7) bytes that BASIC took from */
/'•' the screen memory and dumped it to
/* the file. So the 2nd half of the */
/* screen starts after 7 bytes of the '•/
/* 2nd part of the file. By copying the */
/* second half of the file into offset */
/* (0x2000-7) we will fill the 7 bytes */
/* at (0x2000-7) then the 2nd half of */
/* the screen will be copied to offset ''7
/* (0x2000). This fills the odd part of*/
/* the screen. The remaining (192-7) of */
/* the file will fill offset */
/* (0x2000+8000) till offset */
/* (0x2000+8000+(192-7)). */

movedata(FP_SEG(src),FP_OFF(src),0xb800,(0x2000-7),
SCREENSIZE/2);

}
close(fhl);
free(screenbufr);
bufr size=blksize;

}
/••C END INIT_SCREEN */

/,•:========================== SETSCMODE ============================!V/

I* sets the screen to the desired video mode. &/

int setscmode(mode) I* Function to set video mode *!
int mode;

{
union REGS inregs;
union REGS outregs;

I* return the code and the »/
/interrupt for function ••'/
/* gdosintO. */

int ret_code,int_no;
/* "set video mode BIOS */
/* function call. */

inregs.h.ah=0;
inregs.h.al=mode;
ret_code = int86(0xl0,&inregs,&outregs);

/* return the code to check for •'/
/* any errors. */

return(ret_code);
}
I* END setscmodeO *!
/,v END Scrinit.c */

www.manaraa.com

372

15.7, File Print.c

#include

extern
extern

static
static

<stdio.h>

int
unsigned

unsigned
char

/* Next_code and extracalls are
/* defined in tables.c.

next_code ;
extracalls ;

xl, yl, x2, y2, temp ;
*infile;

'V/

/)'{======================== passparmtr s () ==========================

/'• This function is used only for passing parameters from the main
/* function to this file so that they can be printed out.
/* ===== = :

passparmtrsC theinfile, cl,rl, c2,r2, dummy)
char *theinfile;
unsigned cl,rl,c2,r2 ;

{

/*-

infile = theinfile ;
xl = cl ; yl = rl ;
x2 = c2 ; y2 = r2 ;
temp = dummy ;

END passparmtrsC)

/* Print the results to the output. The data to be printed out
/* are the compression time, the decompression time and the
/* compression factor.
/* = === = = =========== ====== = = = = ==== = ==== = = = === = = = = = = =

printC cmprstime, dcmprstime, cmprsfactor)
unsigned cmprstime, dcmprstime;
float cmprsfactor;

{
FILE *outfile;

printfC" Compression factor is %f \n", cmprsfactor) ;
printfC" Compression time is %u in l/lOO of a seconds \n",

cmprstime)
printfC" decompression time is %u in l/lOO of a seconds \n",

dcmprstime)
printfC" Izw table size is %u \n",next_code);
printfC" Extra calls after tables were filled are %u \n",

extracalls)

/* Send data to outlzw.dat file,
ifC Coutfile = fopenC "outlzw.dat", "r")) == NULL)

'•7

www.manaraa.com

373

else

{
/'•' Open a file for writing and */
/:'(then print the table heading.*/

outfile = fopenC "outlzw.dat", "w") ;
fprintfCoutfile,

"File name xl yl x2 y2 cmprs cmprs ");
fprintfCoutfile,"dcprs cont table extra \n");
fprintfCoutfile,

" fetor time ");
fprintfCoutfile,"time smbl size calls \n");
fprintfCoutfile.

M.

fprintfCoutfile, " \n") ;
}

•");

{ /* Append the file. */
outfile = fopenC "outlzw.dat", "a") ;
}

/* Formats of the output. */
fprintfCoutfile,

"7.-12s %3u %3u %3u %3u %6.2f %4u %5u %4u %4u
%4u\n", infile, xl, yl, x2, y2, cmprsfactor, cmprstime,

dcmprstime, temp, next_code, extracalls);
}

END printC) */
/'• END print.c -/

//def ine

15.8. File Fadjst.c

uchar unsigned char

/:'
/*
/'••
/*
/••'

/it-

vo

======================== adjust_outputC) ========================

This procedure takes the compressed output which is in the '
form of words each containing 12 bits wide code from the '
procedure compress C) and packs these codes sequentially in the'
output. Thus, the last 4 bits C bits 9 thru 12) of the next '
code should fit in the 4 bits at the beginning of the current '
word C bits 1 thru 4). This is done for every couple of words.'

id adjust_outputC temp, input, oldsize, ptr_newsize)

uchar
uchar
unsigned

'•temp;
far '"'input ;
oldsize,
*ptr_newsize /'•« Size of the adjusted output. '''/

register
register

char
char

*ptr2 ;
far *ptrl ;

www.manaraa.com

374

char far *lastitem ;
unsigned quadsize ;

/* Get the even number of
/* elements in output buffer. */

quadsize = (oldsize/4) * 4 ;
lastitem = input + quadsize ;

/* Start adjusting the bits. */
for(ptrl=input, ptr2=temp; ptrl<lastitem; ptrl+=4)
{

/'• ptrl is pointing to b3 b4 bl •'>/
/='« hi hi b8 b5 b6 as seen in »/
/* memory, which in word form
/•>• is bl b2 b3 b4 b5 b6 b7 b8.

we want ptr2 to point to b2 •</
/b3 b4 b6 b7 b8 = cl c2 c3 »/
/where each b represents 4 »/
/" bits and each c represents */
I* one byte. -/

unsigned far '"0 ptrl «= 4 ;
/* *ptrl= b2 b3 b4 0 b7 bS b5 b6*/
/" "ptrl= tl t2 t3 t4 (t=byte). */

"Ptr2++ = *(ptrl +1) ; /* cl = t2. -/
/* c2 = tl bitor t3. */

*ptr2++ = '•'(ptrl) I *(ptrl + 3) ;
"Ptr2++ = *(ptrl + 2) ; /* c3 = b7 b8. */

}
/* If oldsize wasn't evenly
/" divisible by 4 then process

if(oldsize - quadsize) /'• the last element in the
/* output. '•/

{
"(unsigned *) ptr2 =

(:'((unsigned far •>'') lastitem) << 4 ;
ptr2 +=2; /* Adjust ptr2. */
}

/* Return the new size of output*/
/* in bytes. Ptr2 will always */
/••• be pointing one byte after */
/* the last byte. */

*ptr_newsize = ptr2 - temp ;
}
/,v END adjust_output() */
fit END fadjst.c */

15.9. File Fradjst.c

/*======================== readjust_input() =======================vt/

I* This function adjusts the form of the input data from strings of*/

www.manaraa.com

375

h' 12 bits codes to an array of words where each word corresponds */
/* to a 12 bit code. The left most 4 bits are set to zero. i.e. '•/
/* each word = integer value of the 12 bit code. */
/Vc===,V/

void readjust_input(temporary,input,inputsize,ptr_newsize)
char far '''temporary,'''input ;
uns igned inputsize,*ptr_newsize;

/''« Input contains the input data*
/''(before this function starts. *
/''f It contains the adjusted data*
/* when the function is done. *
/* Inputsize= size (in bytes) *
/* of data to be adjusted. *
/* Ptr_newsize = pointer to the *
/* size (in bytes) of the *
/* adjusted data. *

{
char char_temp;

/* Number of the input bytes *
unsigned trisize; /* divisible by 3. *

!" Points to the byte after the *
char *lastitem; /* trisize. *
register unsigned char *ptrl; /''= Points to the input data.
register unsigned char far *ptr2; /* Points to the adjusted data*

trisize=(inputsize/3)*3;
lastitem=input+trisize;

/* Initialize ptrl and ptr2 to *
/* point to the input start and *
/* the adjusted area start. Loop*
/* while we are inside the *
/* trisize region. *

for(ptrl= input, ptr2= temporary; ptrl< lastitem ;
ptrl +=3, ptr2 +=4)

{
*(ptr2 +2)= *(ptrl +2);
*(ptr2 +3)= *(ptrl +1) & OxOf;
char_temp=*ptr1 ;
(ptrl) =(ptrl +1);
*(ptrl+l)=char_temp;
*((unsigned far *) ptr2)= *((unsigned *) ptrl) >>4;
}

/* If inputsize was not divisible */
/* by 3 then adjust the last 12 */

if(inputsize-trisize) /* bits (2 bytes) and store it in */
/* *ptr2. */

{
*(unsigned far *)(ptr2)= (* (unsigned *) ptrl) >>4;
ptr2 += 2 ;

www.manaraa.com

376

}
/* Newsize = size (in bytes) of */
/* the readjusted code. */

*ptr_newsize=(ptr2-temporary) ;
}
/* END readjust_input()
/it END fradjst.c 'V/

www.manaraa.com

377

APPENDIX E. PROGRAM LIST OF METHOD LZlfB

www.manaraa.com

378

The files in this listing make use of the files in the following
sections :

- Appendix B: 13.9, 13.11, and 13.12.
- Appendix D: 15.2 - 15.9.

16.1. File Main.c

//include <stdio.h>
//include <memory.h>
//include <dos.h>
//include <io.h>
//include <fcntl.h>
//include <malloc.h>
//include <sys\types.h>
//include <sys\stat.h>
//define LINT_ARGS
//define FALSE 0
//define TRUE 1
//define HI_RES 6 640x200 graphics mode.
//define TEXT_MODE 3 /'•' Text mode.
//define ALPHABET_SIZE 256 /:(Size of alphabet.
//define MAX.SIZE 4096 / * Table size.
//define SCRN_SIZE 16004 /Vc 4 bytes for x & y sizes
//define uchar unsigned I char
//define findtimeC time) { tend=gttime();\

if(tend>tstart) time=tend-tstart;\
else time=(6000-tstart)+tend;}

static
static

int
char
unsigned

unsigned
unsigned
void
void
void
void

char far data_bufr[32000] ;
char work_bufr[27000];

h' Window coordinates.
xl=0, x2=639, yl=0, y2=199 ;
datafile[41];
bufr_size; /* Screen size in bytes.

gttimeO;
count_symbols(char char far *, unsigned) ;
decompress(unsigned *, char far *, unsigned)
compresse char * , char far * , unsigned '•) ;
dcmprs_lzw(char far * , char * , unsigned) ;
swapbytsCunsigned, unsigned, unsigned ,

unsigned , unsigned);

*/

*/

mainCargc, argv)
int argc;
char *argv[];

{
unsigned blksize;

www.manaraa.com

379

unsigned temp;
unsigned tstart, tend, cmprstime, dcmprstime, i;
float cmprsfactor;
char far *datafarptr=data_bufr ;
char far ''«workfarptr=work_bufr+A ;

if(argc < 6) /* No data was entered at
{ /*the command line. */

printf("enter xl yl x2 y2 \n");
scanf("%d %d %d %d",&xl,&yl,&x2,&y2);
while((getchar())!='\n')

}
else
{

xl=atoi(argv[2]); yl=atoi(argv[3]);
x2=atoi(argv[4]); y2=atoi(argv[5]);

}
if(argc > 1)

strcpyC datafile, argv[l]);
/'•' Read the data the from input '•<

init_screen(argc) ; /* file and dump'it to thescreen*
for(i=0;i<=55000;i++); /* A delay loop. »

/* Store the original block size*
cmprsfactor = (float)bufr_size ;
init_table() ; /* Initialize the tables. *

I* Get the block from the screen*
get(xl, yl, x2, y2, work_bufr) ; /* memory then display *
put(xl, yl, work_bufr) ; /* it again. We have to move and*

/* swap the bytes of the screen *
/* data from work_bufr to *
/* data_bufr since the latter is*
/* the input to both the comp- *
/* ression and the decompression*
/* functions. *

swapbyts(FP_OFF(datafarptr), FP_SEG(datafarptr),
FP_OFF(workfarptr), FP_SEG(workfarptr), bufr_size);

blksize=bufr_size;
setscmode(TEXT_MODE);
printfC" Compression is in progress \n") ;
tstart=gttime(); /* Record start of compression.

/* Count the run-lengths of black and white
/* colors, where run-lengths are limited
/* between 1 and 128, in the screen block
/* addressed by data_bufr+4. Put the code
/* for each run-length in work_bufr. The
/* size (in bytes) of the block is passed
/* in bufr_size. The count of the symbols
/* is returned by count_symbols() and
/* stored in "temp".

www.manaraa.com

380

temp=bufr_size =
count_synibols(work_bufr+4, data_bufr, bufr_size);

/Compress the data in work_bufr+4 using "/
/* Lempel-Zev-Welch algorithm and return '•'!
/* the compressed data in the work_buffer. 'V
/* The data_bufr is used for internal '•'/
/* manipulation within compressO and other*/
/* functions it calls. The size of the */
/* compressed buffer is returned in
/* bufr_size. */

compresse work_bufr+4, data_bufr, &bufr_size) ;
findtimeC cmprstime)
printfC" Now decompression is in progress \n") ;
init_table() ;
tstart=gttime(); /* Record start of decompression*/

/* Decompress the block compressed by LZW */
/* algorithm. */
/* work_bufr = compressed buffer, as input,*/
/* and decompressed buffer, as output. */
/* data_buffer = work area used inside */
/* decompressO and the function it calls. */
/* bufr_size = size of block compressed by */
/* LZW algorithm. */

decompress((unsigned *)(work_bufr+4), data_bufr, bufr_size);
/* Find the run-Lengths corresponding to */
/* the codes in the input work_bufr+4. Fill*/
/* data_bufr with the runs, temp = size of */
/* the symbols supplied by decompressO = */
/* size of the result of count_symb(). */

dcmprs_lzw(data_bufr, work_bufr+4, temp) ;
findtimeC dcmprstime)
movedataC FP_SEGCdatafarptr), FP_OFFCdatafarptr),

FP_SEGCworkfarptr), FP_OFFCworkfarptr), blksize);
setscmodeCHI_RES); /* Display data on the screen to*/
put(xl, yl, work_bufr); /* make sure the program is */

/* working. */
forC i=0; i<=55000; i++) ;
setscmodeCTEXT_MODE);
passparmtrsC datafile, xl, yl, x2, y2, temp) ;
printC cmprstime, dcmprstime,

cmprsfactor = cmprsfactor/bufr_size) ;

END mainO
END main.c

*/
*/

www.manaraa.com

381

16.2. File Contsym.c

/*
5V=! === === === = === ====:========== =================== =

A

update_cmprsdblk(unsigned no of pels,int color)
* screenbufr = pointer to uncompressed block.
* output = pointer to output containing the symbols (byte each)
* for the encountered run-lengths of black and white
* pels.
* currentword = pointer to current position, in words, in the
* uncompressed buffer.

nmbrwords = word length of of the uncompressed buffer. We assume
* xsize is evenly divisible by 16, i.e.
* xsize (in pels) is an exact number of words.

color = color of the pel.
* pelcolor = color of current pel (temporary storage).

word = cuurent word in uncompressed line.
* pelpos = { 16 for leftmost pel} {1 for rightmost pel },
* blocksize = size of uncounted (uncompressed) block, in bytes.
Vc===

*/

//include <stdio.h>
//include <dos.h>
//define LINT_ARGS
//define BLACKBIT 0
//define WHITEBIT 1
//define ENDBITS 2
//define update_cmprsdblk(pelcontr, color) \

{ if(color==WHITEBIT) \
output[syinbolcount++]= 127+pelcontr; \

else output[symbolcount++]=pelcontr-l; \
} •

void swapbyts(unsigned ''s unsigned *, unsigned) ;

/ic ===================== count_symbols() ========================= */

unsigned count_symbols (output, screenbufr, bloksize)
char -output, far *screenbufr;
unsigned bloksize ;

{
unsigned far ''«currentword;
int wordcount;
int color,lastcolor;
unsigned pelcontr=0, symbolcount;
register unsigned word,pelpos;

www.manaraa.com

382

symbolcount = 0 ;
I* Assume blocksize= 16 * constant,

wordcount=bloksize/2 ;
currentword=(unsigned far ''Oscreenbufr;
word=*currentword;

/'•' If the first pel is 1 then the
/:'(first color is white,
/* else
/* first pel is zero so the
/•« first color is black.
/* Negate the word so our way
I* of counting will work,
/''f We count from left to right.

if ((word)&0x8000)
{ color=WHITEBIT; }

else
{
color=BLACKBIT;
word=~word;
}

pelpos=16;
while(color<ENDBITS)

{
/* Do while not end of block.
I* Do while color is the same and
/vc current word hasn't changed.

whileC (word&0x8000)&&(pelpos>0))
{
pelcontr++;

/* If max run-length =128 of color
/* then send its symbol to the
/vc output.

if(pelcontr == 128)
{
update_cmprsdblk(pelcontr.color)

Start counting again.
pelcontr = 0;
}

pelpos — ; /* Decrease the count of unscanned
/''f pels in word. Move the next pel
/* to pel 16. word=word«l ;

}
if(pelpos>0)

{

*/

••••I

/'•' If still inside the current word*/

/* Make sure the last run-length '''/
/* was not 128. Then output the
/* symbol of the current '•/
/* run-length. '•/

if(pelcontr > 0)
update_craprsdblk(pelcontr.color)

word=~worcl; /* Negate the word so we can check
/* for the new color.
/* Flip the color to the new color.

color=(color) ? 0 : 1;
/* Start counting the new pels.

pelcontr=0;
}

else /'•« Else, all pels in current word

www.manaraa.com

383

pelpos=16;
currentword++;

{ /* were processed.
/'•' Start from the left most pel of

the next word.
If color is black we need to
negate word so our way of
counting can work.

word= (color) ? '''currentword : ~(*currentword);
if(—wordcount==0)

/* If end of block then output
{ /* the symbol of the run-length.

/'•« Make sure the last run-length
/'•' was not 128. Then output the
/* symbol of the current
/'•• run-length.

if(pelcontr > 0)
{
update_craprsdblk(pelcontr.color)
/'•' Signal end of block to the
/* outer loop.
color=ENDBITS;
}

}
}

}

'V/
<• - !

'V/

'V
'V

•••'I

/'•' signal the user if there was
I* an error.

if(color>ENDBITS)
printf("****** error in color, color=%d /n",color);

/* Return the number of symbols
/'•' sent to the output = size of
/'•' "newblock".

returnC symbolcount) ;
}
jit END count_symbols()
/,v END contsym.c */

16.3. File Dcmpsym.c

Find the run-length for each symbol and send it to the output. '•
size = size (in bytes) of input = number of symbols in input.*

* input = pointer to buffer containing symbols of run-lengths. -
* output = pointer to buffer having data ready to be put on the *
" screen. *
* dpelsremain = number of unfilled pels in current output byte.
* currentbyteptr= pointer to current output byte. *

include <memory.h>

www.manaraa.com

384

//include <dos.h>

static int dpelsremain;
static unsigned char far *currentbyteptr;
static unsigned char rightpelsbyte[]={0,0x01,0x03,0x07,OxOf,

Oxlf,0x3f,0x7f,Oxff};
static unsigned char leftpelsbyteE]={0,0x80,OxcO,OxeO,OxfO,

0xf8,0xfc,0xfe,0xff};

mmsetC unsigned, unsigned, char, unsigned);

/îV ========================= dcmprs_lzw ========================== */

dcmprs_lzw(output, input, size)
unsigned char far ''-output, '''input ;
unsigned size;
{

register unsigned input_index=0;
register unsigned code;

!" Set all output to black. ''•/
mmsetC FP_0FF(output), FP_SEG(output), '\0', 16000);
currentbyteptr=output;
dpelsremain=8; h' Fill bytes from left to right.
whileC input_index < size) /''« Do while there is more code.

{ /''' Get the next code.
code = input[input_index++] ;

/•f If it is a code for a white run-*/
/'•' length, output the run-length. ''•/

if(code >= 128)
update_dcmprs_white(code-127) ;

/''' Else, it is for a black run. ''•/
/''• Output that run. */

else
update_dcmprs_blak(code+1) ;

}
}
/,•: END lzw_dcmprs ''V

/vc ===================== update_dcmpr s_white ======================1';/

I* It takes runs of white pels and output them to output, i.e. ''«/
/* fills the output with them.
/''(

update_dcmprs_white(clrpels)
/''« Number of white pels to store *!
/* in the output. ''</

register int clrpels;
{

www.manaraa.com

385

register int difference;
/* Number of bytes we can fill */

unsigned nmbrbytes; /* with white completely. */

difference=clrpels-dpelsremain;
/* If we can fill one or more byte */
/* completely then, fill the pels */
/* remaining in the current byte. */

if(clrpels >= (dpelsremain+8))
{
*currentbyteptr |= rightpelsbyte[dpelsremain];

/" Find the number of bytes. We can*/
nmbrbytes=(difference)»3; /•• fill them completely. */
++currentbyteptr;
mmsetC FP_OFF(currentbyteptr),FP_SEG(currentbyteptr),

Oxff.nmbrbytes);
currentbyteptr +=nmbrbytes. /'• Adjust the pointer. '•'/

/* If difference MOD 7 is not */
I* equal to zero then there are
/* still more pels that we did not ''•/
/* outputed yet. So output them. */

if((difference=difference &0x7) !=0)
*currentbyteptr=leftpelsbyte[(difference)];

/* In the new byte dpelsremain '•</
I* = 8- pels outputed above. '•/

dpelsremain=8-(difference);
}

/* Else, we can't fill any byte -/
/* completely. */

else
{ /* If dpelsremain > clrpels, it */

/* means we can put the run inside */
if(difference<0) /* currentbyte. */

{
*(currentbyteptr) |= (rightpelsbyte[clrpels] <<

(dpelsremain-clrpels));
/* Adjust dpelsremain accordingly. */

dpelsremain -= clrpels;
}

/* Else, clrpels have to be */
/* outputted to more than one byte.*/
/* Fill the rest of the current */
/* byte. */

else
{
'•'currentbyteptr |=rightpelsbyte[dpelsremain] ;

/* Move to the next output byte and*/
/* and send to it the remaining of */

www.manaraa.com

386

/* clrpels. */
i'c(++currentbyteptr) =leftpelsbyte[difference] ;

/* Account for last step. */
dpelsremain=8- (difference);
}

}
}
/,v END update_dcmprs_white */

/" It take runs of black pels and output them to the output,i.e. '•/
/" fill output with them. */
/'• It works exactly like update_dcmprs_white() except no filling */
/" or outputing is done because output was initialized to zero at '•/
/" start of dcmprs_lzw() .
/it = = = = = = ====== = === ======= = = = === = === ==== = = = = = = === = = = = = = = = = = = = = = = = = = ,•;/

update_dcmprs_blak(clrpels)
register int clrpels;
{

register int difference;
unsigned nmbrbytes;

/'• Refer to comments above. */
difference=clrpels-dpelsremain;
ifCclrpels >= (dpelsremain+8))

{
nmbrbytes=(dif f erence)»3 ;
currentbyteptr +=nmbrbytes+l;
dpelsremain=8-(difference &0x7);
}

else
{
if(difference<0) /* Dpelsremain > clrpels. */

dpelsremain -=clrpels;
else

{
++currentbyteptr;
dpelsremain=8- (difference);
}

}
}
/* END update_dcmprs_black() */
/it END Dcmpsym.c */

www.manaraa.com

387

16.4. File Mmset.asm

; A program to set the specified portion of memory to the given
; initial value. This is a replacement for the "memset" function
; provide by the run-time library of the MS C compiler. The main
; difference is that this function can be used to initialize a
; portion of memory out of the current segment i.e. pointed to by
; a far pointer.
; Inputs :
; dest : far pointer to destination.
; chr : character to set memory to.
; bytecnt : number of bytes •
NAME MMSET
TITLE MEMORY SET OF FAR DATA ITEMS
PUBLIC _mmset

DEST_OFF EQU [BP+4]
DEST_SEG EQU [BP+6]
CHR EQU [BP+8]
BYTECONT EQU [BP+10]

DGROUP GROUP CONST, _BSS, _DATA
ASSUME CS: _TEXT, DS: DGROUP, SS: DGROUP, ES: DGROUP

_TEXT SEGMENT BYTE PUBLIC 'CODE'
ASSUME CS:_TEXT

_mmset PROC NEAR
PUSH BP
MOV BP,SP
PUSH DI
PUSH ES
MOV AX,DEST_SEG
MOV ES,AX
MOV DI,DEST_OFF
MOV BX,DI
MOV CX,BYTECONT
JCXZ DONE
MOV AL,CHR
MOV AH,AL
MOV DX,DI
SHR DX,1
JNB EVEN_OFFSET
STOSB
DEC CX

EVEN OFFS
MOV
SHR
REP
SHR
JNB

; SAVE THE REGISTERS

DX.CX
CX,1
STOSW
DX,1
DONE

www.manaraa.com

388

DONE;

_mmset
_TEXT
END
/,v

MOV
MOV

POP
POP
MOV
POP
RET
ENDP
ENDS

BYTE PTR ES:[DI],AL
AX.BX

ES
DI
SP.BP
BP

RETURN THE POINTER TO THE
DESTINATION.
RETRIEVE THE REGISTERS.

END Mmset.asm

16.5. File Swapfar.asm

NAME
TITLE

PUBLIC
DGROUP GROUP

SWAP
SWAP BYTES IN EACH WORD IN SOURCE AND
PUT THE RESULT IN DESTINATION
_swapbyts
CONST, _BSS, _DATA

ASSUME CS: _TEXT, DS: DGROUP, SS: DGROUP, ES: DGROUP

TO_OFFSET
TO_SEGMENT
FROMjOFFSET
FROM_SEGMENT
WORDCONT

EQU [BP+4]
EQU [BP+6]
EQU [BP+8]
EQU [BP+10]
EQU [BP+12]

_TEXT
_swapbyts

LOOPl;

SEGMENT
PROC
PUSH
MOV
PUSH
PUSH
PUSH
PUSH
MOV
MOV
MOV
MOV
MOV
MOV
MOV
LODSW
XCHG
STOSW
LOOP
POP
POP

NEAR
BP
BP,SP
DI
SI
ES
DS
AX,FROM_SEGMENT
DS,AX
AX,TO_SEGMENT
ES,AX
CX,WORDCONT
SI,FROMjOFFSET
DI,TO_OFFSET

AH,AL

LOOPl
DS
ES

www.manaraa.com

389

POP SI
POP DI
MOV SP,BP
POP BP
RET
ENDP _swapbyts

_TEXT ENDS
END
I* END Swapfar.asm

www.manaraa.com

390

APPENDIX F. PROGRAM LIST OF METHOD LZWBl

www.manaraa.com

391

The files in this listing make use of the files in the following
sections :

- Appendix B: 13.9, 13.11, and 13.12.
- Appendix D: 15.2 - 15.9.
- Appendix E: 16.1, 16.4, and 16.5.

17.1. File Dcmpsym.c

/it

* Refer to the comments in file dcmpsym.c
* in appendix E section 16.3.
*/

//include
//include
//define

static
static
static

<memory.h>
<dos.h>
uchar unsigned char

int dpelsremain;
uchar far *currentbyteptr;
uchar two_strings[]={

0x5, 0x9, Oxd, 0x11,
0x6, Oxa, Ode, 0x12,
0x7, Oxb, Oxf, 0x13};

static uchar three_strings []= {

0x29, 0x2a, 0x2b, 0x2c,
0x49, 0x4a, 0x4b, 0x4c,
0x31, 0x51, 0x32, 0x52,
0x39, 0x59, 0x3a, 0x5a

uchar *ptr_two_strings= two_strings;
uchar ''fptr_three_str ings= three_strings ;

mmsetC unsigned, unsigned, char, unsigned);

dcmprs_lzw(output, input, size)
unsigned
unsigned

{
register
register
unsigned

char far '''output, '"'input ;
size;

uns igned
unsigned
char temp;

input_index=0;
code;

mmset(FP_OFF(output), FP_SEG(output),'\0', 16000);
currentbyteptr=output;
dpelsremain=8;
whileC input_index < size)

code = input[input_index++] ;
if(code<200)

} ;

'•7

www.manaraa.com

392

{
if(code >= 100)

update_dcmprs_white(code-99) ;
else

update_dcmprs_blak(code+1) ;
}

Ise
{
ifCcode < 224)

{
temp= two_strings[(code-200)%12] ;
if (code <212)

{
update_dcmprs_blak(temp>>2);
update_dcmprs_white(temp&0x3);
}

else
{
update_dcmprs_Mhite(temp»2) ;
update_dcmprs_blak(temp&0x3);
}

}
else
{
temp= three_strings[(code-224)%16];
if(code<240)
{ /A bwb */
update_dcmprs_blak(temp»5) ;
update_dcmprs_white((temp»3)&0x3) ;
update_dcmprs_blak(temp&0x7);
}

else
{
if(code<256)

{ /* wbw */
update_dcmprs_white(temp»5) ;
update_dcmprs_blak((temp>>3)&0x3);
update_dcmprs_white(temp&0x7);
}

else
{ printfC eror in dcmpsym code > 256");}

}
}

}

END lzw_dcmprs() */

unsigned char rightpelsbyteL]={0,0x01,0x03,0x07,OxOf,
0x1f,Ox3f,0x7 f,Oxf f};

www.manaraa.com

393

static unsigned char leftpelsbyteE]={0,0x80,0xc0,0xe0,0xf0,
0xf8,0xfc,0xfe,0xff};

/î'c ==================== update_dcmprs_white() =====================!v/

update_dcmprs_white(clrpels)
register int clrpels;
{

register int difference;
unsigned nmbrbytes;

difference=clrpels-dpelsremain;
ifCclrpels >= (dpelsreniain+8))

{
*currentbyteptr |= rightpelsbyte[dpelsretnain];
nmbrbytes=(dif f erence)»3 ;
++currentbyteptr;
mmsetC FP_OFF(currentbyteptr),FP_SEG(currentbyteptr),

Oxff,nmbrbytes);
currentbyteptr +=nmbrbytes.
if((difference=difference &0x7) !=0)

'•'currentbyteptr=leftpelsbyte[(difference)] ;
dpelsremain=8-(difference);
}

else
{
if(difference<0)

{
'•'(currentbyteptr) |= (rightpelsbyte[clrpels] <<

(dpelsremain-clrpels));
dpelsreraain -= clrpels;
}

else
{
''«currentbyteptr |=rightpelsbyte[dpelsremain] ;
'V(++currentbyteptr) =leftpelsbyte[difference];
dpelsremain=8- (difference);
}

}
}
/'•' END update_dcmprs_white() '•/

/'• It takes runs of black pels and output them to the output, i.e. '*
/* it fills the output with them. •>''
/'•' It works exactly like update_dcmprs_white() except that no *
/* filling or outputting is done because the output was initialized*
/•< to zero at the start of dcmprs_lzw(). '<
/,•< ==,V

www.manaraa.com

394

update_dcmprs_blak(clrpels)
register int clrpels;
{

register int difference;
unsigned nmbrbytes;

difference=clrpels-dpelsremain;
ifCclrpels >= (dpelsremain+8))

{
nmbrbytes=(difference)>>3 ;
currentbyteptr +=nmbrbytes+l;
dpelsremain=8-(difference &0x7);
}

else
{
if (dif f erence<0) /'• dpelsremain > clrpels. */

dpelsremain -=clrpels;
else

++currentbyteptr ;
dpelsremain=8- (difference);
}

}
}
/a END update_dcmprs_black() '•/
/'• END Dcmpsym.c */

17.2. File Contsym.c

/*
* Refer to the comments in file contsym.c
* in appendix E section 16.2.

//include <stdio.h>
//include <dos.h>
//define LINT_ARGS
//define BLACKPEL 0
//define WHITEPEL 1
//define ENDPELS 2
//define uchar unsigned char

void init_cont_ _out(char *);
void update_cmprsdblk(unsigned, int);
unsigned int find_code_2(uchar)
unsigned int find_code_3(uchar) :
static unsigned symbolcount = 0 ;

www.manaraa.com

395

unsigned count_syinbols (output, screenbufr, bloks
char '"'output, far '-screenbufr;
unsigned bloksize ;

{
unsigned far *currentword;
int wordcount;
int color,iastcolor;
unsigned pelcontr=0;
register unsigned word,pelpos;

init_cont_out(output);
wordcount=bloksize/2 ;
currentword=(unsigned far ''Oscreenbufr;
word=*currentword;
if ((word)&0x8000)

{ color=WHITEPEL; }
else

{
color=BLACKPEL;
word=~word;
}

pelpos=16;
while(color<ENDPELS)

{
while((word&0x8000)&&(pelpos>0))

{
pelcontr++;
if(pelcontr == 100)

{
update_cmprsdblk(pelcontr,color)
pelcontr = 0;
}

pelpos—;
word=word<<l;
}

if(pelpos>0)
{
if(pelcontr > 0)

update_cmprsdblk(pelcontr,color)
word=~word;
color=(color) ? 0 : 1;
pelcontr=0;
}

else
{
pelpos=16;

www.manaraa.com

396

currentword++;
word= (color) ? -fcurrentword : ~(*currentword);
if(—wordcount==0)

{
if(pelcontr > 0)

{
update_cmprsdblk(pelcontr,color)
color=ENDPELS;
}

}

}
if(color>ENDPELS)

printf("****** error in color, color=%d /n",color);
returnC symbolcount) ;
}
/'• END count_symbols() */

//define two_strings_bw ((unsigned) (200-1))
//define two_strings_wb ((unsigned) (212-1))
//define three_strings_bwb ((unsigned) (224-1))
//define three_strings_wbw ((unsigned) (240-1))
//define start_two_strings(color) \

((color== 1) ? two_strings_bw : two_strings_wb)
//define start_three_strings(color) \

(color==0 ? three_strings_bwb : three_strings_wbw)

static char *cont_output;
static int string_num=l;
static unsigned sl,s2,s3;
static uchar temp;
static unsigned two_strings[]={

0x5, 0x9, Oxd, 0x11,
0x6, Oxa, Oxe, 0x12,
0x7, Oxb, Oxf, 0x13};

static unsigned three_strings []= {
0x29, Ox2a, 0x2b, 0x2c,
0x49, 0x4a, Ox4b, 0x4c,
0x31, 0x51, 0x32, 0x52,
0x39, 0x59, 0x3a, 0x5a };

/A===================== update_cmprsdblk()=========================vc/

void update_cmprsdblk(pelcontr, color)
unsigned pelcontr;
int color;

{
unsigned code;

switch(string_num)

www.manaraa.com

397

{
case 1 : {

if(color)
cont_output[symbolcount++]= 99 + pelcontr;

else
cont_output[symbolcount++]= pelcontr -1;

if(pelcontr<=4)
{
string_num ++;
sl=pelcontr;

break;
}

case 2 : {
if (pelcontr<=3)

{
temp=pelcontr | (sl<<2);
cont_output[symbolcount -1]=
start_two_strings(color)+find_code_2(temp);

if(sl<=2)
{
s2=pelcontr;
string_num++;
}

else
string_num=l;

}
else

{
if(color)

cont_output[symbolcount++]= 99 + pelcontr;
else

cont_output[symbolcount++]= pelcontr -1;
if(pelcontr<=4)

{
sl=pelcontr;
}

else
string_num=l;

}
break;
}

case 3 : {
string_num=l;
if((sl+s2+pelcontr) <= 7)

{
temp= pelcontr | (temp «3);
if (code=find_code_3(temp))

cont_output[symbolcount -l]=
code + start_three_strings(color);

www.manaraa.com

393

else
{
if(color)

cont_output[symbolcount++]=
99 + pelcontr;

else
cont_output[syinbolcount++] =

pelcontr -1;
if(pelcontr<=A)

{
string_nuin =2;
sl=pelcontr;
}

}

else
{
if(color)

cont_output[syiiibolcount++]= 99 + pelcontr;
else

cont_output[syinbolcount++]= pelcontr -1;
if(pelcontr<=4)

{
string_num =2;
sl=pelcontr;
}

}
break;
}

}
}
/* END update_cmprsdblk() */

/)'t====================== init_cont_out() ==========================>•:/

void init_cont_out(output)
char '-output;
{
cont_output=output;
}
/* END init_cont_out() 'V
/,v END Contsym.c */

17.3. File Scan2.asm

NAME SCAN2
TITLE SCANNING OF THE ALTERNATE TABLE TO FIND A MATCH
PUBLIC _find_code_2

CHARCODE EQU [BP+4] ; PASSED PARAMETER.

www.manaraa.com

399

DGROUP

_DATA
EXTRN
_DATA
TEXT

GROUP CONST, _BSS, _DATA
ASSUME CS: _TEXT, DS: DGROUP, SS : DGROUP, ES: DGROUP
SEGMENT
_ptr_two_strings:WORD
ENDS
SEGMENT BYTE PUBLIC 'CODE'

.find_code_2
PUSH
MOV
PUSH
PUSH
MOV
MOV
MOV

MOV
MOV

JNE
MOV

SUB
JMP

NOMATCH:
XOR

SCAN_DONE:
POP
POP
MOV
POP
RET

_find_code_2
_TEXT
END
/ *

PROC NEAR
BP
BP,SP
DI
ES
AX,DS
ES,AX
AX.CHARCODE

DI,_ptr_two_s
CX,12

REPNE SCASB

NOMATCH
AX,DI

AX,_ptr_two_s
SCAN_DONE

AX, AX

ES
DI
SP.BP
BP

ENDP
ENDS

; INITIALIZE THE REGISTERS.

; "CHARCODE" IS DEFINED IN
; FILE DCMPSYM.C. DI = POINTER TO
; THE TABLE HOLDING THE ELEMENTS
; OF TYPE CHARACTER TO BE EXAMINED
; IN THE SEARCH.

brings
; CX = SIZE OF TABLE.
; SCAN THE CHAR_TABLE STARTING FROM
; DI UP TO CX ELEMENTS. STOP WHEN
; THE FLAG BIT ZF IS SET TO 1
; IF ZF= 0 WE FINISHED THE SCAN
; BEFORE ANY MATCH. SO GO TO NOMATCH.
; ZF=1 SO WE HAD A MATCH. STORE
; LENGTH OF SCANNED CHARACTERS IN AX.

trings
; SCAN IS DONE.

; NO MATCH SO RETURN VALUE=ZERO.

END Scan2.asm -•>'</

17.4. File ScanS.asm

; REFER TO COMMENTS IN FILE SCAN2.C OF THIS APPENDIX.
NAME SCAN3

www.manaraa.com

400

TITLE
PUBLIC

CHARCODE

DGROUP

_DATA
EXTRN
_DATA

SCANNING OF THE THREE STRING TABLES TO FIND A MATCH.
_find code 3

EQU [BP+4] ; PASSED PARAMETER.

GROUP CONST, _BSS, _DATA
ASSUME CS: _TEXT, DS: DGROUP, SS: DGROUP, ES: DGROUP
SEGMENT
_ptr_three_strings:WORD
ENDS

SEGMENT BYTE PUBLIC 'CODE'
PROC NEAR
BP
BP,SP
DI
ES
AX,DS
ES,AX
AX,CHARCODE

DI,_ptr_three_str ings
CX,16
SCASB
NOMATCH
AX,DI
AX,_ptr_three_strings
SCAN_DONE
AX,AX

ES
DI
SP,BP
BP

ENDP
ENDS

_TEXT
_find_code_3

PUSH
MOV
PUSH
PUSH
MOV
MOV
MOV

MOV
MOV
REPNE
JNE
MOV
SUB
JMP

NOMATCH: XOR
SCAN_DONE:

POP
POP
MOV
POP
RET

_find_code_3
_TEXT
END
/* END Scan3.asm * /

www.manaraa.com

401

APPENDIX G. PROGRAM LIST OF METHOD LZWB2

www.manaraa.com

402

The files in this listing make use of the files in the following
sections :

- Appendix B: 13.9, 13.11, and 13.12.
- Appendix D: 15.2 - 15.9.
- Appendix E; 16.1 - 16.5.

18.1. File Dcmprs.c

" Refer to the
in appendix A/

//include
//include
//include
//define
//define
//define
//define
//define
//define

comments in file dcmprs.c
D section 15.3.

<memory.h>
<stdio.h>
<malloc.h>
uchar
MAX_SIZE
ST_MAX

SCRNzSIZE
ALPHABET SIZE

//defi ine

extern unsigned
extern uchar
extern int
static char
static unsigned

unsigned char
4096
1000
16004
256

update_string_table() \
{if(next_code < MAX_SIZE)\

{char_table[next_code]=code.k ;\
int_table[next_code] = oldcode;\
next_code++ ;}}

look_up() \
{code.w = int_table[CODE] ;\
code.k = char_table[CODE];}

int_table[l ;
char_table[] ;
next_code;
"Stack ;

stack_index=0;

char popO;
void readjust_input(uchar far *, uchar *, unsigned, unsigned '•);

/'•'========================== decompressC) ==============

decompress(decmprs_io, decmprs_work ,inputsize)
char *decmprs_io,far *decmprs_work;
unsigned inputsize;

{
unsigned
unsigned
unsigned
char
register

input_index=0;
oldcode,incode;
newsize ;
temp;
unsigned output_index=0;

www.manaraa.com

403

register
char
struct {

unsigned
finchar ;

CODE ;

char
unsigned
} code;

w;

char
unsigned far
char

*temp_ptr;
'''input;
*databufr;

stack = mallocC ST_MAX);
readjust_input(decmprs_work,decmprs_io,inputsize,&newsize);
inputsize=(newsize/2);
input= (unsigned far *) decmprs_work;
databufr=decmprs_io;
CODE= oldcode= input[input_index++];
look_up() /" — MACRO — find "code" components.*/
ifCCODE >= ALPHABET_SIZE) /••< First code = "w,k". */

{
if(code.w < ALPHABET_SIZE)

databufr[output_index++]=code.w;
else

temp=code.k;
CODE=code.w;
look_up()
databufr[output_index++]=code.w;
databufr[output_index++]=code.k;
code.k=temp;
}

}
databufr[output_index]=finchar=code.k;
while(input_index< inputsize)
{

CODE=incode=input[input_index++];
if(CODE >= next_code)
{

}
look_up()
while(code.w!=Oxffff)
{

push(code.k);
CODE=code.w;
look_up()

}
databufr[++output_index]=code.k;
finchar=code.k;
while(stack_index)

push(finchar);
CODE=oldcode;

www.manaraa.com

404

{
databufr[++output_index]=pop()
}

update_string_table()
oldcode=incode;

}
}
/* END decompressC)

/'•'============================== push() ===

push(item)
char item;

{
if(stack_index >= ST_MAX)
{

printfC " stack overflow in push \n")
return ;

}
stack[stack_index++] = item ;

}
/* END pushO

/,v============================== popO ==============

char popO
{

if(—stack_index < 0)
{

printfC" Stack underflow in pop \n")
return ('\0');

}
return stackCstack_index];

}
/,v END popO
/* END Dcmprs.c

18.2. File Tables.c

/*
* Refer to the comments in file tables.c
* in appendix 0 section 15.4.
*/

//include <stdio.h>
//include <memory.h>
//include <malloc.h>
//define MAX_SIZE 4096
//define ALPHABET_SIZE 256
//define uchar unsigned char

www.manaraa.com

405

unsigned
unsigned
int
unsigned
unsigned
unsigned

char

char

/* Define global varriables.
int_table[MAX_SIZE] ;
char_table[MAX_SIZE] ;
next_code ;
''<ptr_int_table=int_table;
*ptr_char_table=char_table;
extracalls=0 ;

*/

init_table()
{

}

register int index ;
char *datafile= "etables.dat";
char c;
FILE *in;
unsigned temp,"ptr_temp=&temp;

memsetC (char ''0 int_table,Oxff ,MAX_SIZE'-2) ;
for(index=0; index < ALPHABET_SIZE; index++)

char_table[index] = (short) index ;

/'V Open file to read data from. '•/
if((in=fopen(datafile,"r")) 1= NULL)
{

for(index=256; index<312; index++)
{
fscanfC in, "%u%u" ,S(int_table[index] ,ptr_temp) ;
char_table[index]=temp;
}

if(ferror(in))
{ /* If any error was encountered */

f * while reading the data then '•/
/* inform us and exit. */

prihtfC" Error in reading tables \n");
exit(O);
}

fcloseC in);
}
else

{
printfC ERROR
exit(O);
}

next_code = index;

/* File couldn't be opened for
/* some reasons.

Can't open input file");

END init_table()
/* END Tables.c • i,/

www.manaraa.com

406

APPENDIX H. PROGRAM LIST OF METHOD LZWl

www.manaraa.com

407

The files in this listing make use of the files in the following
sections :

- Appendix B: 13.9, 13.11, and 13.12.
- Appendix D; 15.1 - 15.9.

19.1. File Tables.c

//include
//include
//include
//define
//define
//define

unsigned
unsigned
uchar
unsigned
unsigned
uchar
int
unsigned

<stdio.h>
<memory.h>
<malloc.h>
MAX_SIZE
ALPHABET_SIZE
uchar

4096
256
unsigned char

/'• Definition of GLOBAL
/" variables.

wl_table[MAX_SIZE]
w2_table[MAX_SIZE]
w3_table[MAX_SIZE]
"Ptr_wl_table=wl_table;

'•ptr_w2_table=w2_table;
"Ptr_w3_table=w3_table;
next_code ;
extracalls=0 ;

h-'
/*
/,v

/* /'>
/* /'•c
/,V

in

{

*/

========================== init_table() =========================

This function initializes every element in int_table to a com
bination that will never occur. Since the code is only 12 bits
long then the 16 bits used to hold these codes are to be <=
Oxfff. For this reason in this program the Oxffff code is used
to solve the above problem. It should be noted that any combin
ation > Oxfff should work correctly as well.
Then the first 256 symbols in w2_table are initialized to 0-255.

it_table()

register int index ;
/* Set every byte in the
/" int_table to Oxffff (i.e.
/''• every code word = Oxffff) so
/* that no code will match with
/* it, because the actual codes
/••' are only 12 bits.

memsetC (char '0 wl_table,Oxff ,MAX_SIZE'''2) ;
/* Set 1st 256 of char_table to
/* be the extended ASCII codes.

for(index=0; index < ALPHABET_SIZE; index++)
w2_table[index] = index ;

www.manaraa.com

408

next_code = ALPHABET_SIZE;
}
/,v END init_table()
/* END Tables.: -

19.2. File Cmprs.c

//include
//include
//define
//define
//define
//define

<memory.h>
<malloc.h>
uchar unsigned
MAX_SIZE 4096
SCRN_SIZE 16004
update_tables(a,b,c)

//def ine iook_table2(w2,codec)

char

{ wl_table[next_code] = a;\
w2_table[next_code] = b;\
w3_table[next_code] = c;\
next_code++ ;}

{ w2=w2_table[codec]; }

extern
extern
extern
extern
extern
extern
extern

void
void

unsigned
unsigned
uchar
int
unsigned
unsigned
int

wl_table[]
w2_table[]
w3_table[]
next_code
extracalls
stackf];

st_index ;

/" wl_table[], w2_table[],
/* w3_table[] and next_code are
/" defined in tables.c.

/* Stack size.

adjust_output(uchar *, uchar far *, unsigned, unsigned
decompose(unsigned);

)

/'•'======================== compresse) ===============

compresse compress_io,compress_work, ptr_bufr_size)
uchar *compress_io, far *compress_work ;
unsigned *ptr_bufr_size ;

{
uchar
unsigned
char
unsigned
unsigned
register
unsigned
struct

uchar
unsigned
unsigned

"input;
far *output;
"ptr_new_0utput;
bufr_size;
code ;
unsigned
out_index=0
{
unsigned
unsigned
} string ;
w3, first_ch;
Li, Lj ;
position, indexl

data_index=0

wl;
w2;

www.manaraa.com

409

register unsigned j ;

input=compress_io;
output=(unsigned far *)compress_work;

/'• Li = first input element. */
Li= input[data_index++] ;

/" Lj = second input element. »/
Lj= input[data_index++] ;
first_ch = Lj ;
output[out_index++] = Li;
string.wl = Lj;
w3 = Lj ;

/" Find bufr_size. *
buf r_s ize='>ptr_buf r_s ize ;

/" Loop while there is mo-re input. *
whileC data_index < bufr_size)
{ /" Search for the largest block in ••

/" wl_table. *
whileC data_index < bufr_size)

{ /" Get 2nd element in the new block*
string.w2=input[data_index++] ;

/* See if wl.w2 is in tables. -
if(scan_w2(string.wl, string.w2, &r{ide))

/'•< wl.w2 is in the tables, so let
/'• new wl = wl.w2.

string.wl=code;
else /* wl.w2 was not in the tables. '•<
{ /•' First element of 2nd block = w2.*
first_ch=string.w2 ;

/'• Go to the second while loop and *
/'•' search for a table entry that '•
/" has wl and its w2 starts with w3*

break ;
}

/* We already searched for two '•
/* elements or more, so start *

position = 256 ; /'• searching after 256. '•
whileC data_index < bufr_size)

{
if(scan_w3(string.wl, first_ch, &code, position))
{ /* Start searching after code. *
position=code+l;
look_table2(string.w2, code)

/'•' st_index points to the last *
/* element on the stack. *

decomposeC string.w2) ;
indexl = data_index ;
if((bufr_size - indexl) >= st_index)
{ /* data_index is already pointing */

www.manaraa.com

410

to the element after w3 in the */
I* input so there is no need to '•/
I* compare it. The "for" loop will '•/
/* start comparing from indexl */
/* that should be equal to stackEl]*/

for(j=l;(j <= st_index) &
(input[indexl++]==stack[j]) ;)

{
j++;
}

if(j == (st_index+l))
{
string.wl=code ;

/'(data_index === w3+li
data_index += st_index ;
first_ch=input[data_index++] ;
}

else
{ ;
}

}
}

else
break ;

Lj = string.wl;
output[out_index++] = Lj;

/ I f t h e t a b l e s a r e n o t f u l l y e t , * /
if(next_code<MAX_SIZE)

I* then string —> string table, '•/
/'•' i.e put w and k in the wl_table »/
/* and w2_table respectively at the*/
/* position indexed by next_code, */

update_tables(Li, Lj, w3)
else

extracalls++ ;
Li = Lj ;
string.wl = first_ch ;
w3 = first_ch ;
}

/'•' Make sure the last symbol was */
/* sent to the output. */

if(data_index == bufr_size)
{
output[out_index] = input[bufr_size-l] ;
out_index++;
}

/* Pack the output codes from a ••/
I* string of words format to a */
I* string of 12 bits codes '•/

www.manaraa.com

411

/'• format. The input to */
I* ad just_output() is compress_ '•/
I* work. It sends the output in */
/'•' the final form in compress_io*/

adjust_output(compress_io ,compress_work,
2*out_index , ptr_bufr_size) ;

}
/,'t : END compresse) :'V
/* END Cmprs.c */

19.3. File Dcmprs.c

^include
//include
//include
//define
//define
//define
//define
//define

<memory.h>
<stdio.h>
<malloc.h>
uchar unsigned char
MAX_SIZE 4096
ST_MAX 1000
SCRN_SIZE 16004
update_wl2_table(wl,w2) \

{ wl_table[next_code]
w2_table[next_code]
next_code++ ;}

wl ;\
w2;\

Wl_table, w2_table and next_code ->•!

extern unsigned wl_table[] ; /'•' are defined globally in
extern unsigned w2_table[] ; h' tables.c.

Index of the next code in tables V
extern int next_code; !* not used yet.
extern unsigned stackE];

/* First unused element. Stack
extern unsigned st_index; /* grows upward. ••••/

void readjust. .inputCchar far char unsigned, unsigned '•) ;

/'> Input is in the form of 12 bits codes stored serialy. We have
to readjust them to integer format so we can store them and use

/'• them in the wl_table.
/* Inputsize is size of input in bytes.
/* decmprs_io= as input to decmprs it points to compressed data.
/* decmprs_io= as ouput of decmprs it points to decompressed data.
/* decmprs_work= pointer to a temporary area.
/,'(===

decompress(decmprs_io, decmprs_work ,inputsize)
char *decmprs_io, far *decmprs_work;
unsigned inputsize;

{

www.manaraa.com

412

unsigned input_index=0;
/* Size of the compressed data -/
/'• stored in a word form for each ''«/
/Vf code. It is equal to the size */

unsigned newsize ; I* of readjust_input() output. */
register unsigned output_index=0;
register unsigned j ;
unsigned wl, w2;
unsigned far '''input;
char 'Matabufr;

/'• Adjust the input from 12 bits */
I* serial codes into an array of »/
I* integers and then put the size -V
/* of the array in newsize. */

readjust_input(decmprs_work,decmprs_io,inputsize.&newsize);
inputsize=(newsize/2) ; /'• Find size of input code in words''-/
input= (unsigned far *) decmprs_work;
databufr=decmprs_io;
wl = inputfinput_index++] ;
databufr[output_index++] = wl ;
whileC input_index < inputsize)

{
w2=input[input_index++] ;
decomposeC w2) ;
j=0 ;

do
{
databufr[output_index++] = stack[j+-^] ;
}

whileC J <= st_index) ;
if(next_code < MAX_SIZE)

update_wl2_table(wl,w2);
wl = w2 ;
}

printf("\n") ;
}
/,v END decompressO ''V
/,'c END Dcmprs.c */

19.4. File Dcompose.c

//define TRUE 1
//define FALSE 0
//define MAX_SIZE 4096
//define look_up_wl2(xwl ,xw2,codec) \

{ xwl=wl_table[codec] ; \
xw2=w2_table[codec] ; }

www.manaraa.com

413

extern
extern
unsigned
int

unsigned wl_table[] ;
unsigned w2_table[] ;
stack[MAX_SIZE];
st_index ; /* Stack size.

void decomposeC code)
unsigned code ;

decomposeC)

int
register
unsigned

strngstk = 0 ;
unsigned wl, w2;
loopl,loop2 , strng[500];

ifCcode<256)
{
stack[st_index=0]=code;

return;
}

st_index = 0 ;
do

{
loopl=TRUE;
whileC loopl)

{
look_up_wl2C wl, w2, code)
strng[strngstk++] = w2 ;
ifC wl < 256)

{
stack[st_index++] = wl ;
loopl= FALSE;
}

else
code = wl ;

}
loop2=TRUE;
whileC Cloop2) & Cstrngstk>0))

{
w2 = strng[—strngstk] ;
ifC w2 < 256)

stack[st_index++] = w2 ;
else
{
code = w2 ;
loop2=FALSE;
}

}
}
whileC strngstk > 0 | C!loop2));

st_index— ;

www.manaraa.com

414

}
/it END decomposeO
f * END Dcompose.c

19.5. File Scanw2.asm

INPUT : (PARAMETERS PASSED BY CALLING SUBROUTINE)
1) W2_C0DE = CHARACTER PART OF THE CODE.i.e K.
2) W1_C0DE = UNSIGNED INTEGER PART OF THE CODE, i.e. W.
3) CODEADRS = ADDRESS OF CODE ,i.e. WHERE WE RETURN THE

CODE WHICH HAS W AND K EQUAL TO "INTCODE" AND
"CHARCODE" RESPECTIVELY.

OUTPUT :
1) THE FUNCTION RETURN VALUE = 1 IF A MATCH IS FOUND.

0 IF NO MATCH.

THE FUNCTION NEEDS TO SHARE THE FOLLOWING VARIABLES WITH WHOEVER
HAS THEM;

1) _ptr_w2_table = A POINTER TO FIRST ELEMENT IN CHAR_TABLE
2) _ptr_wl_table = A POINTER TO FIRST ELEMENT IN INT_TABLE
3) next_code = NUMBER OF F.IRST FREE CODE IN CHAR_TABLE.

= NUMBER OF FIRST FREE CODE IN INT_TABLE.
NAME SCAN
TITLE SCANNING OF THE Wl AND W2 TABLES TO FIND A MATCH
PUBLIC _scan. _w2

wl EQU [BP+4] ; PASSED PARAMETERS.
w2 EQU [BP+6]
ptr_code EQU [BP+8]

DGROUP GROUP CONST, . _BSS, _DATA
ASSUME CS: _TEXT, DS: DGROUP, SS: DGROUP, ES: DGROUP

_DATA SEGMENT
EXTRN _ptr_w2_table:W0RD
EXTRN _ptr_wl_table:WORD
EXTRN _next_code:WORD
_DATA ENDS

PROC NEAR
PUSH BP
MOV BP,SP
PUSH DI
PUSH SI
PUSH ES
MOV AX,DS
MOV ES, AX

; INITIALIZE THE REGISTERS TO THE

www.manaraa.com

415

LOOPl:

JNE
MOV

SUB

SUB

CMP

JE

NOMATCH:

MATCH:

JMP

MOV
JMP

SUB
SHR
DEC

MOV
MOV
MOV

SCAN_DONE :
POP
POP
POP

MOV AX,wl
MOV DX,w2

MOV SI,_ptr_w2_table

MOV DI,_ptr_wl_t3ble
MOV CX,_next_code

REPNE SCASW

NOMATCH
BX,DI

BX,_ptr_wl_table

BX,2

DX,[BX+SI]

MATCH

LOOPl

AX.O
SCAN DONE

DI,_ptr_wl_table
DI,1
DI

BX,ptr_code
[BX],DI
AX,1

ES
SI
DI

CORRESPONDING PARAMETERS PASSED
FROM THE CALLING PROGRAM.
SI = POINTER TO THE TABLE HOLDING
ELEMENTS OF CHARACTER TYPE. THIS
TABLE HOLDS THE SECOND PART TO BE
EXAMINED IN THE SEARCH.

DI = POINTER TO THE TABLE USED IN
THE SEARCH. IT HOLDS THE INTEGER
PART WE SCAN FOR.

CX = NEXT NUMBER NOT USED IN THE
TABLES YET.
SACN THE WORD TABLE STARTING
FROM DI UP TO CX ELEMENTS.
IF ZF= 0 WE FINISHED THE SCAN
BEFORE ANY MATCH. SO GO TO NOMATCH.
ZF=1 SO WE HAD A MATCH. STORE THE
LENGTH OF THE SCANNED WORDS IN BX.

GET NUMBER OF SCANNED WORDS.
ADJUST FOR LOOP INDEX STEPPING
ONE MORE WORD.
SINCE WE HAD A WORD MATCH,
SEE IF WE HAVE CHAR MATCH.
IF YES THEN WE HAVE A COMPLETE
MATCH. SO GO TO MATCH.
CHAR DID NOT MATCH SO TRY AGAIN
AS LONG AS CX (= REMAINING CODES TO
BE SEARCHED) NOT EQUAL TO ZERO.
IF CX REACHED ZERO BEFORE WE HAD
ANY MATCH THEN "JNE NOMATCH" WILL
DROP US TO NOMATCH:

NO MATCH SO RETURN ZERO IN AX.
SCAN IS DONE.
THERE WAS A MATCH SO MAKE DI =
LENGTH OF SCANNED WORDS.

MAKE DI = NUMBER OF SCANNED WORDS.
ADJUST FOR LOOP INDEX STEPPING
ONE MORE WORD.

www.manaraa.com

416

MOV SP,BP
POP BP
RET

_scan_w2 ENDP
_TEXT ENDS
END
/,v END Scanw2.asm

19.6. File Scanw3.asm

REFER TO COMMENTS IN FILE SCANW2.ASM IN THIS APPENDIX.
NAME SCAN_W3
TITLE SCANNING OF THE
PUBLIC _scan_w3

wl EQU [BP+4-]- ; PASSED
w3 EQU [BP+6]
ptr_code EQU [BP+8]
position EQU [BP+10]

DGROUP GROUP CONST, . _BSS, _DATA
ASSUME CS: _TEXT, DS: DGROUP, SS: DGROUP, ES: DGROUP

_DATA SEGMENT
EXTRN _ptr_w3_table:W0RD
EXTRN _ptr_wl_table:WORD
EXTRN _next_code: WORD
_DATA ENDS

.scan_w3

LOOPl:

PROC NEAR
PUSH BP
MOV BP.SP
PUSH DI
PUSH SI
PUSH ES
MOV AX,DS
MOV ES,AX
MOV AX.wl
MOV DL,w3
MOV SI,_ptr_ .w3_table
MOV BX,position
MOV DI,_ptr_ .wl_table
SHL BX,1
ADD DI.BX
MOV CX,_next ._code
SUB CX,position
JZ NOMATCH

REPNE SCASW

www.manaraa.com

417

NOMATCH;

MATCH:

JNE NOMATCH
MOV BX.DI
SUB BX,_ptr_wl_table
SHR BX,1
DEC BX
CMP DL,[BX+SI]
JE MATCH
JMP LOOPl

MOV AX,0
JMP SCAN_DONE

SUB DI,_ptr_wl_table
SHR DI,1
DEC DI
MOV BX,ptr_code
MOV CBX],DI
MOV

• •
AX,1

t •
POP ES
POP SI
POP DI
MOV SP,BP
POP BP
RET

_scan_w3
_TEXT
END
/,v

ENDP
ENDS

END Scanw3.asm

www.manaraa.com

418

APPENDIX I. PROGRAM LIST OF METHOD LZW2

www.manaraa.com

419

The files in this listing make use of the files in the following
sections :

- Appendix B: 13.9, 13.11, and 13.12.
- Appendix D: 15.1 - 15.9.
- Appendix H: 19.1 and 19.3 - 15.6.

20.1. File Cmprs.c

//include
//include
//define
//define
//define
//define
//define
//define

<memory.h>
<malloc.h>
uchar
MAX_SIZE
SCRN_SIZE
TRUE
FALSE

unsigned
4096
16004
1
0

char

//def i ine

update_tables(a,b,c)

look_table2(w2,codec)

{ wl_table[next_code] = a;\
w2_table[next_code] = b;\
w3_table[next_code] = c;\
next_code++ ;}

{ w2=w2_table[codec]; }

extern
extern
extern
extern
extern
extern
extern

void
void

/" wl_table[],
/* w3_table[]
I* defined in

unsigned wl_table[]
unsigned w2_table[]
uchar w3_table[]
int next_code
unsigned extracalls
unsigned stack[MAX_SIZE];
int st_index : /* Stack size

w2_table[], */
and next_code are
tables.c. */

*/

ad just_output(uchar ''s uchar far unsigned, unsigned ») ;
decomposeCunsigned);

/)•(======================== compresse) ===============

compresse compress_io,compress_work, ptr_bufr_size)
uchar *compress_io, far '•compress_work ;
unsigned *ptr_bufr_size ;

{
uchar
unsigned
char
unsigned
unsigned
register
unsigned
struct

'•'input;
far ''^output;
*ptr_new_output;
bufr_size;
code ;
uns igned
out_index=0 ;
{
unsigned
unsigned
} string

data_index=0

wl;
w2;

www.manaraa.com

420

uchar w3, first_ch;
unsigned Li, Lj ;
unsigned Longblk, loop3 ;
int bigstk ;
unsigned position, indexl ;
register unsigned j ;

input=compress_io;
output=(unsigned far ''Ocompress_work;

I* Li = first input element */
Li= input[data_index++] ;

/" Lj = second input element. ••/
Lj= input[data_index++] ;
first_ch = Lj ;
output[out_index++] = Li;
string.wl = Lj;
w3 = Lj ;

/" Find bufr_size. *
bufr_size=*ptr_bufr_size;

/* Loop while there is more input.
while(data_index < bufr_size)
{ /* Search for the largest block in *

/* wl_table. "
while(data_index < bufr_size)

{ /* Get 2nd element in the new block*
string.w2=input[data_index++] ;

/* See if wl.w2 is in tables. '•
if(scan_w2(string.wl, string.w2, &code))

/'• wl.w2 is in the tables, so let =•
/'• new wl = wl.w2. *

string.wl=code;
else /:'(wl.w2 was not in the tables.
{ /* First element of 2nd block = w2.*
first_ch=string.w2 ;

/'•" Go to the second while loop and •'
/search for a table entry that =•
h' has wl and its w2 starts with w3*

break ;

}
/* We already searched for two *
/* elements or more, so start *

position = 256 ; I* searching after 256. *
while(data_index < bufr_size)

{
if(scan_w3(string.wl, first_ch, &code, position))
{ I* Start searching after code. */
longblk = string.wl ;
bigstk = -I ;
loop3 = TRUE ;

www.manaraa.com

421

whileC loop3)
{
look_table2(string.w2, code)

/* st_index points to last element '''/
/* in stack. */

decomposeC string.w2) ;
indexl = data_index ;

if(((bufr_size - indexl) >= st_index) &
(st_index > bigstk))

{ /* Data_index is already pointing
/* to the element after w3 in the */
/'• input so no need to compare it. *!
/'•' The for loop will start •«/

comparing from indexl which */
should be equal to stack[l], -/

for(j=l;(j <= st_index) &
(input[indexl++]==stack[j]);)

{
j++;
}

if(j == (st_index+l))
{
bigstk = st_index ;
longblk = code ;
}

}
position = code + 1;

if(scan_w3(string.wl, first_ch,
&code, position))

else
loopS = FALSE ;

}
if(string.wl == longblk)

break ;
else
{
string.wl = longblk ;
position = longblk + 1 ;
data_index += bigstk ;
first_ch = input[data_index++] ;
}

}
else

break ;
}

Lj = string.wl;
output[out_index++] = Lj;

/* If the tables are not full yet, '•/
if(next_code<MAX_SIZE)

www.manaraa.com

422

}
•/it
h<-

/* then string —> string table, */
/* i.e put w and k in the wl_table */
/* and w2_table respectively at the*/
/* position indexed by next_code.

update_tables(Li, Lj, w3)
else

extracalls++ ;
Li = Lj ;
string.wl = first_ch ;
w3 = first_ch ;
}

/* Make sure the last symbol was
/* sent to the output.

decomposeC output[out_index - 1]);
if(data_index == bufr_size)

{
output[out_index] = inputEbufr_size-l] ;
out_index++;
}

/* Pack the output codes from a
/* string of words format to a
/* string of 12 bits codes
/* format. The input to

*/

*/

*/

*/
*/
-•••/

*/
/* adjust_output() is compress_ */
/)'(work. It sends the output in */
/* the final form in compress_io*/

adjust_output(compress_io ,compress_work,
2*out_index , ptr_bufr_size) ;

END compresse)
— END Cmprs.c -

•* /

-* /

www.manaraa.com

423

APPENDIX J. PROGRAM LIST OF METHOD LZW3

www.manaraa.com

424

The files in this listing make use of the files in the following
sections :

- Appendix B: 13,9, 13.11, and 13.12.
- Appendix D: 15.1 - 15.9.
- Appendix H: 19.3 and 15.4.

21.1. File Cmprs.c

//include <memory.h>
//include <malloc.h>
//define uchar unsigned char
//define MAX_SIZE 4096
//define SCRN_SIZE 16004
//define TRUE 1
//define FALSE 0
//define update_tables(a,b,c)

{ wl_table[next_code] = a;\
w2_table[next_code] = b;\
((char w4_table)[(2*next_code)+l!
((char w4_table)[2*next_code]
next_code++ ;}

= c.second;\
= c.first;\

extern
extern
extern
extern
extern
extern
extern

void
void

unsigned
unsigned
uchar
int
unsigned
unsigned
int

wl_table[]
w2_table['
w4_tableL]
next_code
extracalls
stack[];
st_index ;

/* wl_table[],
/* w4_table[]
/* defined in

/* Stack size.

w2_table[],
and next_code
tables.c.

are '•7
*/

decompose(unsigned);
adjust_output(uchar , uchar far unsigned, unsigned •');

compress(compress_io,compress_work, ptr_bufr_size)
uchar '''compress_io, far *compress_work ;
unsigned '••ptr_bufr_size ;

{
uchar '-input;
unsigned far *output;
char '•fptr_new_output;
unsigned bufr_size;
unsigned code ;
register unsigned
unsigned out_index=0 ;
struct word {

uchar first;
uchar second;

data index=0

www.manaraa.com

425

} Liword, Ljword;
unsigned Li, Lj ,old_Lj ;
unsigned longblk;
int bigstk ;
unsigned position, indexl ;
register unsigned j ;

input=compress_io;
output=(unsigned far ''Ocompress_work;

/* Li = first input element.
Li= input[data_index++] ;
output[out_index++] = Li;
Liword.first=Li;

h' Lj = second input element. -/
Lj = input[data_index++] ;
Liword.second = Lj;
Ljword.first = Lj;
bufr_size=*ptr_bufr_size; /''• Find bufr_size. »/

/" Loop while there is more input. '•/
while(data_index < bufr_size)

{
Ljword.second= input[data_index];
position = 256; /* Start searching after 256. */
longblk = Lj;
bigstk = -1 ;
whileC data_index < bufr_size)

{
if(scan_w4(Ljword, &code, position))

{
/'• st_index points to the last '•</
/* element on stack. */

decomposeC code) ;
indexl = data_index ;
if(((bufr_size - indexl) >= st_index) &

(st_index > bigstk))
{
for(j=l;(j <= st_index) &

(inputE indexl++]==stack[j]);)
{
j++;
}

if(j == (st_index+l))
{
bigstk = st_index ;
longblk = code ;
}

}
position = code + 1;

}
else

www.manaraa.com

426

break ;
}

old_Lj=Lj;
if(Lj == longblk)

5
else

{
Lj = longblk ;
data_index += bigstk ;
}

output[out_index++] = Lj;
/* If the tables are not full yet, '•/

if(next_code<MAX_SIZE)
/* then string —> string table, */
!'•' i.e put w and k in the wl_table '•/
/" and w2_table respectively at the*/
/* position indexed by next_code. */

update_tables(Li, Lj, w3)
else

extracalls++ ;
Li = Lj ;
Liword=Ljword;
Lj = Ljword.first = input[data index++];
}

/* Make sure the last symbol was */
/* sent to the output. */

if(data_index == bufr_size)
{
output[out_index] = input[bufr_size-l] ;
out_index++;
}

'* Back the output codes from a */
* string of words format to a */
* string of 12 bits codes */
* format. The input to */
* adjust_output() is compress_ */
* work. It sends the output in */
* in the final form in */
compress_io. */

adjust_output(compress_io ,compress_work,
2*out_index+l, ptr_bufr_size) ;

}
/* END compresse) */
fit END Cmprs.c */

21.2. File Tables.c

//include
//include

<stdio.h>
<memory.h>

www.manaraa.com

427

//include
//define
//define
//define

<malloc.h>
MAX_SIZE
ALPHABET_SIZE
uchar

4096
256
unsigned char

gned
gned
gned
gned
gned

unsigned
int
unsigned

uns
uns
uns
uns
uns

/* Definition of GLOBAL
/* variables.

wl_table[MAX_SIZE]
w2_table[MAX_SIZE]
w4_table[MAX_SIZE]
''fptr_wl_table=wl_table;
*ptr_w2_table=w2_table;
*ptr_w4_table=w4_table;
next_code ;
extracalls=0 :

/'•'
h-<
/'•c
/'V
/'•'
/,V
/ *
/,'c=

ini

{
register int index ;

}
/,v-
/•!<-

END init_table()
— END Tables.c —

*/
*/

========================= init_table() =========================

This function initializes every element in int_table to a com
bination that will never occur. Since the code is only 12 bits
long then the 16 bits used to hold these codes are to be <=
Oxfff. For this reason in this program the Oxffff code is used
to solve the above problem. It should be noted that any combin
ation > Oxfff should work correctly as well. Then the first 256
symbols in w2_table are initialized to 0-255.

t_table()

/* Set every byte in the
/* int_table to Oxffff (i.e.
/* every code word = Oxffff) so
/* that no code will match with
/* it, because the actual codes
/* are only 12 bits.

memsetC (char '•) w4_table,0xff ,MAX_SIZE*2) ;
memset((char *) wl_table,0xff,MAX_SIZE*2);

/ S e t 1 s t 2 5 6 o f c h a r _ t a b l e t o
/* be the extended ASCII codes.

for(index=0; index < ALPHABET_SIZE; index++)
w2_table[index] = index ;

next_code = ALPHABET_SIZE;

'V 'V/
'•7

'V

.,V/

www.manaraa.com

428

21.3. File ScanwA.asm

NAME SCAN_W4
TITLE SCANNING OF THE W4-TABLE
PUBLIC _scan_w4

LI_WORD EQU [BP+4]; PASSED PARAMETERS.
ptr_code EQU [BP+6]
position EQU [BP+SÎ

DGROUP GROUP CONST, _BSS, _DATA
ASSUME CS: _TEXT, DS: DGROUP, SS: DGROUP, ES: DGROUP

_DATA SEGMENT
EXTRN _ptr_w4_table:W0RD
EXTRN _next_code: WORD
_DATA ENDS

.scan_w4
PUSH
MOV
PUSH
PUSH
PUSH
MOV
MOV

MOV

LOOPl:

NOMATCH:

MATCH:

MOV
MOV
SHL
ADD
MOV

SUB
JZ

REPNE

JNE

MOV
JMP

PROC NEAR
BP
BP,SP
DI
SI
ES
AX,DS
ES,AX

AX,LI_WORD

DI,_ptr_w4_table
BX,position
BX,1
DI,BX
CX,_next_code ;

CX,position
NOMATCH

SCASW

NOMATCH

AX,0
SCAN_DONE

INITIALIZE REGISTERS TO THE
CORRESPONDING PARAMETERS PASSED
FROM THE CALLING PROGRAM.
DI = POINTER TO THE TABLE USED IN
THE SEARCH. IT HOLDS THE FIRST
AND SECOND CHARACTERS FOR
EACH CODE.

CX = NEXT NUMBER NOT USED IN THE
TABLES YET.

SCAN THE WORD TABLE STARTING FROM
DI UP TO CX ELEMENTS. BIT ZERO IS
ZERO. IF ZF= 0 WE FINISHED THE SCAN
BEFORE ANY MATCH. SO GO TO NOMATCH.

NO MATCH SO RETURN ZERO IN AX
SCAN IS DONE.
THERE WAS A MATCH SO STORE 1 IN
FOUND.

www.manaraa.com

429

SUB
SHR
DEC

MOV
MOV
MOV

SCAN_DONE:
POP
POP
POP
MOV
POP
RET

_scan_wA
_TEXT
END
/,v

DI,_ptr_w4_table
DI,1
DI

BX,ptr_code
[BX],DI
AX,1

ES
SI
DI
SP.BP
BP

ENDP
ENDS

MAKE DI = LENGTH OF SCANNED WORDS.

MAKE DI = NUMBER OF SCANNED WORDS.
ADJUST FOR THE EFFECT OF THE ONE
MORE WORD LOOP STEPPING.
SCAN WILL RETURN AX = CODE = NUMBER
OF WORDS SCANNED TILL WE FOUND A
MATCH (i.e. INDEX OF THE MATCHED
ELEMENT IN EITHER TABLE) .

END Scanw4.asm

www.manaraa.com

430

APPENDIX K. TABLE USED IN METHOD LZWB-2

www.manaraa.com

431

Table 22.1. Extended LZW tables to be used with
method LZWB2-B

Symbol String w k

256 01 0 128
257 Oil 0 129
258 0111 0 130
259 01111 0 131
260 011111 0 132
261 0111111 0 133
262 10 128 0
263 110 129 0
264 1110 130 0
265 11110 131 0
266 111110 132 0
267 1111110 133 0
268 001 1 128
269 0011 1 129
270 00111 1 130
271 001111 1 131
272 0011111 1 132
273 00111111 1 133
274 100 128 1
275 1100 129 1
276 11100 130 1
277 111100 131 1
278 1111100 132 1
279 11111100 133 1
280 0001 2 128
281 00011 2 129
282 000111 2 130
283 0001111 2 131
284 00011111 2 132
285 000111111 2 133
286 1000 128 2
287 11000 129 2
288 111000 130 2
289 1111000 131 2
290 11111000 132 2
291 111111000 133 2
292 00001 3 128
293 000011 3 129
294 0000111 3 130
295 00001111 3 131
296 000011111 3 132
297 0000111111 3 133
298 10000 128 3

www.manaraa.com

432

Table 22.1. (Continued)

Symbol String w k

299 110000 129 3
300 1110000 130 3
301 11110000 131 3
302 111110000 132 3
303 1111110000 133 3
304 000001 4 128
305 0000011 4 129
306 00000111 4 130
307 000001111 4 131
308 0000011111 4 132
309 00000111111 4 133
310 100000 128 4
311 1100000 129 4
312 11100000 130 4
313 111100000 131 4
314 1111100000 132 4
315 11111100000 133 4
316 0000001 5 128
317 00000011 5 129
318 000000111 5 130
319 0000001111 5 131
320 00000011111 5 132
321 000000111111 5 133
322 1000000 128 5
323 11000000 129 5
324 111000000 130 5
325 1111000000 131 5
326 11111000000 132 5
327 111111000000 133 5
328 00000001 6 128
329 000000011 6 129
330 0000000111 6 130
331 00000001111 6 131
332 000000011111 6 132
333 0000000111111 6 133
334 10000000 128 6
335 110000000 129 6
336 1110000000 130 6
337 11110000000 131 6
338 111110000000 132 6
339 1111110000000 133 6
340 010 256 0
341 0100 256 1
342 01000 256 2

www.manaraa.com

2 2 .

mbol

343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386

433

(Continued)

String w k

010000 256 3
0100000 256 4
01000000 256 5
010000000 256 6
0010 268 0
00100 268 1
001000 268 2
0010000 268 3
00100000 268 4
001000000 268 5
0010000000 268 6
00010 280 0
000100 28U 1
0001000 280 2
00010000 280 3
000100000 280 4
OOOIOOOOOO 280 5
OOOIOOOOOOO 280 6
000010 292 0
0000100 292 1
00001000 292 2
000010000 292 3
0000100000 292 4
00001000000 292 5
000010000000 292 6
0000010 304 0
00000100 304 1
000001000 304 2
0000010000 304 3
00000100000 304 4
000001000000 304 5
0000010000000 304 6
00000010 316 0
000000100 316 1
0000001000 316 2
00000010000 316 3
000000100000 316 4
0000001000000 316 5
00000010000000 316 6
000000010 328 0
0000000100 328 1
00000001000 328 2
OOOOOOOIOOOO 328 3
0000000100000 328 4

www.manaraa.com

434

Table 22.1. (Continued)

Symbol String w k

387 00000001000000 328 5
388 000000010000000 328 6
389 0110 257 0
390 01100 257 1
391 011000 257 2
392 0110000 257 3
393 01100000 257 4
394 011000000 257 5
395 0110000000 257 6
396 00110 269 0
397 001100 269 1
398 0011000 269 2
399 00110000 269 3
400 001100000 269 4
401 0011000000 269 5
402 00110000000 269 6
403 000110 281 0
404 0001100 281 1
405 00011000 281 2
406 000110000 281 3
407 0001100000 281 4
408 00011000000 281 5
409 000110000000 281 6
410 0000110 293 0
411 00001100 293 1
412 000011000 293 2
413 0000110000 293 3
414 00001100000 293 4
415 OOOOIIOOOOOO 293 5
416 0000110000000 29 3 6
417 00000110 305 0
418 000001100 305 1
419 0000011000 305 2
420 00000110000 305 3
421 000001100000 305 4
422 0000011000000 305 5
423 00000110000000 305 6
424 000000110 317 0
425 0000001100 317 1
426 00000011000 317 2
427 000000110000 317 3
428 0000001100000 317 4
429 00000011000000 317 5
430 000000110000000 317 6

www.manaraa.com

435

Table 22.1. (Continued)

Symbol String w k

431 0000000110 329 0
432 00000001100 329 1
433 000000011000 329 2
434 0000000110000 329 3
435 00000001100000 329 4
436 000000011000000 329 5
437 0000000110000000 329 6
438 OHIO 258 0
439 011100 258 1
440 0111000 258 2
441 01110000 258 3
442 011100000 258 4
443 0111000000 258 5
444 01110000000 258 6
445 001110 270 0
446 0011100 270 1
447 00111000 270 2
448 001110000 270 3
449 0011100000 270 4
450 00111000000 270 5
451 001110000000 270 6
452 0001110 282 0
453 00011100 282 1
454 000111000 282 2
455 0001110000 282 3
456 00011100000 282 4
457 000111000000 282 5
458 0001110000000 282 6
459 00001110 294 0
460 000011100 294 1
461 0000111000 294 2
462 00001110000 294 3
463 000011100000 294 4
464 0000111000000 294 5
465 00001110000000 294 6
466 000001110 306 0
467 0000011100 306 1
468 00000111000 306 2
469 000001110000 306 3
470 0000011100000 306 4
471 00000111000000 306 5
472 000001110000000 306 6
473 0000001110 318 0
474 00000011100 318 1

www.manaraa.com

436

Table 22.1. (Continued }

Symbol String w k

475 000000111000 318 2
476 0000001110000 318 3
477 00000011100000 318 4
478 000000111000000 318 5
479 0000001110000000 318 6
480 00000001110 330 0
481 000000011100 330 1
482 0000000111000 330 2
483 00000001110000 330 3
484 000000011100000 330 4
485 0000000111000000 330 5
486 00000001110000000 330 6
487 011110 259 0
488 0111100 259 1
489 01111000 259 2
490 011110000 259 3
491 0111100000 259 4
492 01111000000 259 5
493 011110000000 259 6
494 0011110 271 0
495 00111100 271 1
496 001111000 271 2
497 0011110000 271 3
498 00111100000 271 4
499 001111000000 271 5
500 0011110000000 271 6
501 00011110 283 0
502 000111100 283 1
503 0001111000 283 2
504 00011110000 283 3
505 000111100000 283 4
506 0001111000000 283 5
507 00011110000000 283 6
508 000011110 295 0
509 0000111100 295 1
510 00001111000 295 2
511 000011110000 295 3
512 0000111100000 295 4
513 00001111000000 295 5
514 000011110000000 295 6
515 0000011110 307 0
516 00000111100 307 1
517 000001111000 307 2
518 0000011110000 307 3

www.manaraa.com

437

Table 22.1. (Continued)

Symbol String w k

519 00000111100000 307 4
520 000001111000000 307 5
521 0000011110000000 307 6
522 00000011110 319 0
523 000000111100 319 1
524 0000001111000 319 2
525 00000011110000 319 3
526 000000111100000 319 4
527 0000001111000000 319 5
528 00000011110000000 319 6
529 000000011110 331 0
530 0000000111100 331 1
531 00000001111000 331 2
532 000000011110000 331 3
533 0000000111100000 331 4
534 00000001111000000 331 5
535 000000011110000000 331 6
536 000000001 7 128
537 0000000011 7 129
538 00000000111 7 130
539 000000001111 7 131
540 0000000011111 7 132
541 00000000111111 7 133
542 100000000 128 7
543 1100000000 129 7
544 11100000000 130 7
545 111100000000 131 7
546 1111100000000 132 7
547 11111100000000 133 7
548 1000000001 542 128
549 10000000011 542 129
550 100000000111 542 130
551 1000000001111 542 131
552 11000000001 543 128
553 110000000011 543 129
554 1100000000111 543 130
555 11000000001111 543 131
556 111000000001 544 128
557 1110000000011 544 129
558 11100000000111 544 130
559 111000000001111 544 131
560 1111000000001 545 128
561 11110000000011 545 129
562 111100000000111 545 130

www.manaraa.com

438

Table 22.1. (Continued)

Symbol String w k

563 1111000000001111 545 131
564 0000000001 8 128
565 00000000011 8 129
566 000000000111 8 130
567. 0000000001111 8 131
563 00000000011111 8 132
569 000000000111111 8 133
570 1000000000 128 8
571 11000000000 129 8
572 111000000000 130 8
573 1111000000000 131 8
574 11111000000000 132 8
575 111111000000000 133 8
576 10000000001 570 128
577 100000000011 570 129
578 1000000000111 570 130
579 10000000001111 570 131
580 110000000001 571 128
581 1100000000011 571 129
582 11000000000111 571 130
583 110000000001111 571 131
584 1110000000001 572 128
585 11100000000011 572 129
586 111000000000111 572 130
587 1110000000001111 572 131
588 11110000000001 573 128
589 111100000000011 573 129
590 1111000000000111 573 130
591 11110000000001111 573 131
592 00000000001 9 128
593 000000000011 9 129
594 0000000000111 9 130
595 00000000001111 9 131
596 000000000011111 9 132
597 0000000000111111 9 133
598 10000000000 128 9
599 110000000000 129 9
600 1110000000000 130 9
601 11110000000000 131 9
602 111110000000000 132 9
603 1111110000000000 133 9
604 100000000001 598 128
605 1000000000011 598 129
606 10000000000111 598 130

www.manaraa.com

439

Table 22.1. (Continued)

Symbol String w k

607 100000000001111 598 131
608 1100000000001 599 128
609 11000000000011 599 129
610 110000000000111 599 130
611 1100000000001111 599 131
612 11100000000001 600 128
613 111000000000011 600 129
614 1110000000000111 600 130
615 11100000000001111 600 131
616 111100000000001 601 128
617 1111000000000011 601 129
618 11110000000000111 601 130
619 111100000000001111 601 131
620 000000000001 10 128
621 0000000000011 10 129
622 00000000000111 10 130
623 000000000001111 10 131
624 0000000000011111 10 132
625 00000000000111111 10 133
626 100000000000 128 10
627 1100000000000 129 10
628 11100000000000 130 10
629 111100000000000 131 10
630 1111100000000000 132 10
631 11111100000000000 133 10
632 1000000000001 626 128
633 10000000000011 626 129
634 100000000000111 626 130
635 1000000000001111 626 131
636 11000000000001 627 128
637 110000000000011 627 129
638 1100000000000111 627 130
639 11000000000001111 627 131
640 111000000000001 628 128
641 1110000000000011 628 129
642 11100000000000111 628 130
643 111000000000001111 628 131
644 1111000000000001 629 128
645 11110000000000011 629 129
646 111100000000000111 629 130
647 11110000000000011111 629 131

	1987
	An investigation of storage and communication codes for an electronic library
	Mansour Alsulaiman
	Recommended Citation

	tmp.1415644925.pdf.AlIwx

