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1. INTRODUCTION

1.1. Statement of the Problem

The library plays an important role in the academic community and
the community at large. With advancement in electronic technology, it
is desirable to use this technology in order to make the library more
accessible to its users. It is desirable to have a library system where
the user can dial up the library and access its information. The data
sent should be a complete duplicate of the data in the library and not
part of it, This research tries to look at one aspect of this system,
namely, at the methods of compressing these data for storage and trans-

mission.

1l.2. Features and Assumptions of the Solution
The receiver in this electronic library system is assumed to
originate his connection from a microcomputer. The microcomputer was
chosen, instead of a dump terminal, because it provides the following
necessary services to the system:

a) The receiver has a processing power which is needed
to decompress the received data.

b) The receiver has storage facility. This allows the
sender to send more than one page to a receiver. The
receiver will work on the received data till he needs
more data. This decreases the load that the sender has
to manage and allows the system to service more receivers
than if the receiver has to ask for the data page by

page.

c) The display is of electronic form and not mechanical.
Hence, the display time will be very fast. In addition



to that, it will be negligible compared to the decom-
pression time. Other forms such as facsimile are great-
ly affected by the mechanical requirements of the re-
ceiver.

In addition to the above services, the microcomputer is widely
available. Hence, it is the best choice as the receiver in the electronic
library system.

The microcomputer chosen for this research is the IBM PC, and its
compatibles. Chapter 3 contains a description of some features of this
class of microcomputers related to this thesis. The investigation carried
out with this class of computers can be extended to other computers.

Since the sender is a big library system, we can assume that it is
more powerful than the receiver. Hence, the compression time, that we
get by simulating the compression algorithms in the microcomputer, will

not be a decision factor in choosing the algorithm, unless, of course,

all other factors are the same.

1.3. Thesis Organization

Chapter 2 is a review of some compression algorithms used in fac-~
simile transmission and "Lempel and Ziv" compression algorithm. From
the methods we reviewed for facsimile transmission, we chose two
methods that will be investigated in Chapter 4. Chapter 3 has a de-
scription of some features of the computer this research was carried
on, some implementation considerations or difficulties, and some char-
acteristics of the data the system needs to store and/or transmit.

Chapters 4, 5, 6, 7, and 8 investigate the use of some compression al-



gorithms to compress the computer screen. These algorithms are:

a)

b)

c)

Two methods used for compressing documents in facsimile
transmission. These methods are investigated in Chapter
4, This investigation showed the need for another class
of algorithms. The new algorithms should be able to
detect more redundancy in the data than the two algorithms
we investigated. The next chapters contain an investi-
gation of these new algorithms.

Lempel, Ziv, and Welch compression algorithms is inves-
tigated in Chapter 5.

Variations of the Lempel and Ziv algorithm are investi-
gated in Chapters 5, 6, and 7. These variations try to
improve both the algorithm itself and the form of using
it, and match these improvements to the data to be com-
pressed.

Chapter 8 presents a general analysis of the previous methods.

Finally, Chapter 9 presents the conclusion of these investigations.



2. LITERATURE REVIEW

2.1. Review of Facsimile Transmission

An investigation of the type of data that the library possesses
showed that text and graphics represent most of the data (refer to Chap-
ter 3). Facsimile transmission is used to transmit such data; hence,
it is desirable to look at the research in this field and benefit from
it in solving the problem proposed in Chapter 1.

Facsimile transmission has been used since 1843 [1]. Facsimile
machines consisted of electrical and mechanical systems and did not use
any data compression techniques. Only in the beginning of the 1970s did
some machines use a form of compression. In this review of a modern
facsimile machine, we are interested only in the compression techniques
it used and not in its actual structure. For an excellent source of
facsimile history, development, and detailed implementation refer to
[1].

The following is a review of the research in facsimile transmission.
As 1s customary in the field, the name will be shortened to facsimile.
Sometimes, it will be abbreviated to FAX in this thesis. In this re-
view, we look at the literature in a chronological order. We will not
look at all of the available literature, but we will present what we
think is a representation of the available literature from the points
of view of the content of the literature and the directions of the re-
search in facsimile.

As an example of second generation facsimile machines, we look at



the system described in referemce [2]. The points in this paper related
to this review are the following:

1) Although there were studies made on redundancy techniques,
none of them was widely accepted. The reason was the un-
availability, at that time, of economical methods to imple-
ment them. Advances in digital techniques and development
of integrated circuits made implementing these techniques
economically feasible.

2) The coding method used was to send the code of the run-
length of white picture elements (pels) and send the black
pels pel by pel.

3) For the high rate it was transmitting at, 50 Kbits/s, it
took 20 microseconds to transmit a bit of information.
This time was long enough for the recorder to guarantee
sufficient exposure time for each black pel. Sending run-
length of the black pels would not give enough time for
the recorder to expose the black pels it should record.
So, the advantage of fast transmission rate was compensated
by the time increase due to sending each black pel alone.
This also decreased the compression factor.

4) The paper reported a compression factor equal to 5. It also
reported that other methods, that did not use this high
transmission rate but used a Huffman code, had a compres-
sion factor equal to 5.7.

5) It took an average of 7 s to transmit an A4 size (8.5 x
11 in) page.

6) The paper used a variable scan rate that depended on the
content of the scan line. This means when the scanner
reached a black pel, it would remain 19 microseconds so
the next scan would be 20 microseconds from the beginning
of this scan. When it reached a white pel, it would scan
normally till it reached a black pel, then it would send
the run-length of the white pels.

Reference [3] gave some techniques for using the correlation be-
tween pels from line to line. It did this by ordering, in a buffer,
pels or error prediction of current line based on information from cur-

rent line and/or previous line. After all current line is processed,



the content of the buffer is run-length coded.

The buffer filling was tried using the following methods:

1)

2)

3)

Each pel in line i+l is put to the left (right) of the
buffer if the same pel in the previous line is white
(black).

Each pel in line i+l is predicted to be the same as the
pel in line i. The error in prediction is ordered as in
method 1, i.e., if the same pel in line i is white (black),
the error prediction is put to the left (right) of the
buffer.

Each pel in line i+l is predicted depending on its state.
The state of a pel was defined as the three pels in line

i nearest to the pel plus the pel to its left in line i+l.
The prediction error is put to the left (right) if the pre-
diction is good (bad). The ordered buffer is then sent

as run-length codes. A prediction is classified as a good
one if its probability is bigger than a threshold (0.8);
otherwise, it is a bad one (note that a probability is
defined to be at least 0.3).

These methods gave a compression factor that is 30-50% better than

the one of a one dimensional run-length coding. It was also shown to be

10-18% better than the compression factor of another ordering technique

suggested by Preuss (refer to discussion of reference [4]).

Reference [5] is a continuation of the work in [3] done by the

same authors.

It used the ordering technique that depends on the state

of the pel as described in the discussion of [3]. It had the follow-

ing enhancements:

1)

2)

3)

It used 7 previous pels instead of 4.

The threshold of a good prediction was raised from 0.8
to 0.9.

The statistics of the prediction were averaged from the
8 standard documents suggested by the International
Telegraph and Telephone Consultative Committee, known as
CCITT.



4) The first sequence of 00...0l in the buffer would not
be sent.

5) Each line was ordered from either left-to-right (forward)
or right-to-left (reverse) depending on which direction
gave better result, i.e., needed less bits.

The method was tried on all the 8 CCITT documents and an average of
417 decrease in the transmission time compared to the transmission time
obtained using the modified Huffman code was reported.

Reference [0] is an invited paper by Huang which reviewed some of
the coding methods available at its time. The paper gave three heuristic

concepts used in facsimile coding. They are the following:

1) Skipping white: Only the black elements will be sent and
the rest of the document is assumed to be white.

2) Transmitting only boundary points: It is perhaps fair to
say that the majority of the current efficient coding
schemes are based directly or indirectly on this concept.
Examples of how this is done are sending the address of
the boundary points, counter tracking these points, and
approximating boundaries by piecewise linear or polynomial
curves, Later, the paper gave more practical examples.

3) Pattern recognition.

Some mathematical models were given, corresponding entropies were
derived, and numerical examples of their values were given. The white
block skipping scheme was shown in one and two dimensions. It was also
shown how to make it adaptive. Run-~length coding was discussed and a
mathematical model and experimental results were given. Two forms of
predictive differential quantization were also given. Preuss code was

presented as another form of an extension of run-length coding. Besides,

the paper noted the following general trends:



1) For low resolution, 100 pels per inch (ppi), one dimen-
sional coding techniques were usually preferred because
of the ease of implementation and because they gave com~
pression factor comparable to the one of the two dimen-
sional coding.

2) For high resolution, greater than 200 ppi, two dimensional
coding techniques may give considerably higher compres-
sion factor and be preferred in spite of their implementa-
tion complexity.

Reference [4] was an attempt to compare some of the codes submitted
to CCITT for standardization of group 3 facsimile machines. It looked
at some one and two dimensional coding techniques.

The one dimensional techniques were all run~length coding tech-
niques. They differed according to the code assigned for the runs. One
of these techniques that used the Modified Huffman (MH) code would be
the one dimensional standard recommended by CCITT.

The two dimensional codes were:

1) The Kalle-Infotec code: It works on a pair of consecutive
lines that are segmented into black and white runs. The
runs for both lines together are coded with an adaptive
run-length code which changes its word length between 2
and 8 bits according to the local statistics of the docu-
ment.

2) The Kokusai Denshin Denwa code: It is similar in principal
to the EDIC code that we will discuss later.

3) Preuss code: Sometimes, it is referred to as the TUH
(Technical University of Hannover). In this code, each
pel is predicted from the nearest 3 pels in the previous
line and the pel to its left in the current line. These
4 pels form a state for that pel. For each pel, the code
uses its state to predict its value., A value of O or 1
is inserted in its place in the current line depending on
the prediction error. For each state (16 states) the run
length between its prediction errors is coded using a
truncated Huffman table. Each state has its own table
which is constructed from statistics of type written text.



Among the two dimensional techniques, the TUH had the biggest
compression factor specially for documents filled with a lot of text.
The three one dimensional methods had almost the same compression fac-
tor, but MH had the biggest ome.

Two dimensional techniques yielded a considerable gain (average =
16%) over one dimensional techniques only for high resolution. For low
resolution, the difference between one dimensional and two dimensional
techniques was minimal specially for text documents.

Reference [7] discussed the features and design of a display proc-
essor that can output both text and graphics to a display at the same
time. The processor consisted of two data paths that operated in paral-
lel. The data from both paths were logically ORed together and output
to the display.

The first path was the character generator that changed the text
information from code (ASCII code and/or control code) to a bit map
representation of the characters. The text format was variable so dif-
ferent sizes could be output. This meant that text could have sub-
script, superscript, invert, and other formats. The second path was
the FAX generator that took compressed data of an image, decompressed
it, and then sent it to the display so it could be superimposed on the
output of character generator.

The display resolution was 120 pels/in horizontally and 96 lines/in
vertically. The images to be superimposed were assumed to have large

empty areas (i.e., white color) and tended to have large numbers of
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horizontal and vertical lines. The resolution of the scanner was the
same as the one of the screen. The main goals were to have a fast
method of decompression that could decode the compressed data without
using any image buffer to store the complete picture, and the decoding
method should be simple to be implemented. This was done by decoding
the screen part by part from top to bottom then restarting this proc-
ess again. The compression/decompression method used was a combination
of block coding (refer to discussion of [8] below), simple run-length
coding, and very simple prediction. Since this method was not designed
to give an optimum compression factor, this review will not discuss it
furthermore.

Reference [9] described the Edge Difference Coding (EDIC) tech-
nique. This technique looks at the current and previous line from left
to right looking for the next two color changing pels, and then defines
a state out of the following three states:

1) State S1: One transition pel is in the current line
and the other one is in the previous line.

2) State S2: Both transition pels occur in the preceding
line.

3) State S3: Both transition pels occur in the current
line.

The states are then coded as follows:

1) State Sl: A code for the distance between the two pels
would be sent.

2) State S2: A code to signal that this state had happened
would be sent.

3) State S$3: For each of the two transition pels, a code
of the run length that ended before it would be sent.
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Reference [10] is a short review of facsimile development and its
current state from the point of view of speed, technologies used, and
specific machines. It covers both analog and digital facsimile. One
example of analog facsimile decreased transmission time Ey bandwidth
reduction. Another analog facsimile decreased transmission time by
scanning faster, on the sender and receiver, over white areas. No re-
dundancy reduction algorithm was presented.

Reference [11] discusses a system that uses a method called Combined
Symbol Matching (CSM) for facsimile compression. The system works in the
following two stages:

1) Symbol Matching: In this stage, the system tries to find
the basic symbols, e.g., alphanumeric characters, of the
document. It scans for symbols till it finds one. Then,
it will compare the found symbol with the library of sym-
bols the system encountered before. The comparison uses
some symbol features as a preliminary screening before it
performs the bit map comparison. If a match is found, the
symbol number in the library will be sent with its rela-
tive location from the previous symbol. If no match is
found, the symbol with its features and bit map will be
added to the library and its bit map, width, height, and
location will be sent to the receiver. Any symbol that is
sent is replaced by white space. After all symbols are
processed, the next step starts.

2) Residue Coding: By residue, it is meant the document
without the symbols sent in stage 1. This residue is
coded by a two dimensional run-length ccding and sent to
the receiver.
The compression factor found by this method for compressing the
CCITT documents (resolution was 200 x 200 lines/in = 8 x 8 pels/mm)
is a 2 to 3 times READ's (Relative Element Address Designate) compression

factor for document 5 and about the same for document 2. A pattern recog-
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nition was tried and resulted in compression factor greater than 250

for compressing a business letter.

We would like to make note of the following points:

1

2)

3)

There were some overhead bits sent whether symbols
were matched or not. No matching has higher overhead.

The paper allowed for small error in matching the symbols.
When it tried exact matching, a decrease of 50% in the
compression factor was reported.

The code was asynchronous., For each matched symbol, some
overhead (e.g., shift up or down, distance to previous
block) was needed to be sent, whereas for each non-matched
symbol its size and its distance to the previous symbol
were sent. For each line, the location of the first pel
on the line and a flag to indicate if there was a symbol
or not would be sent. These overheads complicate the cod-
ing and decrease the compression factor.

Reference [12] is an invited paper that gives an overview of digital

facsimile coding techniques in Japan. The author classified the two

dimensional information preserving codes into line by line coding and

simultaneous coding of n lines. For simultaneous coding, he gave the

following three examples:

1

2)

Mode Run Length Coding: It examines n lines at the same
time., For each horizontal pel location, a state is defined
depending upon the corresponding pels in the n lines.

The code sent is the run~length code of the state with a
variable length code for state to state transition.

Coding by Zig-Zag Scanning: The pels are read in a zig-zag
way (i.e., we jump from reading a pel in line i to reading
another pel in line i+l, then we go back and read a new
pel in line i, and so forth). A simple run length coding
of the encountered bits does not work well. One technique
to solve this problem is to predict the pel based on the
three pels read before it. Then, the runs of correct and
erroneous predictions are run length coded by a suitable
code for each of them.
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3) Cascade Division Coding: This is almost similar to the
block coding in [8].

The author mentioned that recent trend had recognized line by line
coding as the most favorable approach for two dimensional coding. He
then gave the following examples of line by line coding:

1) Two Dimensional Prediction Coding: It is one of the
earliest proposals. Other coding methods such as Preuss'
or the one in [4] had this method as a step within many
steps. So, we will not discuss it.

2) Relative Address Coding (RAC): It has the same general
principals of PDQ and EDIC. The author suggested that
although PDQ was known first, RAC was one of the landmarks
in the history of facsimile. He attributed this to the
fact that PDQ was not described as a practical coding
scheme and no comparison with simultaneous coding scheme
was available. 'But RAC was the first method to present
the fact that line-by-line coding could, indeed, give
better compression factor than simultaneous coding. It
works by sending the code that specifies the positions
of the changing elements in each line. The position of
each changing element is sent by sending the code of the
shortest following two distances: the distance between
the current changing element and the previous one in the
same line, or the distance between the current element
and the nearest one in the line before it,.

3) Edge Difference Coding (EDIC): It was explained in our
discussion of [9].

4) Coding by Rearranging Picture Elements: This is divided
into microscopic and macroscopic rearrangements. The method
by Mounts et al. [5] is similar to but more advanced than
the microscopic method the author reviewed. The macro-
scopic rearrangement is done by finding the size of the
characters and then arranging the characters of each line
at its left. The arranged image is then coded by micro-
scopic coding.

5) Coding by Classified Pel (CP) Station: The basic idea is
similar to Preuss' method; hence, we will not discuss it.

6) Relative Element Address Designate (READ) Coding: It
combines features of RAC and EDIC. A modification of it,



14

called Modified READ (MREAD), was accepted by CCITT as the
standard code for two dimensional coding (refer to dis-
cussion of [13]).

Reference [13] describes the CCITT standard for one and two dimen-

sional coding of documents for facsimile transmission. This standard

has been drafted by Study Group XIV of CCITIT as recommendation T.4 for

what is called Group 3 facsimiie machines. The elements of this stand-

ard that are important to us are the following:

1)

2)

3)

4)

Resolution: Each scan line on an A4 size document is
divided into 1728 pels. The normal vertical resolution
is 3.85 lines/mm. A higher vertical resolution of 7.7
lines/mm is available as an option.

Timing: Due to mechanical limitation of some machines
(specially in the recorder part), a minimum transmission
time is assured for each line so that the sender and the
receiver can be synchronized together.

The one dimensional code: It was decided to use a run-
length coding technique. Huffman coding was chosen because
of its good compression factor. The paper reported that

an experiment showed that the error recovery of Huffman
code was comparable to other codes. Instead of coding

the length from 0 to 1728, it was decided to limit the

size of the table by using make-up words. Hence, this
table was named the modified Huffman table.

The two dimensional code: Several proposals were submitted.
The committee chose READ (suggested by Japan) and added
some modifications to it. Hence, the code is called the
modified READ (MREAD). The committee found the compres-
sion factor of READ to be the same as the one of other
proposals. But READ was chosen because it has been imple-
mented in a large number of commercial machines (Japan
depends a lot on facsimile, refer to [12]).

Then the paper also discussed the error recovery of both the one

and two dimensional standards. This error recovery will not be discussed

in this review. It also gave some simulation results of one and two
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dimensional standards applied to the CCITT documents.

Reference [14] derived the entropy of RAC method, a scheme based
on non-Markovian grammar. It gave numerical examples to prove the cor-
rectness of this derivation and the wrongfulness of another method,
presented by other authors, which used 2nd order Markovian model. The
error in the numerical values was an order of magnitude.

Reference [15] is a modification of Preuss' method. In this method,
after predicting the new line from the old one and finding the predic-
tion errors for each state, the length to be coded is the length from
the state first correct prediction, in a sequence consisting of the
same states,‘to_the current state error in this sequence.

Reference [8] has many good points besides its coding method. So,
we will present its steps in the following:

1) It used a set of masks to remove notches and pinholes
from the scanner output. The notches are mostly caused
by the presence of imperfections in the scanning process.
Removing these nothces improves the coding efficiency
and, to a certain extent, improves image quality.

2) For every single black pel between two or more whites,
another one is inserted before it. This is necessary
so that no loss of information will occur after the next
step.

3) The image is subsampled in horizontal and vertical direc-
tions by taking every other pel in these two directions.
Hence, resolution is reduced by a factor of 4.

4) The picture is divided into blocks of certain size called
Initial Picture Block (IPB). If the IPB is not either
all white or all black it is divided into 4 subpictures
blocks (SPB) and a code of the division is sent. Each SPB
is tested to check 1f it is all white or.all black, if no

further division is made. When an all white or an all black
SPB is found, a code for it is sent. The division con-
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tinues (if no all white or all black is found) till an
SPB of size 4, called basic picture block (BPB), is
reached. The BPBs are Huffman conded according to the
position of the black pels among its 4 pels.

5) The received data are used to construct the subsampled
data which are interpolated to get the original data.
Three methods of interpolation were used, namely, bi-
linear, replication, and B-spline. Subjective tests were
made and led to the conclusion that bilinear was almost
the best of the three methods. An average of 207% de-
crease in quality was noticed in these tests.

6) Due to the interpolation, some extra points might be
generated. Some restoration matrices were used with two
of the interpolation methods to get rid of these points.

The CCITT documents were scanned and compressed. The compression
factors were compared with the ones of the MH (in original and sub-
sampled form) code and found to be better. But, if we compare the ra-
tio of its compression factor to the one of the MH subsampled, it is
found to be almost the same as between MREAD and MH (neither MREAD nor
MH in this case is subsampled). So, no big gain in compression factor
was due to the coding method itself, except maybe for document 2. The
following three IPB sizes were used: 8 x 8, 16 x 16, and 32 x 32 pels.
Bigger sizes were not used and the paper suggested that no further
substantial increase in compression factor could be achieved in this
way. The compression factor generally increased with the size increase
of IPB. This is maybe due to the extra overhead bits needed in cod-
ing smaller IPB sizes.

Reference [16] 1s an example of progressive image transmission

technique. It transmits defined pieces of the image till the whole image

is transmitted. The benefit is that most of the details can be seen
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faster and we may stop at a stage before sending the whole data and
still get a good image. It transmits in 7 stages as follows:

1) Every line numbered a multiple of 16 is transmitted
with 1/4th of the horizontal resolution.

2) Another line out of 16 is transmitted at the same hori-
zontal resolution. Each of these lines will be in the
middle of two previously transmitted lines (i.e., in
stage 1 we transmitted lines 1, 16, 32,... and in stage
2 we transmitted lines 8, 24, 40,...).

3) One of 8 lines is transmitted. These lines (numbered
4, 12, 20,...) are in the middle of lines transmitted
in stage 1 and stage 2. So, after stage 3, every fourth
line is received at 1/4th of the horizontal resolution.
4) The horizontal resolution of transmitted lines is
doubled. So, every fourth line is received at half reso-
lution.

5) One out of 4 lines (e.g., lines 2, 6, 10, 1l4,...) is
transmitted at half resolution.

6) The horizontal resolution for previously transmitted
lines is doubled. So, at the end of this stage, all
lines are with full resolution. These lines are the
even lines.

7) The odd numbered lines are transmitted at full horizontal
resolution.

The lines sent at each stage are coded using CCITT code (both one
dimensional and two dimensional). WNote, that for half horizontal reso-
lution, each element is replaced by two pels on the screen.

The paper suggested that stage 5 could be considered as the last
stage for screen display since it requires 864 pels/line and 1188
lines/page which is the resolution limit of high resolution monitors.

Reference [17] is another progressive transmission technique. It

has four stages. The image is sampled at 1/4th of both the horizontal
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and vertical resolutions. These samples are coded by one dimensional
code and the codes are sent to the receiver that interpolates the miss-
ing pels. In the next thfee stages, run length codes of the prediction
errors of the remaining pels are transmitted. The prediction used pre-
viously transmitted pels as the reference for prediction.

Reference [18] presented an experimental system of facsimile
comnunication using packet switched data network (PDSN). Facsimile
is usually sent by telephone over public switched telephone network
(PSTN). The paper gave the communication protocols and the needed
processors for the experimental system. It also used the facsimile
standard of group 3 machines.

Reference [19] described features of an apparatus for fast docu-
ments transmission over a 1.536 Mbits/s satellite link without re-
dundacy reduction. It presented new techniques for recording a sys-
tem and its control procedure.

Reference [20] presented error sensitivity of both the one and
two dimensional facsimile coding standards. As expected, it was found
that two dimensional coding was more affected by errors than the one
dimensional coding. The paper discussed ways to stop the error effect
from spreading throughout the page.

Reference [21] described a facsimile compression system that uses
a symbol matching technique. It used the same principal as in [11] with
some modifications and presented more details of both the symbol match-

ing and the features extraction. It had two more features to be ex-
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tracted than the features in [1l]. It reported that these two features
offeved higher degree of symbol identification. The paper also showed
that some signal modification techniques, applied before the two dimen-
sional coding, resulted in a typical 147 improvement over regular two
dimensional coding.

Reference [22] used a symbol matching technique similar to the one
in [11] and [21]. It was more enhanced, more optimized, and did not have
residue coding. The main advantages of this new technique are the fol~
lowing:

1) It matches not only symbols but also nonsymbol patterns.
A nonsymbol pattern was defined as a pattern of certain
size and window, and that has a black pel in it which is
connected to other black pels outside the pattern. An
example of this is parts of vertical and horizontal lines.
the symbol is defined as a pattern that has connected
black pels, is totally surrounded by white pels, and fits
inside a window. This allows the method to efficiently
code graphics. So, all black data are coded and no resi-
due is left, This, of course, implies a white back-
ground.

2) The symbols in a line are stored and arranged in a buf-
fer before sending them to the receiver. This resulted
in efficient coding. Example of this efficiency is that
it arranges the same symbols after each other and does
the following: the code of a repeated symbol (i.e., its
library number) is sent first for its first occurrence.
Then, for the coming consecutive occurrences of this
symbol, we send a shorter code (3 bits) that signals the
receiver that the library number is the same as before.

3) It used a better criterion for symbol matching.

4) The bit map was compressed by the CCITT two dimensional
code before sending it.

5) The coding of the data was more optimized and used vari-
able length code for control information.
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6) The library management was better and the library size
was bigger.

7) The compression factor ratio to the one of CCITT two
dimensional code was often doubled and it reached 4.5.
Compared to CSM, it was 20-807 bigger.

8) TFor CSM and this method, the compression factor doubled
between two versions of the same document that differed
in resolution.

9) By using mixed custom and programmed logic, it was able
to send a document in one to two seconds at a 64 kbits/s
rate.

Note that the paper reported wrong matches (e.g., between 0 and O,
i and 1).

Reference [23] describes algorithms used in the design of Image
View Facility (IVF), a system/370 based software that permits the
display and fast manipulation of binary images. This software allows
images to be rotated, scaled (so it can be displayed at different reso-
lutions), and compressed. The compression algorithm is a slight modifica-
tion to MREAD. It modifies MREAD by dropping the end of the line se-
quence, not inserting any £ill bits, and using an end of the document
sequence. The paper reported an increase of the compression factor by
15 to 35% when these modifications were added to the case of not using
them. The images to be compressed had the same horizontal resolution
as CCITT standard, but the vertical resolution was slightly different
(1100 and 2200 lines/page for low and high resolution, respectively).

The decompression time was found to be 3 to 10 times faster than the

authors anticipated.
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From the above review, we come to the following conclusions:

1) Line-by~line techniques are the best among the tech-
niques that do not have any. symbol matching capability.
Practically, there is no difference between the line-by-
line techniques, so MREAD can be chosen because it is the
standard.

2) Line-by-line techniques, even though called two dimen-
sional coding, are a limited form of two dimensional
coding because first, these methods use no memory to
remember the content of more than one reference line.

Second, the coding line uses only a small part of the
information available in the reference line.

2.2. Review of the Lempel and Ziv Algorithm

The investigation in Chapter 4 will show that the compression

methods used in facsimile, except those that use pattern recognition
or symbol matching techniques have two problems. First, they do not
give the same compression factor they give in facsimile machines.
Second, they are limited in the amount of redundancy they can recog-
nize. Therefore, a new type of algorithms should be investigated.
The universal coding algorithms are such algorithms. From these uni-
versal coding algorithms, we chose the Lempel and Ziv algorithm which
we will review in the rest of this chapter., For a review of universal
coding, refer to [24]-[31].

The Lempel and Ziv method for data compression looks at the data
as a string of symbols. This string is a collection of smaller strings
(substrings) of symbols (substrings may overlap). These substrings
are generated from previously encountered substrings and some symbols.

While this method scans the string, it builds a table of these sub-
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strings and sends a code of the current substring. By finding the best
substrings to represent the original string, we get a total size of the
sent codes that is smaller than the size of the original string; hence,
the data are compressed.

In the following review, we will look at papers that dealt with
the Lempel and Ziv method, including papers by the authors themselves.
For the sake of following the method development, we look at the papers
in their chronological order.

The following abbreviations will be used:

LZ = Lempel and Ziv

LZ method (or theorem) = The Lempel and Ziv method (or
theorem).

LZW method (or theorem) = The Lempel, Ziv, and Welch method
(or theorem). It is a modification
and clearer representation of Lempel
and Ziv's method done by Welch.

This method is the one we will be
using later.

L. ¥ _; = The smallest integer bigger than x.

In [32], Ziv proposed two forms of the probability of the block
coding error. He then proved the existence of a universal constant code
for which the error probability (using both forms) goes to zero as the
code length goes to infinity.

An algorithm for coding was given in [32]. It works as follows:

- The message is divided into blocks .of n letters each.

- Each block is divided into n/k vectors (k-grams).
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- Each vector (gram) is translated into a code which is a
(k|_ log,L _] ) vector, where L is the size of the source
alphabet,

- The code word of a block consists of nR binary letters
(bits), where R is the coding rate.

- The code is divided into two parts:

a) a list of the distinct vectors in the n letters.

b) a sequence of codes for the (n/k) vectors where each
code is an address for a word in the list of distinct
words in part a above.

It was shown that the probability of an encoding error can be
made small for output rates thch are not larger than those of the op-
timal codes that do depend on the statistics of the source.

In [33], Lempel and Ziv looked at the complexity of finite se-
quences. They proposed linking the complexity of sequences to a
gradual build up of new patterns along each sequence from a finite
alphabet. Works before this tried to define the complexity of the
sequence by linking it to an algorithm by which the sequence is sup-
posed to be generated. This definition of the complexity is not of-
fered as a new absolute measure of complexity, ghich_the authors be-
lieve nonexistent. Rather, it evaluates the complexity from the point
of view of a simple learning machine which, as it scans an n~-digit se-
quence (S = s1 52 53 ....sn) from the left to the right, adds a new
word to its memory every time it discovers a substring of consecutive
digits not previously encountered. The size of the vocabulary and

the rate at which new words are encountered along S serve as basic
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ingredients in the proposed complexity evaluation.

The proposed measure is defined and put to test against a well-
established test case, namely, the de Bruijn sequences. Under this
measure, it was shown that most sequences are complex. However, it was
also shown that this measure was not very weak, by showing that it dis-
carded ergodic sources with normalized entropy less than one.

The paper laid down some definitions of sequences build up and
sequences parsing. The '"reproduction" and the '"production" of & se-
quence from its parts were defined.

The complexity of S was defined as follows. Any nonnull sequence S
can be parsed into its history as in H(S) = S(1, hl) S(hl + 1, h2)...

S(h

-1 + 1, hm). These m strings are called the components of H(S).

A component Hi(S) and the corresponding production step, S(1, hi—l) _
S(1, hi) are called exhaustive if S(1, hi-l) > s(1, hi)’ where =>,
—>, and —/> mean produce, reproduce, and do not reproduce, respective-
ly. A history 1s called exhaustive if all of its components except the
last one, are exhaustive. Every nonnull sequence has an exhaustive his-
tory.

Let's now define the following terms:

cH(S) = The number of components in a history H(S) of S.

c(S) = The proposed measure of complexity of the sequence S
= min {cH(S)}.

CE(S) = The number of components in the exhaustive history

of S.
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It was proved that c(S) = cE(S). An upper bound for c(S) was
given in terms of n and o, where n is the code length and o the size
of the input alphabet. It was shown that for almost all strings S, c(S)
was close to this upper bound.

The main idea from this paper that will be used in the following
papers is the way strings can be built and their proposed complexity
measure.

Using the concept of string copying procedures introduced in [33]
for building sequences from the parsing of its individual substrings
with minimum number of steps, [34] introduced an algorithm for com-
pressing the sequence without prior knowledge of its statistics. The
effect of source statistics on the code manifests in building the
string from previously encountered strings.

The encoding algorithm proposed by [34] can be explained as fol-
lows:

- Let A be a finite alphabet of o symbols and § a sequence
of letters from the alphabet (A S=s; s, """'sl(s)’
where 1(s) = length of 8).

- 8(i, j) = Sy si+l""sj'

- For each j, such that 0 < j < 2(s), S(1, j) is called a
prefix of S; S(1, j) is a proper prefix of x if j < 2(s).

- For S(1l, j) and i, where i < j, let L(i) denote the largest
nonnegative £, where & < &(s) -j, such that S(i, it&-1) =

S(j+l, j*+%). p is the position within S{1, j) for which
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L(p) = max {2(i)}; maximization is over i, where i is in
the range [1, j].

The substring S(j+l, 2+L(p)) of S is called the repro-
ducible extension of S(1, j) into S and the integer p is
called the pointer of the reproduction. So, although
S(1, j) may reproduce, i.e., by copying, different exten-
sions bigger than S(l, j), we choose the longest exten-
sion to be the reproducible one.

The encoding is done by parsing S into S = S) Sy Sgeee,
where s, is the reproducible extension of sy into S and Sq
the reproducible extension of s; Sy into S, and so on.
Each sy is assigned a code cy (c:.L has a fixed length).

To get a bounded delay encoding, a buffer of finite length
n is used to hold the last encountered symbols. The pars-
ing is modified by limiting l(si) to a maximum value of LS.

The parsing is done now by finding the reproducible exten-

sion of B(n-LS) into B, where B is the buffer content.

The encoding proceeds as follows:

1)

2)

Initialize the buffer to (n—LS) zeros (the left side of
the buffer) followed by the first LS symbols of the input
string S (reading S from left to right). This content

of B is Bl'

Having determined Bi’ look for the reproducible extension

.E of Bi(l’ n-LS) into Bi(l’ n-1). From E, get s; = E.s



3)

4)

5)
Decoding

follows:
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where s is the symbol next to E in B For Bi’ let 21 =

e
L(E) + 1.

Let pi be the reproduction pointer used to determine ;s

then the code word c, for s, is given by ¢

i i i 7 %41 %12 Ci3

where:
¢y = oy = 1), so &(e;) =|_ log, (a-L) .
cip = (& = 1), so 2(cy,) =|_log, L_ |-

ciq and ciZ are in radix o representation.

= last symbol of sy (i.ee, ¢ ,, = Bi(n-Ls + 2i).

€i3

Send out the code ci.

Shift (to the left) out of the buffer the symbols occupy-

i3

ing the first left Zi positions while feeding in the next

21 symbols from the source.

Go to step 2 and continue till all the string S is encoded.

is done by reversing the encoding process, it works as

1) Use a buffer of length (n—LS), initializing it to zeros.

This is Bl'

2) From ¢y and L) determine Py and 21.

3) Store the content of Bi(pi).

4) Shift to the left Bi one time., Put the stored Bi(pi)
in Bi(n-LS).

5) Continue the storing, the shifting, and the filling

for li - 1 times.
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6) Shift Bi to the left one more time and then £ill Bi(n-Ls)
with the symbol s which comes from Ci3e
7 Si is now in Bi(n-Ls—li, n—Ls) which is the li far right
positions of Bi.
8) Go to step 2 and continue till all the ci's are decoded.

Reference [34] derived bounds for block-to-variable and variable-
to-block coding designed to match a specific source. Then, it derived
the bound for this universal coding and showed that it uniformly ap-
proached the lower bounds for the two coding methods.

Reference [35] defined the finite state encoder and decoder and
restricted the discussion to this class of machines. This machine has a
memory and encoder (or decoder) delay time. Two examples of this class
were given, one of them was a block encoder. The block encoder was the
one that was used in the rest of the paper.

For faithful coding, under constant coding and decoding rate, the
paper defined the quantity h(u) and showed that it played a role analo-
gous to that of the entropy, although no statistical information was used
to get h(u). The analogy came from finding that, using the coding method
introduced in [32], the coder input did not equal the decoder output if

h(u) > log2 B, where B is the size of the output alphabet. h(u) is de-

fined as a measure of the complexity of the sequence:

h(u) = lim hz(u), where hz(u) is given by

00

log2 ha(u) = number of distinct £ vectors in an in-
finitive sequence u.
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From h(u), the source complexity H(u) was derived. It was also
shown that the entropy of a source equaled its complexity, H(u), for an
ergodic source, and the expected value of the complexity for a station-
ary source.

It was also shown that a normalized version of the Lempel-Ziv
complexity, defined in [33], was a lower bound on H(u).

Reference [36] took the concept of universal coding introduced in
[34] and applied it to variable rate coding. The way it parses a string
is the same, but the way it codes individual parameters is different.
The paper also defined the compression ratio of a finite state encoder
in terms of the block length, the code length, and the size of the
source symbols. From the compression ratio, the minimax p(X) is defined
as the finite state compressibility of a sequence x (as block length
goes to infinity and number of states goes to infinity).

Reference [36] also showed that p(x) had a lower bound in terms of
the normalized Lempel-Ziv complexity (defined in [33]). p(x) also has
a role analogous to that of the entropy (as did the quantity H(.) defined
in [35]).

Reference [37] showed that there existed an asymptotically optimal
universal coding scheme (the encoder is assumed to be an information
lossless finite state encoder, whecih is defined in the paper) under
which the compression ratio of a string x tended in the limit to the
compressibility p(x) for every string x.

A direct application of LZ method, as presented in [33], needs
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calculations of O(nz), where n is the string length. To overcome this
problem, [37] used an algorithm of tree construction due to McCreight.

The parsing of the string is done by building a compact tree which is
~.

linear in n. Then, McCreight algorithm makes it possible to construct
this tree in a time linear in n, i.e. O0(n).

Using this method and a universal presentation of integers yielded
a universal linear variable-to-variable encoding scheme. The compres-
sion ratio of this scheme was shown to be optimal for ergodic sources
as the length of the input string goes to infinity.

Reference [38] looked at the LZ algorithm as an example of data
compression via textual substitutions or macro coding. It classified
macro coding into two classes, namely, external and internal macro
schemes. Each class is divided into subclasses. LZ method falls under
the subclass called original pointer macro coding in the internal macro
scheme class (an original pointer is defined as a pointer that points to
a substring of the original string).

Reference [38] then related the performance of the LZ method to
other classes showing that the worst case performance of LZ did not com-
pare favorably with other schemes. It also mentioned that LZ was asymp-
totically optimal for ergodic sources as the source length tended to
infinity, but for individual finite strings it could be far from optimal.

Reference [39] showed that for parsing strings, the greedy dis-
sectors, such as LZ, were optimal for some classes of strings but not

for others.
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Reference [40] showed that LZ method could be represented by an
incomplete parsing tree. It then showed that the working of LZ could
be explained by an equivalent symbolwise model. This representation
gave more insight on the work of LZ and why it compresses the strings.

In [41], Welch gave a modification of LZ method and showed more
clearly how to use it. We delay discussing it to a later chapter to
avoid repetition.

Reference [42] looked at three compression schemes, namely, LZ
method, arithmetic coding, and Huffman coding. It gave some bounds
for each of them and did some simulation to compare them. The simula-
tion gave better results than the bounds did. It also gave the follow-
ing interesting results:

1) For the data that occupy a small size memory (less than

1KB), it is recommended to use the arithmetic coding.
For the data that occupy a medium size memory (few KB),
the Huffman code is the best. For the data that occupy
a big size memory (tens of KB), the LZ coding (which it
called universal coding) is better than the other two.

2) The cross point between the algorithms, as memory varies,
depends on the source entropy. For instance, if memory
equals 1KB the cross point between the arithmetic and the
Huffman coding is at entropy equal to 0.19. This means
that for a data of size 1KB, Huffman coding is better
for entropies bigger than 0.19.

Reference [43] gave a modified LZ coding which finds out the basic
building blocks (words or sentences) of the language and synchronizes
itself on these blocks. It achieves this by searching for a new string

match then letting this match be the extension of the string method in

the last previous search. The memory requirement is the same as in
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the LZW algorithm but it requires complex programming to solve some
special cases.

A simulation result showed that this algorithm compression factor
was slightly less than the one of LZW for an English text and a Fortran
source code and bigger for a pseudo random sequence. An interesting
note, which [43] did not mention, is that this algorithm gave better
results as the entropy increases (the best result was for the pseudo
random sequence). Using a variable coding for the output improved the
compression slightly (6%).

Reference [43] showed that for the basic LZ the binary representa-
tion is better than the one byte representation because the new symbol
is smaller in the first case (one bit vs. 8 bits). This problem can
be solved by including the new symbol as first symbol of new string
(as in LZW).

It also showed that choosing the basic building blocks (i.e., 4, 8,
16 bits) as the symbols was better than the others (e.g., 3 bit symbols).

In [44], Lempel and Ziv tried to extend their universal code to
picture compression. They did this by using one of the color filling
algorithms to scan within subblocks of the picture. The intuition about
this is that this way of scanning the picture will produce for each block
a string that is more suitable to the compression than the string of a
normal scan, The order of moving from a subblock to another also tries
to exploit this more by avoiding the move to a subblock that is far in

the picture but next in order in a normal scan. It does this by moving
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forward then backward (or upward then downward) instead of moving for-
ward from one end to another then retracing to a lower block to start
a new block.

Our intuition is that this method may not be suitable to our
specific goal because of the following reasoms:

1) It works on square pictures; but our way of dividing
the picture into blocks according to their class of
content, will mostly produce rectangular blocks instead
of squares.

2) It is suitable for blocks of colors, but for graphics
or complex colors we think it will not work much better

than normdl scanning will.

Due to time limitations, this method will not be checked.
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3. CREATION OF THE IMAGE DATA BASE

3.1. Classification of the Library
Informational Material

A survey was done to get an idea about the type of information
contained in typical library materials. The subject of this survey was
selected magazines that are thought to be representative of the other
magazines in the library. The magazines were chosen because they will
be more used in the electronic library than other materials like books.
Besides that, magazines contain more colors and photos. Hence, they oc-
cupy more memory in storage and take longer transmission time.

The results of the survey are shown in Table 3.1. Under each class
of data in this table, column "b" represents the percentage of the size
of this class to the size of the whole document. For all classes ex-
cept "text" and "space" classes, column "a" is the percentage of pages
containing that class to the total pages of the whole document. Column
"a" in "text'" is the percentage of pages containing text only to the pages
of the whole document. It is meaningless to have a column "a" in the
class "space' because all pages contain some amount of space.

The average of each column in Table 3.1 was calculated. It showed
that text represented 577 of the data and space represented 13.57% of
the data. Black and white photos, colored photos, and graphs classes
represented no more than 107 each. The percentage of pages containing
only textual data represented an average of 337 of the total pages in

each document.



Table 3.1. Results of

the library data survey

% _text % space % b/w photos

Periodical b b a b
Polymer Science 30.00 57.00 20.00 1.20 0.30
Bios 62.00 66.00 9.20 18.80 11.30
The American Biology

Teacher 29.00 62.00 11.00 30.80 7.50
Mechanical Engineering 14.30 44,30 10.70 30.00 9.80
Business Review 19.60 63.80 17.30 27.00 7.60
Welding Journal 3.70 40.40 9.70 38.20 11.30
Ergonomics 55.80 70.70 16.20 0.96 0.50
Aerospace 0.00 40.70 13.50 15.00 0.70
Sight and Sound 1.30 57.20 5.70 80.00 24.90
Nebraska Farmer 0.00 28.50 13.70 57.30 17.80
Political

Methodology 79.00 64.00 26.00 0.00 0.00
National Journal 29.00 68.00 14.00 54.00 14.00
Higher Education 79.00 77.00 8.90 0.00 0.00
International

Journal of Computer

And Information

Science 59.00 65.00 14.00 0.00 0.00
AVERAGE 32.98 57.47 13.56 25.23 7.55
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% color photos % graphs % tables Sum
a b a b a b b
2.50 2.50 61.00 16.60 5.80 0.66 97.06
5.00 5.00 12.50 6.70 3.80 1.00 99.20
11.80 7.90 57.00 10.00 1.50 0.30 98.70
41.40 26.00 35.00 8.50 0.00 0.00 99.30
2.20 2,20 43.00 6.00 3.30 .70 97.60
39.70 23.80 69.90 12.30 6.60 1.60 99.10
1.90 1.60 31.70 6.40 13.50 3.40 98.80
100.00 45,00 20.00 0.70 0.00 0.00 100.60
1.30 1.20 73.80 11.10 0.00 0.00 100.10
41.20 23.00 90.00 16.90 0.00 0.00 99.90
0.00 0.00 6.00 5.00 15,00 9.00 104.00
2.00 0.40 0.00 0.00 6.00 1.00 97.40
0.00 0.00 7.00 4.00 9.70 6.00 95.90
0.00 0.00 25.00 12.00 11.00 5.00 96.00
17.79 9.90 37.99 8.30 5.44 2.05 98.83
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What is meant by the class "space" is the space that separates
different types of blocks in each page of each magazine. For example,
the space between lines and the space in graphs are not counted as space

in our classification.

3.2, Device Description

The IBM PC class of computers has many resolutions that depend on

the graphics board used. The most common boards are:
a) The Color Graphics Adapter (CGA).
b) The Enhanced Graphics Adapter (EGA).

The CGA has many modes of resolution. Some of these modes are for
text only and some are for graphics and text. Since we need to display
graphics, we chose the graphics modes. From these graphics modes, the
mode with the highest number of displayed pels is mode 6 which can dis-
play 640 pels/line x 200 lines/screen x 2 colors/pel, where the two
colors are black and white.

The EGA has the same modes of the CGA and more. The highest resolu-
tion it can display is 640 pels/line x 350 lines/screen x 16 colors/pel.
At the time this research started, the CGA was widely available

while the EGA was at its second year and starting to be popular. This
fact plus the fact that the investigation we did in section 3.1 showed
that most of the library documents consisted of text and graphics, led
us to choose the CGA at the start. The goal was to investigate applying

the compression algorithms in the CGA with the text and graphics
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screens. Then, based on the result we get from this investigation, we
will investigate the modification of the algorithms in the EGA. Due to
time limitations, this research will not investigate the algorithms in
the EGA; furthermore, in a library system we envision that the data will
be sent in CGA mode 6 unless colors or photos are needed. This is due
to the following reasons:

1. The CGA resolution is adequate and the size of the screen
data is 1/7th of the size of the EGA screen.

2. 1If more than two colors are needed, the system can send
these data in EGA mode after signaling the receiver of
the change in resolution.
3. Although the EGA can display more text lines per page
than the CGA, the quality of the text is good only if it
displayed the same number of lines (25 text lines/page).
In the following part of the thesis, the resolution of the IBM PC
is assumed to be CGA mode 6 unless otherwise specified. The compression
and decompression times were measured on an IBM PC AT (6 MHz). Note that

the maximum resolution of the new class of IBM machines (PS/2) is 640 x

480 x 256.

3.3, Procedures of the Research
The aim of this research is to experiment with the compression
algorithms presented in the next chapters at the resolution described in
the previous section. The following points'will be examined in the
research:

1. The compression factors calculated at this resolution
using the different algorithms.
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2. The class of images for which each algorithm works the
best among the other algorithms.

3. The effect on the compression factor of dividing the
screen into small blocks then compressing each block
alone.

4, TFor the low resolution of the PC display, the effect on
the compression factor in case of changing the method,
its code, or both.

A very important point that should be kept in mind is the fact
that, in the regular screen format, the background of the computer
screen is black and the foreground is white. 1In regular papers, the

reverse is true. Throughout this thesis, we will use the regular

screen format unless otherwise specified.

3.4, Creation of the Image Data Base
The resolution of the IBM PC is a lot smaller than the CCITT low
resolution (1728 x 1128). There are no standard images generated in

this resolution available. To overcome this unavailability, we had to

build our own image data base that represents the type of data we usual-

ly find in a library and that needs to be transmitted. The following
guidelines were used 1in designing the data base:

a. We tried to match the screen size to the actual size of

the data to be transmitted by letting each screen take what
is equivalent to 25 lines in an A4 size paper. So, a paper
with graphics that are equal in height to 50 lines will re-
quire two screens to represent it. Note that the text we
generate will also differ from the text in a regular paper
due to the fact that the spacing between lines is zero in
CGA mode 6. In fact, in the graphics screen, each charac-
ter takes 8x8 pels block and these blocks have no spacing
between them. However, this does not mean that the charac-
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c)
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ters will be connected to each other because in each
character block the bottom or the upper line is empty.

For the horizontal resolution, we limited the part we
took from the documents to the equivalent of 80 charac-
ters/line of text because this is the limit of the PC
screen.

The CCIIT standard documents do not represent very well
the data we want to transmit. So, we created many other
samples to be tested.

Appendix A contains a copy of this image data base.

3.5. Classification of the Image Data Base

To help us investigate the compression algorithms applicability in

the screen and the best way to use them, images for the following classes

of screens were generated:

Screens that imitate CCITT documents 1, 2, 4, 5, 6, and
8.

Screens that are full of graphics data.
Screens that are full of text.

Screens that are mixed of both text and graphics and
sent as whole screens.

Screens that have one or more blocks of graphics.

Screens that can be considered as blocks of text and
graphics and sent as blocks.

Screens that are not typical.

Screens to test power or limitations of the methods.

By having this extensive data base, we hope it will be a good test

for the compression algorithms. From now on, each class will be as-

signed a group number according to its order above.
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3.6. Results to be Analyzed

The images in the data bases were compressed then decompressed.
The results of compressing each screen are:

a. Compression factor = original size/compressed size.
b. Compression time.
c. Decompression time.

The results of compressing the imitations of the CCITT documents
were compared to published results of compressing these documents using
CCITT standard techniques at facsimile resolution. To make the com-
parison more meaningful, the compression factor of compressing each
document and not its parts was used in the comparison. This compression

factor was normalized by dividing it by the compression factor of docu-

ment no. 1.

3.7. 1Implementation Consideratiomns
The following points are some general remarks about the code we

wrote to simulate the algorithms:

1. The byte switching that the 8088 family uses makes ac-
cessing the screen buffer confusing if we want to access
it as words. The reason of accessing words instead of
bytes is to speed up the program execution.

2. An earlier version of the program for the one dimensional
facsimile techniques translated the bits of the current
line into a string where each pel is represented by a byte
and the program was written to use this feature. Then
the program was changed to its current form where the pels
are accessed as bits in a word. Although the words and
bits form is more complex, it gave about 407 decrease in
compression time. This is due to the fact that the time

spent in converting bits to string was a waste in the
string version.
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Writing the code in an optimized manner makes a big dif-

ference in both the size and speed of the final executable
code. An optimization of the code resulted in 457 increase
in speed of compression.

At early stages of the development, a big consideration
was given to code optimization. Starting from the coding
of the two dimensional technique, the big emphasis in op-
timizing was relaxed because it needed a lot of trials in
order to find the most optimum form. This does not mean
that the code was not optimized from that point on. It
only means that we no longer try different formats of the
code.

Most of the code was written in C language, but part of it
was written in assembly language under the following con-
ditions:

a) This part of the code is executed a lot of times or
it has a lot of looping. So, writing it in assembly
language increases the speed of execution.

b) The assembly language provides some commands that en-
hances the program, and no corresponding powerful com-
mands are available in C language. Examples of these
commands are the string instructions of the assembly
language which provide a speed that cannot be reached
in C because these string instructions are implemented
by the hardware.
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4. FACSIMILE CODING

4.1. Introduction
In this chapter, we will look at the use of the CCITT standard
one- and two-dimensional facsimile compression techniques for compress=—
ing images in the data base described in section 3.4, The two standards
were chosen because of the following reasons:

1. They are from the best (each in its dimension) techniques
discussed in the literature.

2. By using them, we may provide the ability to connect the
computer to facsimile machines.

3. A chip that has these two standards built in it was intro-
duced. So, building a hardware system that uses these
two standards is feasible.
4., To the best of our knowledge, no report of using these
two coding techniques has been done for the same resolu-
tion we are working at.
The CCITT coding techniques have some features that are unnecessary
to us, so we decided to drop these extra features. This resulted in our
code not being exactly the CCITT code. In the following sections, we

will describe the actual implementation of the codes and then give the

corresponding results.

4.2. One Dimensional Compression Technique
For each line, this technique reads the runs of black and white,
looks up the code of each run from the modified Huffman table, and then
sends the code to the receiver or puts it in the compression buffer.

This process is then repeated for each line till all lines are coded.
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The steps of the compression algorithm are the following:
1. 1Initialize lines counter.
Start on the first line.
2. Read first pel (pelo) in the line.
If (pel0 is white)

{insert the code of a black run of length zero in
the compression buffer}.

Set color to the color of pelo.
pels counter = 1.

3. While (the color does not change and end of line is not
reached)

{increment the pels counter}.

4., Put the code of the run of the current color in the com-
pressed buffer.

5. If (the line ended)
{1if there are more lines}
{"start on next line" GO TO 2}
else
{"the screen ended" GO TO 6}
else
{"the color changed within a line" GO TO 3}.
6. END.
The steps of decompression algorithms are the following:
l. 1Initialize lines counter.

Start on the first line.
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2. TInitialize indexes of the compression and decompression
buffers.

3. Read the compression buffer from left to right starting
at its index and find the first bits to match a code for
a black run.

4, Put the run corresponding to the matched code in the
decompression buffer and adjust its index.

Increment the index of the compression buffer by the length
of the matched code.

5. If (decompressed data filled a line)
GO TO ENDLINE.
6. Read the compression buffer from left to right starting
at its index and find the first bits to match a code for

a white run.

7. Put the run corresponding to the matched code in the de-
compression buffer and adjust its index.

Increment the index of the compression buffer by the length
of the matched code.

8. If (decompressed data filled a line)
GO TO ENDLINE.
9. GO TO 3.
10, "ENDLINE": Decrement lines counter,
If there are more lines GO TO 2.
11. END.
For more details of the code, refer to Appendix B. This implemen-

tation of the code has the following differences with the CCITT standard
for one-dimensional coding:

1. No minimum scan line time is assumed. Hence, no f£fill bits
are used.
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2. End of line code is not used. The compressor sends the
size of the block at the beginning of the data, then the
decompressor uses these data to step from line to line.

3. The screen has horizontal resolution of 640 pels. Hence,
the run of 640 pels was used as a terminating word not as
a make-up one. Without this, it will be necessary to send
the code of a run equal to zero pels after the code for a
run equal to 640 pels is sent.

The differences 1 and 2 above arose because the CCITT version of
these points allows the compressor and the decompressor to synchronize
and/or allows for mechanical limitations. These limitations are not
present in the electronic library system. Hence, they will be disre-
garded. The end of line code is used in the two CCITT standards to
correct the data if necessary. We assume that the communication soft-
ware performs the error correction or that the communication channel is
error free. Hence, no code for error correction is inserted.

The results of applying the one dimensional coding technique to the

image data base are presented in Tables 4.1-4.8.

4.3. Two Dimensional Compression Technique
The CCITT two dimensional coding technique, titled MREAD, was used.
The general concept of MREAD is that.£he changing elements in the coding
line and the reference line take one out of three states. The code sent
is optimized for these states. MREAD has the same concept we described
in our review of [9]. For a complete description of MREAD, refer to
[13]. In the following discussion, we will use terms and notations de-

fined in [13].
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Table 4.1. Results of compressing images in Group 1 using the CCITT
one dimensional compression technique

Theort. Comprs. Dcmprs.

Comprs. comprs. c.r.2 time time
Image x1 yl x2 y2 factor factor T.C.F. (1/100th s) (1/100th s)
docla 0O 0 639 199 8.03 9.27 0.87 214 99
doclb 0 0 639 199 3.47 4,49 0.77 280 242
doclc 0 0 639 199 15.15 20.62 0.73 192 50
doc2a 0 0 639 199 9.00 12.74 0.71 203 77
doc2b 0 0 639 199 8.12 10.91 0.74 209 83
doc2c 0 O 639 199 12.67 16.34 0.78 198 61
docéa 0 0 639 199 1.96 2.56 0.77 368 428
docéb 0 0 639 199 1.67 2,15 0.78 395 500
doc4c 0 0 639 87 1l.74 2.24 0.78 170 214
doc5la 3 0 514 199 3.80 4.45 0.85 209 165
doc51b 0 0 511 199 5.52 6.61 0.84 187 110
docSle 0 0 511 114 9.49 16.72 0.57 93 33
docSra 0 O 479 199 2.46 2.93 0.84 237 247
docSrtb 0 0 479 199 6.19 8.13 0.76 165 88
docSre- 0 0 479 114 2.86 3,53 0.81 126 121
docéa 0 0 639 199 4.77 7.01 0.68 231 149
doc6b 0 0 639 199 6.83 13,15 0.52 214 104
doc8 0 0 639 199 5.61 9.64 0.58 203 93
AVERAGE 6.07 8.53 0.74 216 159

C.F. = Comprs. factor.
T.C.F. = Theort. comprs. factor.
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Table 4.2, Results of compressing images in Group 2 using the CCITT
one dimensional compression technique

Theort. Comprs. Dcmprs.
Comprs. comprs. C.F. time time
Image x1 yl x2 y2 factor factor T.C.F. (1/100th s) (1/100th s)

frnch3a 0 0 639 199 5.23 7.34 0.71 - 220 127
flowchrt 0 O 639 199 4.18 5.39 0.78 247 176
electrc 0 0 639 199 2.05 3.44 0.60 318 352
ordrfrm O 0 639 199 4.13 5.37 0.77 258 192
frnchla 0 0 639 199 5.90 7.92 0.74 231 132
doc2a 0 0 639 199 9.00 20.74 0.43 204 77
doc2b 0 0 639 199 8.12 10.91 0.74 208 88
AVERAGE 5.52 8.73 0.68 241 163

Table 4.3. Results of compressing images in Group 3 using the CCITT
one dimensional compression technique

Theort. Comprs. Dcomprs.
Comprs. comprs. _C.F. time time
Image x1 yl x2 y2 factor factor T.C.F. (1/100th s) (1/100th s)

romtxt O 0 639 199 1.46 1.91 0.76 434 582
frnch2a 0 0 639 199 2.07 2.66 0.78 351 401
pagel 0 0 639 199 3.19 4.04 0.79 291 258
doecl-2 O O 639 199 3.38 4.43 0.76 280 248
cprog 0 -0 639 199 5.56 7.22 0.77 236 149
doclb 0 0 639 199 3.47 4.49 0.77 280 242
docéa 0 0 639 199 1.96 2.56 0.77 362 428
docé4b 0 0 639 199 1.67 2.15 0.78 396 500
AVERAGE 2.84 3.68 0.77 329 351
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Table 4.4. Results of compressing images in Group 4 using the CCITT
one dimensional compression technique

Theort. Comprs. Dcmprs.
Comprs. comprs. _C.F. time time
Image x1 yl x2 y2 factor factor T.C.F. (1/100th s) (1/100th s)

pdraw3 0 O 639 199 4.09 4.84 0.85 253 192
sciencel 0 0 639 199 3.58 4,12 0.87 263 214
science2 0 0 639 199 2.69 3.21 0.84 308 297
doc5la 0 O 514 199 3.80 4.45 0.85 209 165

AVERAGE 3.54 4,16 0.85 258 217
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Table 4.5. Results of compressing images in Group 5 using the CCITT
one dimensional compression technique

Theort. Comprs. Dcmprs.,
Comprs. comprs. _C.F. time time
Image x1 yl x2 y2 factor factor T.C.F. (1/100th s) (1/100th s)

opampl 160 O 639 158 5.80 7.31 0.79 231 71
opamp2 0 0 639 190 5.35 6.47 0.83 225 137
ecll 72 7 551 166 8.88 12.51 0.71 121 44
ecl2 0 7 607 190 8.09 10.84 0.75 181 77
netwrk 16 9 623 187 5.10 7.58 0.67 192 121
tablel 0 13 639 147 3.17 3.80 0.83 181 159
usal 56 24 519 164 10.43 17.24 0.60 99 33
doc5la 36 48 483 115 5.79 9.06 0.64 55 27
docSrb 28 43 475 169 5.31 7.19 0.74 105 61
lotssin 88 22 631 165 3.00 5.08 0.59 171 160
frnch3b 0 0 639 71 5.40 7.96 0.68 77 44
barchrt 30 10 333 145 4.50 6.77 0.66 71 44
barchrt 30 10 237 60 2.45 5.48 0.45 22 22
barchrt 32 68 335 145 5.57 9.70 0.57 38 27
test2 120 15 455 120 5.08 6.79 0.75 60 38
test3 120 15 455 120 4.54 5.33 0.85 66 43
test4 120 15 455 120 4.05 4,72 0.86 66 49
test5 120 15 487 120 3.95 4.41 0.90 77 60
diagl 70 26 453 120 5.83 7.92 0.74 66 33
diag2 42 42 393 108 7.03 9.20 0.76 38 17
diag3 210 18 449 131 1.07 4.02 0.27 99 138
diagé 108 14 443 88 5.03 6.13 0.82 44 28
diag5s 68 5 467 102 7.44 16.89 0.44 60 28
diag5s 208 28 479 98 5.46 11.85 0.46 33 17
diagé 40 9 279 76 5.03 10.84 0.46 33 22
diagb 22 109 405 141 6.35 15.21 0.42 22 11
diag6 22 9 405 141 8.29 19.13 0.43 82 33
netwrk2 136 62 391 136 2.88 5,30 0.54 38 33
pdrawl 0 70 287 150 4.09 4.91 0.83 44 33
usa2 202 26 329 61 3.27 3.94 0.83 11 11
usa2 164 92 403 162 5.38 7.46 0.72 33 16
doc51b 24 19 471 51 7.62 17,35 0.44 22 11
science3 0 80 127 196 2.94 3.46 0.85 32 33
science3 456 12 535 66 2.29 2.90 0.79 11 11

AVERAGE 5.19 8.38 0.67 80 50




51

Table 4.6. Results of compressing images in Group 6 using the CCITT
one dimensional compression technique

Cmprs. Dcmprs.
Comprs. time time
Image x1 yl x2 y2 factor (1/100th s) (1/100th s)

pdrawl,pic 0 0 559 150 3.96 170 132
pdrawl.pic 0 0 575 152 3.36 186 159
pdraw3.pic 0 0 575 191 3.56 230 192
pdraw3.pic 16 0 559 39 1.48 72 99
pdraw3.pic 0 70 287 150 4,09 50 33
pdraw3.pic 380 77 571 152 2,66 33 33
pdraw3.pic 48 160 575 191 3.65 33 33
pdraw3.pic 0 0 639 199 4,09 258 192
Compression factor using 4 blocks 3.36

Table 4.7. Results of compressing images in Group 7 using the CCITT
one dimensional compression technique

Theort. Comprs. Dcmprs.

Comprs. comprs. C.F. time time
Image x1 yl x2 y2 factor factor T.C.F. (1/100th s) (1/100th s)
bignames 0 0 639 199 1.38 2.10 0.66 429 566
sun 0 O 639 199 2.62 3.68 0.71 297 291
hazard 0 0 639 199 2.38 3.44 0.69 307 324
manscl 0 O 639 199 1.96 2.62 0.75 340 390
mansc2 0 O 639 199 2.74 3.48 0.79 285 275
fig2 0 0 639 199 1.41 6.31 0.22 346 439
figh 0 0 639 199 2.86 6.76 0.42 275 247
figé 0 0 639 199 3.43 4,85 0.71 263 214
fig7 0 0 639 199 5.04 7.71 0.65 231 143
fig8 0 0 639 199 3.10 4,50 0.69 275 242
AVERAGE 2.69 4.55 0.63 305 313




52

Table 4.8. Results of compressing images in Group 8 using the CCITT
one dimensional compression technique

Theort. Comprs. Dcmprs.,
Comprs. comprs. _C.F. time time
Image x1 yl x2 y2 factor factor T.C.F. (1/100th s) (1/100th s)

blok3 0 O 639 199 27.22 134.12 0.20 176 22
blok6 0 0 639 199 4.63 16,11 0.29 225 143
boxes 0 0 639 199 12.12 51.39 0.24 192 61
lines 0 0 639 199 7.27 48.38 0.15 214 104
testl 120 15 455 120 10.91 56.29 0.19 54 17
usamap 72 28 551 164 (Comprs. factor < 1, not applicable)

AVERAGE 12.43 61.26 0.21 i72 69
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Reference [13] gave details and a flowchart of the compression and
we provided details of the process of decompression in the flowchart in

Figure 4.1.

4.4, MREAD Implementation and Results
The code for MREAD is presented in Appendix C. A close look at
the code combined with our experience while debugging the program sug-
gests that the code matching part might be improved in speed if we write
the matching in a tree-like form, i.e., using IF() THEN {} ELSE {} and
nesting these conditions. Such a code was tried and gave an average of
97 decrease in decompress time.

MREAD suggested using k = 2 to help in recovering from errors which

n

decrease the compression factor. If no error recovery is needed, k

]
8

© can be used. This will give higher compression factor. To get k s
it is only necessary to let KFACTOR be 201 in the programs listed in
Appendix C.

MREAD was modified by the modification described for the one di-
mensional coding technique in section 2. Note that although MREAD has
minimum scan line time specification, it has no fill bits.

The results of compressing the data base images for the case of
k=2 and k = ® are given in Tables 4.9-4.16 and Tables 4.17-4.24,

respectively., The times are obtained by using a tree-like code.



Figure 4.1. Flow diagram of the decompression process using
the CCITT two dimensional compression technique
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Table 4.9. Results of compressing images in Group 1 using the CCIIT
two dimensional compression technique with k = 2

Comprs. Dcmprs.

Comprs. time time
Image x1 yl *2 y2 factor (1/100th s) (1/100th s)
docla 0 0 639 199 8.71 286 i 165
doclb 0 0 639 199 3.41 400 325
doclc 0 0 639 199 17.21 248 104
doc2a 0 0 639 199 11,04 258 126
doc2b 0 0 639 199 9.98 264 138
doc2c 0 0 639 199 15.27 248 110
docba 0 0 639 199 1.89 544 522
docéb 0 0 639 199 1.60 598 604
docé4c 0 0] 639 87 1.67 259 258
doc5la 3 0 514 199 3.96 291 220
doc51b 0 0 511 199 6.33 247 154
doc51c 0 0 511 114 12.70 120 55
docSra 0 0 479 199 2.45 346 307
doc5rb 0 0 479 199 7.67 220 127
docSre 0 0 479 114 2.87 181 154
docba 0] 0 639 199 6.39 308 181
docé6b 0 0 639 199 9.62 274 143
doc8 0 0] 639 199 9.14 259 132

AVERAGE 7.33 297 213
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Table 4.10. Results of compressing images in Group 2 using the CCITT
two dimensional compression technique with k = 2

" Comprs. Dcmprs,

Comprs. time time
Image x1 yl x2 y2  factor (1/100th s) (1/100th s)
frnch3a 0 0 639 199 7.29 297 176
flowchrt 0 0 639 199 4,75 335 231
electrc 0 0 639 199 2.04 478 445
ordrfrm 0 0 639 199 4.29 362 269
frnchla 0 0 639 199 6.36 313 198
doc2a 0 0 639 199 11.04 258 126
doc2b 0 0 639 199 9.98 264 137
AVERAGE 6.54 330 226

Table 4.11. Results of compressing images in Group 3 using the CCITT
two dimensional compression technique with k = 2

Comprs. Dcmprs.

Comprs. time time
Image x1 yl x2 y2  factor (1/100th s) (1/100th s)
remtxt 0 0 639 199 1.38 670 698
frnch2a 0 0 639 199 2.01 533 505
pagel 0 0 639 199 3.11 407 335
docl-2 0 0 639 199 3.25 400 324
cprog 0 0 639 199 5.42 324 220
doclb 0 0 639 199 3.41 401 324
docéba 0 0 639 199 1.89 544 527
docéb 0 0 633 199 1.60 599 604

AVERAGE 2.76 485 442
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Table 4.12., Results of compressing images in Group 4 using the CCITT
two dimensional compression technique with k = 2

Comprs. Demprs.
Comprs. time time
Image x1 vyl x2 y2  factor (1/100th s) (1/100th s)
pdraw3 0 0 639 199 4,32 352 258
sciencel 0 0 639 199 3.87 379 280
science2 0 0 639 199 2.63 445 384
doc51la 3 0 514 199 3.96 292 214

AVERAGE 3.70 367 284
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Table 4.13. Results of compressing images in Group 5 using the CCITT
two dimensional compression technique with k = 2

Comprs. Dcmprs.

Comprs. time time
Image x1 yl x2 y2  factor (1/100th s) (1/100th s)
opampl 160 0 639 158 7.12 170 99
opamp2 0] 0 639 190 5.95 297 187
ecll 72 7 551 166 11.45 153 71
ecl2 0 7 607 190 9.87 236 121
netwrk 16 9 623 187 6.79 264 159
tablel 0 13 639 147 3.95 258 198
usal 56 24 519 164 11.90 126 55
doc51a 36 48 483 115 7.06 65 38
doc5rb 28 43 475 169 6.94 137 82
lotssin 88 22 631 165 3.55 241 187
usamap 72 28 551 164 0.63 747 851
frnch3b 0] 0 639 71 7.60 104 60
barchrt 30 10 333 145 6.47 99 60
barchrt 30 10 237 60 4.11 33 22
barchrt 32 68 335 145 6.85 55 33
testl 120 15 455 120 18.01 72 27
test2 120 15 455 120 5.79 83 49
test3 120 15 455 120 5.02 88 55
testé 120 15 455 120 4,41 94 60
test5 120 15 487 120 4,24 104 72
diagl 70 26 453 120 7.16 83 50
diag?2 42 42 393 108 7.79 49 22
diag3 210 18 449 131 1.26 153 154
diagé 108 14 443 88 5.63 60 38
diag5 68 5 467 102 10.80 83 39
diag5s 208 28 479 98 7.69 44 28
diagé 40 9 279 76 7.45 38 22
diagé 22 109 405 141 9.38 28 16
diagé 22 9 405 141 12.69 105 50
netwrk2 136 62 391 136 3.81 55 44
pdrawl 0 70 287 150 4,58 60 44
usa2 202 26 329 6l 3.68 11 5
usa2 164 92 403 162 6.07 39 22
doc51b 24 19 471 51 11.20 27 11
sciencel 0 80 127 196 3.20 49 38
science3 456 12 535 66 2.33 16 17

AVERAGE 6.58 120 86
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Table 4.14. Results of compressing images in Group 6 using the CCITT
two dimensional compression technique with k = 2

~

Comprs. Demprs.

Comprs. time time
Image x1 yl x2 y2 factor (1/100th s) (1/100th s)
pdrawl 0 0 559 150 4,01 236 176
pdraw2 0 0 575 152 3.55 258 203
pdraw3 0 0 575 191 3.76 324 247
pdraw3 16 0 559 39 1.41 110 116
pdraw3 0 70 287 150 4,58 61 39
pdraw3 380 77 571 152 3.56 44 32
pdraw3 48 160 575 191 3.70 50 39
pdraw3 0 0 639 199 4,32 352 252

Compression factor using 4 blocks

Table 4.15. Results of compressing images in Group 7 using the CCITT
two dimensional compression technique with k = 2

Comprs. Dcmprs.

Comprs. time time
Image x1 yl x2 y2 factor (1/100th s)  (1/100th s)
bignames O 0 639 199 1.48 659 670
sun 0 0 639 199 2.89 423 352
hazard 0 0 639 199 2.46 439 379
manscl 0 0 539 199 2.10 517 472
mansc2 0 0 639 199 3.10 417 340
fig2 0 0 639 199 1.77 538 495
figh 0 0 639 199 4,02 379 280
figh 0 0 639 199 3.87 357 263
fig7 0 0 639 199 5.57 302 186
fig8 0 0 639 199 3.47 379 291
AVERAGE 3.07 441 373
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Table 4.16. Results of compressing images in Group 8 using the CCITT
two dimensional compression technique with k = 2

Comprs. Dcmprs.
Comprs. time time
Image x1 vyl x2 y2 factor (1/100th s) (1/100th s)
blok3 0 0 639 199 43.17 225 77
bloké 0 0 639 199 7.78 302 176
boxes 0 0 639 199 20.55 248 104
lines 0 0 639 199 11.76 280 148

AVERAGE 20.82 264 126
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Table 4.17. Results of compressing images in Group 1 using the CCITT
two dimensional compression technique with k = @

Theort. Comprs. Dcmprs.

Comprs. comprs. _C.F. time time
Image x1 yl x2 y2 factor factor T.C.F. (1/100th s) (1/100th s)
docla 0 0 639 199 9.57 10.36 0.92 346 247
doclb 0 O 639 199 3.40 3.88 0.88 511 439
docle 0 O 639 199 19.54 26.55 0.74 286 176
doc2a 0 O 639 199 14,30 18.96 0.75 302 193
doc2b O O 639 199 12.75 17.57 0.73 308 203
doc2e 0 O 639 199 18.83 27.37 0.69 280 176
doc4a 0 O 639 199 1.87 2.09 0.89 730 693
doc4b 0 O 639 199 1.56 1.69 0.92 808 786
doc4c O O 639 87 1l.64 1.80 0.91 346 335
doc5la 3 0 514 199 4.23 5.28 0.80 368 297
doc51 0 O 511 199 7.60 10.18 0.75 297 220
doec5l¢ 0 0 511 114 18.81 35.12 0.54 137 88
doc5ra 0 0 479 199 2.50 2,79 0.90 450 401
doc5rb 0 0 479 199 10.10 13.79 0.73 258 186
docSrec 0 0 479 114 2.90 3.36 0.86 236 209
docba 0 0 639 199 9.57 13.06 0.73 368 264
doc6b O O 639 199 16.10 25.71 0.63 318 214
doc8 0 0 639 199 22.99 32,69 0.70 308 197
AVERAGE 9.90 14.01 0.78 370 296
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Table 4.18. Results of compressing images in Group 2 using the CCITT
two dimensional compression technique with k = ®

Theort. Comprs. Dcmprs.
Comprs. comprs. _C.F. time time
Image x1 yl x2 y2 factor factor T.C.F. (1/100th s) (1/100th s)

frnch3a 0 0 639 199 12.05 14.70 0.82 357 253
flowchrt 0 0 639 199 5.56 6.39 0.87 412 330
electrc 0 0 639 199 2.04 3.66 0.56 631 599
ordrfrm 0 0 639 199 4.77 5.74 0.83 467 385
frnchla 0 0 639 199 7.16 9.41 0.76 385 286
doc2a 0 0 639 199 14.30 19.81 0.72 296 192
doc2b 0 0 639 199 12.75 18.33 0.70 313 209
AVERAGE 8.38 11.00 0.75 409 322

Table 4.19. Results of compressing images in Group 3 using the CCITT
two dimensional compression technique with k = «

Theort. Comprs. Dcmprs.

Comprs. comprs. _C.F. time time
Image x1 yl x2 y2 factor factor T.C.F. (1/100th s) (1/100th s)
romtxt 0 0 639 199 1.40 1.57 0.89 900 890
frnch2a 0 0 639 199 1.96 2,11 0.93 698 660
pagel 0 0 639 199 3.25 3.85 0.84 528 456
docl-2 0 0 639 199 3.36 4.13 0.81 517 445
cprog 0 0 639 199 5.68 7.49 0.76 406 319
doclb 0 0 639 199 3.40 4.26 0.80 511 440
docéa 0 0 639 199 1.87 2.14 0.87 725 692
doc4b 0 0 639 199 1.56 1.70 0.92 807 785

AVERAGE 2.81 3.41 0.85 637 586
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Table 4.20. Results of compressing images in Group 4 using the CCITT
two dimensional compression technique with k = «

Theort. Comprs. Dcmprs.
Comprs. comprs. _C.F. time time
Image x1 yl x2 y2 factor factor T.C.F. (1/100th s) (1/100th s)

pdraw3 0 0 639 199 4.84 5.31 0.91 439 352
sciencel 0 0 639 199 4.19 4,85 0.86 467 390
science2 0 0 639 199 2.61 2.99 0.87 582 522
doc5la 0 0 514 199 4.23 5.10 0.83 363 297

AVERAGE 3.97 4.56 0.87 463 390
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Table 4.21. Results of compressing images in Group 5 using the CCITT
two dimensional compression technique with k = «

Theort. Comprs. Dcmprs.
Comprs. comprs. _C.F. time time
Image x1 yl x2 y2 factor factor T.C.F. (1/100th s) (1/100th s)

opampl 160 0 639 158 9.07 10.08 0.90 204 143
opamp2 0 0 639 190 6.85 7.66 0.89 357 269
ecll 72 7 551 166 15.82 22.10 0.72 181 115
ecl2 0 7 607 190 12.51 15.99 0.78 275 182
netwrk 16 9 623 187 9.87 13.51 0.73 313 226
tablel 0 13 639 147 S5.21 6.31 0.83 324 264
usal 56 24 519 164 13.40 24.20 0.55 148 94
doc5rb 36 48 483 115 9.16 12.21 0.75 88 60
doc5rb 28 43 475 169 9.81 13.40 0.73 165 115
lotssin 88 22 631 165 4.38 7.17 0.6l 302 247
frnch3b 0 0 639 71 12.42 20.48 0.61 126 88
barchrt 30 10 333 145 11.38 18.10 0.63 116 83
barchrt 30 10 237 60 12.0% 68.63 0.17 38 28
barchrt 32 68 335 145 8.88 13.69 0.65 66 49
test2 120 15 455 120 6.75 8.21 0.82 94 71
test3 120 15 455 120 5.59 7.10 0.79 104 77
testé 120 15 455 120 4.86 6.18 0.79 110 88
testS 120 15 487 120 4.56 5.67 0.80 126 99
diagl 70 26 453 120 8.99 13.08 0.69 99 71
diag2 42 42 393 108 9.07 15.00 0.60 60 38
diag3 210 18 449 131 1.52 4,27 0.36 204 192
diagé 108 14 443 88 6.32 8.22 0.77 71 50
diag5 68 5 467 102 18.46 28.90 0.64 99 66
diagSs 208 28 479 98 12.76 18.15 0.70 55 38
diag6 40 9 279 76 13.88 21.61 0.64 44 33
diagb 22 109 405 141 17.70 41.35 0.43 33 16
diagé 22 9 405 141 26.19 45.54 0.58 120 77
netwrk2 136 62 391 136 5.78 8.43 0.69 66 49
pdrawl 0 70 287 150 5.34 6.16 0.87 71 55
usa2 202 26 329 61 3.94 4,80 0.82 11 11
usa2 164 92 403 162 7.35 9.78 0.75 50 - 33
doc51b 24 19 471 51 20.82 52.41 0.40 38 22
science3 0 80 127 196 3.40 4.36 0.78 60 50
science3d 456 12 535 66 2.43 3.02 0.80 22 16
AVERAGE 9.60 16.64 0.68 125 92
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Table 4.22. Results of compressing images in Group 6 using the CCITT
two dimensional compression technique with k = «
Comprs. Dcmprs.
Comprs. time time

Image x1 yl x2 y2  factor (1/100th s) (1/100th s)
pdrawl 0 0 559 150 4.34 297 242
pdraw2 0 0 575 152 3.99 330 275
pdraw3 0 0 575 191 4.19 401 335
pdraw3 16 0 559 39 1.45 148 148
pdraw3 0 70 287 150 5.34 72 55
pdraw3 380 77 571 152 5.47 60 44
pdraw3 48 160 575 191 3.94 66 504
pdraw3 0 0 639 199 4.84 439 352

Compression factor using 4 blocks 4.18

Table 4.23. Results of compressing images in Group 7 using the CCITT
two dimensional compression technique with k = «
Theort. Comprs. Dcmprs.
Comprs. comprs. _C.F. time time

Image x1 yl x2 y2 factor factor T.C.F. (1/100th s) (1/100th s)
bignames O 0 639 199 1.59 1.81 0.88 873 851
sun 0 O 639 199 3.20 4.46 0.72 527 456
hazard 0 0 639 199 2.53 3.43 0.74 560 494
manscl 0 O 639 199 2.28 2.79 0.82 665 610
mansc2 0 0 639 199 3.61 4.69 0.77 533 456
fig2 0 0 639 199 2.40 4.35 0.55 686 637
figh 0 0O 639 199 6.78 12.23 0.55 466 368
figé 0 0 639 199 4.34 6.76 0.64 445 357
fig7 0 0 639 199 6.29 10.75 0.59 363 269
fig8 0 0 639 199 3.94 6.30 0.63 466 384
AVERAGE 3.70 5.76 0.69 558 488
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Table 4.24. Results of compressing images in Group 8 using the CCITT
two dimensional compression technique with k =

Theort. Comprs. Dcmprs.
Comprs. comprs. _C.F. time time
Image x1 yl x2 y2 factor factor T.C.F. (1/100th s) (1/100th s)

blok3 0 0 639 199 109.03 359.73 0.30 252 138
blok6é 0 0 639 199 24.54 142.33 0.17 363 247
boxes 0 0 639 199 69.57 813.68 0.09 280 171
lines 0 0 639 199 32,07 191.23 0.17 324 214
testl 120 15 455 120 49.60 99.19 0.50 77 44
usamap 72 28 551 164 1.56 7.13  0.22 1011 962

AVERAGE 47.73 268.88 0.24 385 296
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4.5, Entropy Calculation of the One
Dimensional Model
The one dimensional coding can be represented as a first order
Markov chain as in Figure 4.2. The per pel entropy hWB is given in

[6] as follows:

P

b =Py ;; + Py N (4.1)
where:
.Pw = probability of white pels
PB = probability of black pels
HW = white run-length entropy
N
=T 120 Py 108, Pyy (6.2)
HB = black run-length entropy
N
=Tk Peit o8 P (4.3)
pwi==probability of run-length of i white pels
pbi==probability of run-lengths of i black pels
r,, = average white run-length in pels = L i-pwi (4.4)
r, = average black run-length in pels = I i'pbi (4.5)
Note that:
Pw + PB =1 (4.6)
Lp,.=1 4.7



Wi

Figure 4.2.
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A first order Markov model for the CCITT one
dimensional coding technique
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T =
Ppy = 1
To get Py and Pg> we solye the matrix question:

(e 2] Pao Ban| _ |Pw

v s
Phw  Fob Py

Then, we get the following equations:

P =_ﬁ12.—
w pwb + pbw
P = pbw

B ooy t Py

Substituting from (4.10) and (4.11) in (4.1), we get

By t iy
W =P +7

W B

The maximum theoretical compression factor Qmax is defined as

1 Tyt

Tmax ~ B T

(4.8)

(4.9)

(4.10)

(4.11)

(4.12)

(4.13)

Reference [12] applied CCITT one dimensional coding technique to

the 8 CCITT documents and gave the result of rw, rB, HW’ HB, Q <’ and

actual compression factor in Table IV of the reference.

The result of calculating the Qmax of the data base is included in

Tables 4.1-4.8.
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Figures 4.3-4.11 show the distribution of the frequency of the
run-lengths for a sample of images from the data base. Runs greater

than 63 were broken into two runs as described by the standard.

4.6, Entropy Calculation of the Two
Dimensional Model
Reference [13] did not calculate the entropy for the 8 CCITT doc-
uments. Reference [9], which has the same principles of using three
states, did. Besides, the compression factors in [9] are comparable
to those of MREAD. So, we will calculate the entropy and Qmax using a
modified version of the model given in [9]. The model we will use is

valid only for the case of k = =,

We assume that each of the three states 1s independent of the other

states. Hence, the entropy per pel Hpel is given by

H

= -8 -1
B B
S

™MW

H P(S,)H, .
el RRACHLS (4.14)

[}

3

where

o+
]

average entropy per state

B = average numver of pels per state

o}
]

entropy of state Sj'

The entropies of the three states are given by

o
[}

~log P(Sl) + Hd (4.15)

~log P(Sz) (4.16)

m
]

ol
|

+ Hl (4.17)

= -log P(S3) + H 9

11
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where

where

o
]

entropy of the edge difference d(d = bl - al) in the
vertical mode (state Sl)

3
- 2z P(d)-logzP(d)
==3

H,, = entropy of the i run (i = 1 or 2) in the horizontal
1i
mode (state Sz)

73
== I P(Qik) log2 P(L

Zik=0

ik)

P(d) = the probability that (bl - al) is equal to d where d

is an integer varying between -3 and 3

P(Qi) = the probability that the i run (i=1 or 2) is equal to

li in the horizontal mode.
The average number of pels per state Bs is given by

Bs = P(Sl) r_ 0al + P(Sz) r, + P(SB)(rl + r2)

0b2
T 0al = average of absolute value of aQal, a0al = al-a0
640
= L P(a0al)-a0al
alal=1
T opy - @verage value of pass mode distance a0b2
640
= L P(a0b2)-alb2
a0b2=2
r, = average length of first run in the horizontal mode
640
= L P(L)-%
g=1 Y 1

1

(4.18)

(4.19)

(4.20)

(4.21)

(4.22)

(4.23)
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= average length of second run in the horizontal mode
640
= i p(gz).zz (4.24)
2
The theoretical compression factor Qmax is calculated from the en-

tropy per pel Hpel by the following formula:

Q,, = Hl (4.25)

pel
Tables 4.17-4.24 include the theoretical compression factor, using
the two dimensional model, for the images in the data base. Figures
4,12-4,2]1 show the distribution of the frequency of the run-lengths, in
the horizontal mode, for a sample of images from the data base. Runs
greater than 63 were broken into two rums as deséribed by the standard.

The figures also show the distribution of the vertical distance d.

4.7. Analysis of the Results

Looking at the results, we concluded the following points:

1) The two dimensional (k = ) coding technique gave better com-
pression factor than the one dimensional coding techmique except for
the case of screens or blocks full of text. The ratio of the two di-
mensional compression factor to the one dimensional compression factor
depended on the class of image to be compressed. In Table 4.25, the
first three columns contain the compression factor averages of the pic-
tures of each group calculated using one dimensional, two dimensional
(k = 2), and two dimensional (k = =) techniques. This table shows that

the ratio of the compression factors of the two dimensional (k = ®) to
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Table 4.25. Compression factors averages of each group of the image
data base using each technique

Group # 1D 2K FK 2K/1D FK/1D
Group 1 6.07 7.33 9.90 1.21 1.63
Group 2 5.52 6.54 8.38 1.18 1.52
Group 3 2.85 2.76 2.81 0.97 0.99
Group 4 3.54 3.70 3.97 1.05 1.12
Group 5 5.19 6.58 9.60 1.27 1.85
Group 6 2.69 3.07 3.70 1.14 1.38
AVERAGE 4,31 5.00 6.39 1.14 1.41

41D = compression factor using the CCITT one dimensional compres-
sion technique.

b2K = compression factor using the CCITT two dimensional compres-
sion technique with k = 2,

CFK = compression factor using the CCITT two dimensional compres-
sion technique with k = o,
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the one dimensional technique has an average of 1l.41 with minimum and
maximum equal to 0.99 and 1.85, respectively. The 0.99 ratio is for
screens full of text and is the only ratio that is less than 1. The
1.85 ratio is for group 5 which consists of sample blocks of graphics.

2) 1In Table 4.25, it is shown that for screens full of graphics
(group 2), the ratio of the average compression factor of the two di-
mensional, k = 2, to the average compression factor of the one dimen-
sional is 1.18, This ratio is 1.52 for the case of two dimensional,

k = ®, This result shows that two dimensional technique with k = = is
the best choice for screems full of graphics.

3) From Table 4.25, it is clear that, for screens full of text
(group 3), there is no significant difference between two dimensional
and one dimensional compression factors. The average compression fac-
tor of the group using one dimensional technique is 2.8S.

4) TFor screens that are a mixture of graphics and text blocks
(group 4), Table 4.25 shows that the two dimensional compression factor
is higher than one dimensional compression factor and the ratio of the
average of the two dimensional to the average of the one dimensional
compression factor is 1.05 and 1.12 for k = 2 and k = ®, respectively.
The one dimensional compression factor was found to have an average of
3.54.

5) 1In Table 4.25, it is shown that for blocks of graphics (group
5), the ratio of the average compression factor of the two dimensional

technique, k = 2, to the average compression factor of the one dimen-
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sional technique is 1.27. This ratio is 1.85 for the case of two di-
mensional technique, k = ®, This result shows that the two dimensional
technique with k =®is the best choice for graphics blocks.

6) Screen pdraw3 contains 4 blocks. We compressed each of the 4
blocks separately and a big block containing all of these 4 blocks. The
following two compression factors were calculated:

i) Compression factor of the big block = original size of
the big block/size of the compressed block.

ii) Compression factor using the 4 small blocks to represent
the big block = original size of the big block/
é (size of the compressed block i).
i=1
Comparing the compressibn factors in i) and ii), we found that in
ii) it is very slightly bigger than in i) using the one dimensional
technique and almost the same when we used the two dimensional technique
(k = ®). Hence, it may be concluded from this example that dividing a
big block into smaller blocks and compressing them individually will not
give a better compression factor than in the case of compressing the big
block as a whole. Besides, the division into smaller blocks will add
more complexity and a small overhead of bytes that represents the sizes
of the small blocks.
7) Table 4.26 contains the compression factors using the one
dimensional and two dimensional (k = «) techniques taken from [13] for
some CCITT standard documents. These values are normalized with refer-

ence to the compression factor of docl and included in the table. Ta-

ble 4.27 contains similar values deduced from Tables 4.1 and 4.17. It



Table 4.26. Compression factors of the CCITT documents according to Reference [13]

1p? 20°
LowC Highd
Document Norm. Norm. Norm. Low High
i C.F. C.F.© Size C.F. C.F. Size C.F. C.F. i) 1D
1 15.160 1.000 130684 15.709 1.000 175704 23.367 1.000 1.036 1.541
2 16.670 1.100 106851 19.212 1.223 117304 35.001 1.498 1.153 2.100
4 4,911 0.324 408261 5.028 0.320 585074 7.017 0,300 1.024 1.429
5 7.927 0.523 226285 9.072 0.578 288655 14,224 0.609 1.144 1.794
6 10.780 0.711 150572 13.634 0.868 164085 25.022 1.071 1.265 2.321
AVERAGE 11.090 0.732 204531 12.531 0.798 266164 20.926 0.896 1.124 1.837
alD = the CCITT one dimensional compression technique.
b2D = the CCITT two dimensional compression technique with k = o,

c . .
Low = document compressed in low resolution.

d

High = document compressed in high resolution.

®Norm. C.F. =

normalized compression factor.

96
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Table 4.27. Compression factors of the CCITT documents using the CCITT
one and two dimensional compression techniques
1p® 2p°

Document Norm. Norm. 2D C.F
# C.F. C.F.C C.F. C.F. 1D C.F
1 6.267 1.000 6.670 1.000 1.064
2 9.579 1.528 14.891 2.233 1.555
4 1.782 0.284 1.680 0.252 0.943
5 4.070 0.649 4,741 0.711 1.165
6 5.617 0.896 12,004 1.800 2.137
21D = the CCITT one dimensional compression technique.
b2D = the CCITT two dimensional compression technique.
®Norm. C.F. = normalized compression factor.
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was found that the ratios of two dimensional/one dimensional compression
factors in the low resolution case in Table 4.26 were close to those in
Table 4.27 except for doc2 and doc6. For the high resolution case, the
only ratios that were close to each other in the two tables were those
of doc6. This may be interpreted by noticing that low resolution mode
was just enough to show the textural material in documents docl, docé,
and doc5 which are documents that contain a lot of text. Similarly, the
resolution of the screen was just enough to represent textual material
in images docl, doc4, and doc5.

8) To investigate the possibility of using a modified Huffman
table with codes that are suitable to the screen statistics, frequency
graphs for each image were generated. The coordinates of the horizontal
axis in these figures represent the run-lengths while the coordinates of
the vertical axis represent the number of times this run-length was used
in compressing the picture. Runs greater than 63 were broken into two
runs as described by the standard. From these graphs, we got the fol-
lowing remarks and conclusions:

a) Distribution of white runs has almost the same form in
all the images. It has a concentration of small runs
mostly located in the region between run 1 and run 6.

The maximum run frequency occurs in run 1 for some of the
images, specially graphics screens, and in run 2 for

some other images, specially screens that have a lot of
text. Since this maximum is not fixed, we might try to
change the code so that, for the maximum frequency run,
it varies with the image. We will show later that no

big difference in compression factor can result from

this change.

b) Frequency of the black runs is more distributed and varies
from image to image with no fixed form. So, making vari-



c)

d)

e)
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able code as suggested for the white runs in a) is not
suitable. The frequency is also concentrated on small
runs to the extent that the standard one dimensional code
is efficient enough and no clear benefit can be seen from
changing it.

Run length 1 has one of the highest frequencies, but the
CCITT code assigns a code of length 6 while other 1less
important frequencies are assigned a code of length 4.
So, an improvement in the code may be found by assigning
less bits to run-length 1.

Figures 4.3-4.5 show the distribution of the frequency

for pictures doc2a, doc2b, and doc2c which represent
graphics screens. Their distribution agrees with a) and

b) above. Similar comments are applicable to doc6ba, docéb,
and any graphics screen in groups 2, 5, and 7. Figures
4.6-4,9 show the frequency distribution for some graphics
screens.

Figures 4.10 and 4.1l show the frequency distribution for
pictures doc4a and pagel which represent screens full of
text (group 3). The distribution of white is as explained
in a) while the distribution of black is as in b) but more
condensed than in graphics screens and more concentrated
on small runs. To show that changing the code does not
result in a big increase in the compression factor, we
give the following example:

Table 4.3 shows that the compression factor of image docéa
is 1.96 which corresponds to a compressed image of size
8163 bytes, Figure 4.10 shows that white run-length 2

has a frequency equal to 5905. The modified Huffman table
assigns a code of length 2 bits to this run. If a new
code assigns 1 bit to this run (without going in details
of this new code), the compressed buffer will decrease

by 738 (= 5905/8) bytes. Hence, the new compressed size
will be 2.15 (= 16000/(8163-738)). This represents 8%
increase in the compression factor. Note that this cal-
culation assumed that a code of length 1 bit was possible
and neglected the negative effects of changing other

codes in the table. In spite of that, the increase in
compression factor is only 8%.

A calculation similar to the one in d) was done for docéa,
which is a sample of graphics screen, and showed 6% in-
crease in the compression factor if the code was changed.
Hence, we reached the same conclusion we got in d).
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9) Comparing the compression factor of the two dimensional (k =
®) coding technique with the theoretical compression factor of the one
dimensional technique, we found that the former one was higher than the
latter one except for documents containing a lot of text. So, two di-
mensional technique is the best choice.

10) Tables 4.1-4.8 show that, using the one dimensional technique,
the average ratio of the real compression factor to the theoretical one
is slightly low (0.68) for graphics screens and almost acceptable (0.77)
for screens full of text. This result may be explained by two reasons.
First, the code was optimized for the frequency of the rums in textual
materials, but not for the frequency in graphics materials where it is
hard to predict this frequency. Second, the model is not accurate for
graphics screens because it assumed that black and white runs were inde-
pendent of each other.

11) Tables 4.18-4.19 show that, using the two dimensional technique,
the average ratio of the real compression factor to the theoretical one
is 0.75 for graphics screens and 0.85 for screens full of text. Al-
though the different variables that were used in calculating these com-
pression factors were examined, no clear interpretation can justify why
the model worked better in the case of screens full of text than in the
case of graphics screens. The code of the first and second runs in the
horizontal mode should not be considered as a part of the interpretation,
as was the code for the runs in the one dimensional case, because the

probability of the horizontal mode is almost the same in the two groups.
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12) The average probabilities of the vertical, pass, and horizontal
modes were found to be 0.75, 0.1, and 0.15, respectively. These are
different from the values reported in [9] where the probability of the
vertical mode was almost 0.9. This shows that the distributions of black
and white pels in the computer screen are different than the same dis-
tributions in regular papers such as the CCITT standard documents.

13) The vertical mode was dominated by V(0). This fact and the
result of the previous point indicate that the two dimensional technique
worked as designed and to its limit,

14) The compression factor of the image usamap using the one di-
mensional technique was found to be less than 1. It was found to be
1.56 when using the two dimensional technique. The fact that these
compression factors are low, even though the image usamap contains a lot
of redundancy, indicates that these two techniques are not efficient
for certain classes of images. Some examples of these classes are images
that contain some repeated similar blocks or cross hatching. To over-
come the deficiency found when the compression factor is less than 1,

the standard techniques allow for uncompressed mode.

4,8. Conclusion
From the above analysis, we conclude that the CCIIT standard two
dimensional coding technique have better compression factor than the one
dimensional technique, hence, should be our choice although its decom-

pression time is higher. We also conclude that the two methods worked
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to their limit and produce satisfactory compression factors for the
screen resolution. The facts that no improvement could be seen to
changing the modified Huffman table and that for some class of data
the two techniques are not efficient enough indicate we should search

for other techniques.
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5. APPLICATION OF THE LEMPEL-ZIV-WELCH ALGORITHM

In this chapter, we will present the LZW algorithm and the results
of compressing the images of the data base defined in Chapter 3 using
the LZW algorithm.

As a new major contribution, .this research modifies the regular
use of LZW in three different ways. The new modifications will be called

LZWB, LZWBl, LZWB2-A, and LXWB2-B methods.

5.1. Description of the Lempel-Ziv-Welch
Algorithm

The Lempel-Ziv-Welch (LZW) algorithm examines the data serially as
a sequence of characters. It has a table to which it adds new strings
of characters that it did not encounter before. Each entry "w,k" in the
table consists of the symbol of a previously encountered string, w, and
a character symbol, k. At each step, the algorithm searches for the
string "w,k" in the table. If the string is found in the table, w is
assigned the symbol of the string "w,k", k is assigned the value of the
next input character, and a new search starts. If the string "w,k" is
not found in the table, the symbol w is sent to the output, w is equated
to k, k is equated to the next input character, and a new search starts.
By this technique, the algorithm codes the input data according to its
repeated strings and their distribution.

The first 256 symbols of the table are initialized to 256 charac-

ters, where each symbol content is equal to the symbol number. The
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string w and the character k are initialized to the values of the first
and second characters in the input data, respectively. The size of the
table is chosen to be 4096 symbols, so each symbol 1s represented by 12
bits. For more details, refer to [4l] or Appendix D which has the list-

ing of the code that simulates the LZW algorithm.

5.2. Method LZWB

The LZW algorithm compresses the data without any previous knowledge
of its source. This may not be efficient enough when the source an&
some of its characteristics are known in advance. For the data this
research works on, screens of text and grgphics, the distribution of
the black and white runs are known in advance. So, to let LZW benefit
from this previously known source information, this research introduces
a new solution that we call method LZWB. The proposed solution is to
count the black and white runs in the image and then send the codes of
these runs to LZW for compression. The letter "B" in method LZWB
stands for "binary".

Method LZWB assumes that the first 128 symbols in the LZW Table
represent run~lengths 1 to 128 of black pels and the symbols 129 to 256
represent run~lengths 1 to 128 of white pels. The input first goes
through a counter which counts runs between 1 and 128. Any run-length
greater than 128 is divided into one or more multiples of 128 and a run-
length smaller than 128. The output of this counter is fed to the LzZW
algorithm for compression. The output of the counter may be greater than

the size of the original block in some cases but it is expected that the
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distribution of the runs makes this data more suitable to compression
than the original data. This better compressibility comes from the
facts that certain runs are more frequent than the others and the de-
pendency among the different runs is present in the form of repeated
strings. Appendix E gives the code necessary to simulate the LZWB

method.

5.3. Method LZWBl

Method LZWBl, as proposed by this research, assumes the first 200
characters in the LZW table to represent run-lengths 1 to 100 of black
and white pels. The remaining 56 symbols of characters in the table
are used to represent two or three consecutive run-lengths. Table 5.1
has these runs and their corresponding symbols. These runs were chosen
because their probabilities, as given in the CCITT modified Huffman
table, are the highest among other runms.

Table 5,2 shows the most probable black and white run-lengths and
the lengths of their corresponding codes as defined in the modified
Huffman table. The Huffman table is optimum if the probabilities of
the entries are in the form (1/2)n where n is an integer greater than or
equal to 1. We assume that the table is optimum and, hence, calculate
the probabilities as given in Table 5.2. According to Table 5.2, white
run lengths 1 to 4 have a total probability equal to 75% of the white
run-lengths whereas black run-lengths 2 to 7 have (6/16) of the black
run-lengths. So, from the white run-lengths, we only used run-lengths

1 to 4 in the symbols. As for the black run-lengths, we chose run—



106

Table 5.1. The probability and code length of some run-lengths derived
from Table I in [13]

Black runs White runs
Run Code Run Run Code Run
length length prob. length length prob.
2 4 1/16 2 2 1/4
3 4 1/16 3 2 1/4
4 4 1/16 1 3 1/8
5 4 1/16 4 3 1/8
6 4 1/16
7 4 1/16
8 5 1/32
9 5 1/32
10 5 1/32
11 5 1/32
64 5 1/32
128 5 1/32
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Table 5.2. The strings used in LZWBl and their corresponding symbols

String starting String starting
Symbol with black pel Symbol with white pel
200 01 212 10
201 001 213 110
202 0001 214 1110
203 00001 215 11110
204 011 216 100
205 0011 217 1100
206 00011 218 11100
207 000011 219 111100
208 0111 220 1000
209 00111 221 11000
210 000111 222 111000
211 0000111 223 1111000
224 010 240 101
225 0100 241 1011
226 01000 242 10111
227 010000 : 243 101111
228 0010 244 1101
229 00100 245 ‘ 11011
230 001000 246 110111
231 0010000 247 1101111
232 0110 248 1001
233 00110 249 11001
234 01100 250 10011
235 001100 251 110011
236 01110 252 10001
237 001110 253 110001
238 011100 254 100011

239 0011100 255 1100011
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lengths 1 to 4; we did not choose run~lengths 5 to 7 because we wanted

to simplify the operation although if there is a benefit or not of in-
cluding them is a point that needs more research. The CCITT modified

Huf fman table assumes that the frequency of black run-length 1 is smaller
than the probability of any run-length between 2 and 11, but our dis-
tribution analysis in Chapter 4 showed that frequency of black run-length
1 was comparable to that of run length 3 and might be a little less than
run length 2. So, in the symbols we chose, we also represented run-
length 1.

Method LZWBl is a step beyond LZWB and, as in method LZWB, we pre-
dict that the output of the counter is more compressible than the original
data. We also predict that, since some of the symbols represented two or
three of the most frequent runs, the size of the counter output will not
be as big as the size of the counter output in LZWB. Appendix F gives

the code necessary to simulate method LZWB1.

5.4. Method LZWB2

The LZW algorithm initializes the first 256 symbols to character
symbols. Since it has no previous knowledge of the symbols in the input
data, it does not try to initialize symbols other than the characters
symbols. The symbols of method LZWB2, as in LZWB, represent white and
black run-lengths; hence, we assume that LZWB2 has a prior knowledge of
the frequency of the symbols and benefit from this knowledge by initial-
izing some symbols, from symbol 257 and above, to symbols of strings that

are very likely to occur.
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Two table initializations were tried. The symbols and their
corresponding run-lengths for these two initializations are presented
in Tables 5.3 and 22.1. The initialization of the table requires a
change in the code of the LZW decompression process. The change needed
is to allow for the first received symbol to be a string symbol in the
form of "w,k". The code of this 1s inserted before the code of the
decompression used in LZW. Appendix G gives the code necessary to
simulate method LZWB2 using Table 5.3. We will call this combination
method LZWB2-A. The code of method LZWB2 using Table 22.1 is exactly
the same as the code using Table 5.3 except for the part of initializing
the table which differs by the number of symbols to be initialized.

We will call method LZWB with the LZW table initialized by Table 22.1

as method LXWB2-B.

5.5. Results of LZW and the Above Mentioned
Modifications
The results of compressing the images in the data base using the

LZW algorithm are presented in Tables 5.4-5.10. Tables 5.11-5.15 give
the results of the average values for each group when compressed by
methods LZW, LZWB, LZWB1l, LZWB2-A, and LZWB2-B. Note, that for the
methods LZWB, LZWB2-A, and LZWB2-B, the results for group 8 do not
include the image "usamap" because the result of the symbols counter

is bigger than the buffer used. In the following sections, we will try

to analyze the above results.
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Table 5.3. Extended LZW tables to be used with LZWB2-A

Symbol String w k
256 01 0 128
257 001 1 128
258 0001 2 128
259 00001 3 128
260 011 0 129
261 0011 1 129
262 00011 2 129
263 000011 3 129
264 0111 0 130
265 00111 1 130
266 000111 2 130
267 0000111 3 130
268 010 256 0
269 0100 256 1
270 01000 256 2
271 010000 256 3
272 0010 257 0
273 00100 257 1
274 001000 257 2
275 0010000 257 3
276 0110 260 0
277 00110 261 0
278 01100 260 1
279 ' 001100 261 1
280 01110 264 0
281 001110 265 0
282 011100 264 1
283 0011100 265 1
284 10 128 0
285 110 129 0
286 1110 130 0
287 11110 131 0
288 100 128 1
289 1100 129 1
290 11100 130 1
291 111100 131 1
292 1000 128 2
293 11000 129 2
294 111000 130 2
295 1111000 131 2
296 101 284 128

297 1011 284 129
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Table 5.3. continued
Symbol String w k
298 10111 284 130
299 101111 284 131
300 1101 285 128
301 11011 285 129
302 110111 285 130
303 1101111 285 131
304 1001 288 128
305 11001 289 128
306 10011 288 129
307 110011 289 129
308 10001 292 128
309 110001 293 128
310 100011 292 129
311 1100011 293 129
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Table 5.4. Results of compressing images in group 1 using method LZW

Comprs. Decompzs.

Comprs. . Table Extra
Image factor time time size calls
docla 6.62 19.93 1.59 1867 0
doclb 3.69 19.55 1.53 3142 0
doclc 13.25 12.91 1.60 1060 0
doc2a 7.71 11.21 1.54 1638 0
doc2b 6.82 14.55 1.59 1818 0
doc2c 10.01 14.99 1.60 1321 0
docéa 2.91 33.67 1.54 3917 0
doc4b 2.55 32,24 1.54 4096 341
docéc 2,31 8.74 0.66 2283 0
doc5la 3.88 18.62 1.21 2454 0
doc51b 5.44 11.75 1.27 1822 0
doc5lc 8.41 5.28 0.71 838 0
doc5ra 2.97 15.87 1.16 2946 0
docSrb 5.87 11.48 1.16 1617 0
docSrc 3.18 6.54 0.66 1703 0
docba 4,86 18.84 1.59 2448 0
docéb 6.81 21.58 1.60 1822 0
doc8 5.77 16.75 1.60 2104 0

[
A=}

AVERAGE 5.73 16.36 1.34 2161
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Table 5.5. Results of compressing images in group 2 using method LZW

Comprs. Decmprs. .

Comprs. Table Extra

Image factor time t:me size calls
frnch3a 5.63 16.31 1.60 2148 0
flowchrt 4,57 18.18 1.59 2589 0
electre 3.87 22.90 1.53 3012 0
ordrfrm 5.17 17.91 1.53 2316 0
frnchla 6.11 17.14 1.53 2001 0
doc2a 7.71 11.15 1.59 1638 0
doc2b 6.82 14,50 1.59 1818 0
AVERAGE 5.70 16.87 1.57 2217 0

Table 5.6. Results of compressing images in group 3 using method LZW

Comprs. Decmprs.

Comprs. Table Extra

Image factor time t;me size calls
romtxt 2.35 34.43 1.54 4096 691
frnch2a 2.91 27.91 1.54 3925 0
pagel 4.15 17.75 1.59 2825 0
docl-2 4.68 18.78 1.59 2535 0
cprog 7.07 17.19 1.54 1763 0
doclb 3.69 19.56 1.54 3142 0
doc4a 2.91 33.67 1.53 3917 0
docé4b 2.55 32,24 1.54 4096 341
AVERAGE 3.79 25.19 1.55 3287 129
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Table 5.7. Results of compressing images in group 4 using method LZW

Comprs. Decmprs.

_ Comprs. Table Extra

Image factor time t:me size calls
pdraw3 4,58 25.43 1,59 2585 0
sciencel 3.53 24,50 1.54 3279 0
science2 2.77 29.44 1.54 4096 10
doc5la 3.88 18.62 1.21 2454 0
AVERAGE 3.69 24,50 1.47 3104 3
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Table 5.8. Results of compressing images in group 5 using method LZW

Comprs. Decmprs.
Comprs. Table Extra
Image factor time t:me size calls
opampl 5.94 7.09 0.93 1326 0
opamp2 6.07 13.46 1.54 1934 0
ecll 7.77 6.54 0.94 1078 0
ecl2 7.98 10.27 1.43 1423 0
netwrk 6.16 10.77 1.32 17.28 0
tablel 3.47 14.01 1.05 2331 0
usal 9.13 5.11 0.82 852 0
doc5la 4,79 2.31 0.33 785 0
doc5rb 5.03 5.22 0.71 1198 0
lotssin 3.56 10.66 0.99 2087 0
frnch3b 5.11 4,39 0.54 1006 0
barchrt 5.27 3.79 0.49 909 0
barchrt 3.36 0.82 0.16 518 0
barchrt 5.58 1.70 0.27 609 0
test2 4.03 3.03 0.44 992 0
test3 3.43 3.19 0.44 1121 0
testé 3.21 3.35 0.44 1184 0
test5 3.04 3.95 0.44 1324 0
diagl 4.49 3.07 0.44 932 0
diag?2 4.78 "1.92 0.27 666 0
daig3 3.81 2.30 0.33 853 0
diagé 3.58 2.03 0.28 842 0
diag5 7.63 2.86 0.49 683 0
diag5s 5.41 1.38 0.27 552 0
diagé6 5.27 1.16 0.17 513 0
diag6 4,71 0.88 0.16 479 0
diag6 8.62 4.01 0.61 749 0
netwrk2 3.36 1.65 0.28 731 0
pdrawl 3.19 1.92 0.28 864 0
usa2 2.06 0.32 0.06 441 0
usa2 4.01 1.20 0.22 609 0
doc51b 5.62 0.99 0.17 474 0
science3 2.54 1.32 0.16 746 0
science3 1.85 0.33 0.05 453 0
AVERAGE 4,82 4.03 0.52 970 0
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Table 5.9. Results of compressing images in group 7 using method LZW

Comprs. Decmprs.

Comprs. Table Extra

Image factor t:me t;me size calls
bignames 2.11 37.68 1.54 4096 1222
sun 2.95 27.73 1.54 3872 0
hazard 2.66 28.73 1.54 4096 166
manscl 2.35 34.93 1.53 4096 690
mansc2 3.31 23.01 1.54 3478 0
fig2 8.42 14,17 1.60 1522 0
figh 7.86 12.85 1.53 1612 0
figé 3.69 22.74 1.54 3149 0
fig7 5.09 15.98 1.53 2350 0
fig8 3.43 23.84 1.54 3364 0
AVERAGE 4,19 24,17 1.54 3164 208

Table 5.10. Results of compressing images in group 8 using method LZW

Comprs. Decmprs.

Comprs. Table Extra

Image factor t:me t:me size calls
blok3 27.97 10.49 1.59 636 0
blok6 10.98 14.06 1.59 1226 0
boxes 16.06 10.38 1.60 919 0
lines 15.19 12.25 1.59 957 0
testl 12.79 2.47 0.44 487 0
usamap 6.57 6.59 0.77 1089 0

AVERAGE 14.93 9.37 1.26 886 0
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Table 5.11. Results of compressing each group of the image data base
suing method LZW

Comprs. Dcmprs.

Comprs. C.F. time time Table Extra
Group # factor FAX s [ size calls
GROUP 1 5.73 0.58 16.36 1.34 2161 19
GROUP 2 5.70 0.68 16.87 1.57 2217 0
GROUP 3 3.79 1.35 25.19 1.55 3287 129
GROUP 4 3.69 0.93 24,50 1.47 3104 3
GROUP 5 4,82 0.50 4,03 0.52 970 0
GROUP 7 4.19 1.13 24,17 1.54 3164 208
AVERAGE 4.65 0.86 18.52 1.33 2484 60

Table 5.12. Results of compressing each group of the image data base
using method LZWB

Cmprs. Dcmprs.

Comprs. C.F. C.F. time time Count Table  Extra
Group # factor FAX LZW s s smbl., size calls
GROUP 1  5.88 0.59 1.02 13.80 1.03 6425 2227 164
GROUP 2  5.42 0.65 0.95 13.11 1.03 6428 2368 0
GROUP 3 2.96 1.05 0.78 26.75 2.39 14931 3588 785
GROUP 4  3.37 0.85 0.91 20.47 1.42 8853 3284 44
GROUP 5 5.18 0.54 1,07 2.83 0.29 1768 970 0
GROUP 7 3.79 1.02 0.90 26.95 1.99 12218 3306 362

AVERAGE  4.43 0.78 0.94 17.32 1.36 8437 2624 226
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Table 5.13. Results of compressing each group of the image data base
using method LZWB1
Cmprs. Decmprs.

Cmprs. C.F. C.F. time time Count Table Extra
Group # factor FAX LZW s s smbl. size calls
GROUP 1 5.86 0.59 1.02 12,31 0.91 5057 2224 158
GROUP 2 5.41 0.65 0.95 11.86 0.94 4973 2369 0
GROUP 3 3.01 1.07 0.79 29.00 1.96 9994 3566 751
GROUP 4  3.37 0.85 0.91 18.38 1.21 6297 3285 43
GROUP 5 5.19 0.54 1.08 2.61 0.28 1491 958 0
GROUP 7 3.89 1.05 0.93 23.77 1.66 8584 3285 371
AVERAGE 4.46 0.79 0.95 16.32 1.16 6066 2615 221
Table 5.14. Results of compressing each group of the image data base

using method LZWB2-A
Cmprs. Dcmprs.

Cmprs. C.F. C.F. time time Count Table Extra
Group # factor FAX LZW s s smbl. size calls
GROUP 1 6.00 0.61 1.05 13.72 1.02 6425 2255 168
GROUP 2 5.49 0.66 0.96 13.29 1.04 6428 2401 0
GROUP 3 2.98 1.06 0.79 27.04 2,39 14931 3608 803
GROUP 4  3.40 0.86 0.92 20.48 1.42 8853 3310 50
GROUP 5 5.29 0.55 1.10 2,91 0.30 1768 1012 0
GROUP 7 3.81 1.03 0.91 27.79 1.99 12218 3330 380
AVERAGE 4.50 0.79 0.95 17.54 1.36 8437 2653 234
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Table 5.15. Results of compressing each group of the image data base
using method LZWB2-B

Cmprs. Dcmprs.

Cmprs. C.F. C.F. time time Count Table Extra
Group # factor FAX LZW s s smbl. size calls
GROUP 1 6.28 0.63 1.10 15.77 1.02 6425 2493 196
GROUP 2 5.72 0.68 1.00 15.44 1.05 6428 2661 0
GROUP 3  3.07 1.09 0.81 30.79 2.39 14931 3731 925
GROUP 4 3.53 0.89 0.96 22,73 1.42 8853 3485 105
GROUP 5 5.48 0.57 1.14 3.63 0.29 1768 1323 0
GROUP 7 3.86 1.06 0.92 26.14 1.99 12218 3512 494
AVERAGE 4.66 0.82 0.99 19.08 1.36 8437 2868 287

Table 5.16. Compression and decompression times averages for each group
when compressed by the CCITT two dimensional compression
technique with k = «

Comprs. Dcmprs.
time time

Group # s s
GROUP 1 3.70 2.96
GROUP 2 4.09 3.22
GROUP 3 6.37 5.86
GROUP 4 4.63 3.90
GROUP 5 1.48 1.14
GROUP 7 5.58 4,88

AVERAGE 4,31 3.66
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5.6, LZW vs. FAX

By method FAX here and throughout the rest of the thesis, we mean,
unless otherwise specified, the CCITT two dimensional coding technique
with k = @, The results of the average compression factor (c.f.) for
each group were presented in Table 4.25 and the results of the compres-
sion and decompression times are presented in Table 5.16. Comparing
the results in the above tables with the results in Table 5.11, we get
the following points:

1) Compression factor: FAX gives higher c.f. than LZW for graphics
data, such as group 2 (g2) and g5, and LZW gives higher c.f. than FAX
for g3 and g7. This means when the data consist of mainly long black
runs and short white runs FAX outperforms LZW, but when the data con-
sists of mainly small runs, of black and white pels, LZW outperforms
FAX. For the data that are mixed of short and long runs, it seems that
FAX outperforms LZW as in group 4 or the average of group 1.

2) LZW needs longer compression time (c.t.), almost 4 times the
time used by FAX. But the LXW decompression time (d.t.) is smaller than
that of FAX, almost 0.36 times the time used by FAX. The decompression

times are in the range of 3 s and 1 s for FAX and LZW, respectively.

5.7. LZWB and LZWB2 vs. LZW and FAX
From Tables 5.11 and 5.12, we observe that LZWB advantages over
LZW are that groups 1 and 5 have higher c.f. and lower d.t. and c.t.

than those of LZW. The disadvantages are that the overall c.f. is
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smaller and the table size is bigger. So, in general, LZW is still bet-
ter than LZWB.

Tables 5.14 and 5.15 show that initializing the LZW table, as in
LZWB2-A and LZWB2-B, gave slight improvement in the c.f. and the bigger
the initialized part is the bigger the increase in c.f. is. The increase
in the LZWB2-B c.f. were 107 and 147% over the c.f. of LZW for gl and g5,
respectively. These increases are 37 and 7% for LZWB. The d.t. are very
small for g5, average of 29 s, with LZWB, LZWB2-A, and LZWB2-B. The dis-
advantages of the initialization are that the c.t. and the counter out-
put increase slightly with the initialized portion.

Compared to FAX, methods LZWB, LZWB2-A, and LZWB2-B have c.f. no
more than 107 higher for g3 and g7. But the c.f. of LZWB, LXWB2-A, and

LZWB2-B are less than the c.f. of LZW for the same groups.

5.8. LZWBl vs. LZWB
From Table 5.13, we notice that LZWBl1 has almost the same c.f.
as 1ZWB. The c.t., d.t., and the counter output are smaller for LZWBL
than for LZWB. So, the theory behind LZWBl worked but produced no over-

all higher c.f. than LZWB.

5.9. Conclusion
Based on the results of the previous sections, we conclude that
LZW gives a higher c.f. than FAX for some groups and lower d.t. for all
groups. So, an improvement in the LZW that increases the c.f. is desir-

able if LZW is to be used instead of FAX.
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The techniques of compressing the run~lengths of the image instead
of the image itself gave better c.f. and d.t. than those of FAX for g3
and g7. These techniques gave higher c.f. than LZW for gl and g5.

This means that more improvement in these techniques may produce a c.f.
that is better than both LZW and FAX. Moreover, in the case that we are
investigating which consists of black and white text and graphics, each
pel is represented by 1 bit. So, it is envisioned that for the case of
colored images where each pel is represented by more than one bit, the
LZWBs methods will give better c.f. and they may be better than LZW

and/or FAX.
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6. MODIFICATIONS TO THE LZW ALGORITHM

Each entry in the LZW algorithm table consists of a string symbol
and a character symbol that was previously encountered after this string.
Reference [43] suggested using a table in which each entry consists of
the symbols of two strings that were encountered after each other. This
modification was chosen because it was expected that it would result
in matching longer input strings to table entries. So, both LZW and the
method suggested by [43] search for the longest string in the input that
can be matched to a string encountered before; but the strings that are
obtained by this method are predicted to be longer.

The search for the longest string in LZW is éasy because after each
successful match the string increases by one character. Hence, in LZW
the search starts at symbol 256 and continues in one pass till all the
table entries are searched. The search in this new method is not so
easy because searching for the longest string requires the decomposition
of every table entry that has as its first character the next unprocessed
character in the input. Reference [43] did not show how it accomplished
this task. In designing a code to do this task, the following two prob-
lems arose:

1) The first character of each table entry should be stored
in a separate table so that only strings beginning with
the required character are searched. Without this stor-
ing, it would be necessary to decompose each table entry
just to see if it starts with the desired character or
not; this results in a big increase in the compression

time.

2) The decomposition of each table entry that begins with
the desired character will take long searches; so, it



124

is desirable to search for the longest block without the
need to do these long searches.

In the following sections, we will propose two new methods that
we will call LZW1l and LZW2 and that search for the longest string with-
out decomposing every table entry that begins with the next unprocessed
input character. Next, a method of decomposing every possible table
entry will be presented. This method, that we will call LZW3, follows
the concept suggested in [43]; nevertheless, it is not clear if [43]
designed the details of the method in the same way we did. Actually,
[43] never showed how to get the longest string, although this is a
critical point in applying the concept that [43] proposed.

The following definitions are used in tﬁe following discussions and
in the code used to simulate the above three methods:

Li = The last string sent to the output.

L, = The current longest string to be sent to the output.

€
n

1 The first symbol of a table entry.

g
]

2 The second symbol of a table entry.

Wy = The first character of W, in a table entry.

first_char = The first character in w
the longest block.

2 while searching for

code(wl, w2) = The code of the tables index corresponding to
. "wl,wz“. It is found by a scan functionm.

The variables Wq and first_char are used to solve the first of the
two problems mentioned above. Since these two variables represent a
character, 8 bits are needed to address each of them. The variable w

2

represents a string symbol; hence, at least 12 bits are needed to ad-
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dress w, in the case of a 4096 entry table. To simulate a table where
each entry consists of w., Wos and Was three.tables were used. Two of
these tables, where in tﬁese two each entry is an unsigned number, repre-
sent v and W, and the third table is a table of characters that repre-
sent w,.

Note that LZW used one table of unsigned numbers to represent w
and a character table to represent k. The three tables mentioned above
need more memory than the two tables of LZW. This explains the need to
use the far pointers in coding these new methods. To make the code of
LZW as close as possible to the code of its modifications, far pointers

were also used in coding LZW although there was no need for these far

pointers.

6.1. Method LZW1
Method LZW1l avoids using long searches, used in LZW3 later, by
firstly, finding the longest string it can build character by charac-
ter, i.e., it will search the Wy table with v, only equal to one of the
character symbols. Secondly, it enters a second loop where it searches
for a string that begins with the current string and that matches the
input. If it finds that string, this string will be the LZWl current
string, and this second loop will start again. If no string, that be-
gins with the current string and matches the input, was found, the cur-
rent string will be in this case the longest string we can get. Hence,

it will be sent out, the tables will be updated, and LZW1l will start

again in the first loop. The coding of LZW1l can be described as follows,
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in a C language like co§e:
1. in _index = out_ index = 0;
2. Ll = input{in_index++];
output[out_indext+] = Li;
Lj = input[input_index+t];
first_char = w, = w, = Lj;
3. while (in_index < bufr_size)
{
while (in_index < bufr_size)
{

w, = input[input_indexi+];

if (string "wl,w2" is in the tables]

W, = code(wl,w2);
else

first _char = wz;
}

while (in_index < bufr_size)
{
start from "position" and search wl_table and
w3_table for symbol "code" that corresponds
to wl and first char0Qj;

if(tables has w, as first string and second string

1
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starts with first_char, i.e., corresponding W, =
first_char)
{

position = code + 1;

find w, at the matched symbol code;

2

decompose w, into characters;

2
if (w2 matches the input)

{

wl = code;
adjust in_index;

first_char = input[input_index++];

}
}
else
break
}
Lj = wl;

output[out_index++] = Lj;
update tables wl_table, w2_table, and w3_table with Li’

Lj, and w3, respectively;

]
[

Wy = first_char;
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The decompression is straightforward and can be described as

follows:
1. in_index = out_index = 0;
2. while (in_index < input_size)
{

w, = input{in_index++];
decompose(wz);
update decompress buffer with characters from v,y

decomposition;

update wl_table and w2_table with Wy and wz;

W, = w2}
3. END.

Appendix H contains the listing of the LZW1 code.

6.2. Method LZW2
Method LZW2 does more searching than LZW1 in order to get the
longest string. It also consists of a '"while'" loop that contains gwo
smaller "while" loops. The outer and first '"while' loops are similar
to the ones in LZWl. The second "while'" loop is different.
In LZW1, the second "while'" loop can be summarized as follows:
while (more input and more table entries are to be searched)
{
read next character element in the input string;

match the input string to a table entry that has Wy

as its first string and first char as first character



129

of the entry second string;
let vy, = symbol of the matched entry;
}
In LZW2, the second "while" loop can be summarized as follows:
while (more input and more table entries are to be searched)
{
read next character element in the input string;
loop till you find the longest string that matches

the input and has w, as its first string and first_char

1
as the first character of its second string;
let W, = symbol of the longest matched string;
}

The decompreséion of LZW2 is exactly the same as of LZWl. Appendix

I contains the listing of the LZW2 code.

6.3. Method LZW3
Method LZW3 searches in the LZW table for the longest possible
string. It searches every single element that has W, as its first

string and its second string w, starts with first_char. To make the

2
search more efficient, we also make a table for the second character
of v, and use this information to speed up the search. In the results,
we will see that even with this improvement, LZW3 takes a very long time
without producing a considerable increase in the compression factor.

The decompression process of LZW3 is exactly the same as of LZWl. Ap-

pendix J contains the listing of the LZW3 code.
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6.4. Results of Compression Using LZW1,
LZW2, and LZW3
To compare the LZW, LZW1l, LZW2, and LZW3 methods, we apply them
to an image that has an infinite size and consists of a repetition of
the same byte, e.g., black or white images. From manually tracing the
methods, we observe that after sending n symbols from each method,
these symbols represent a total number of input bytes, we will call
"sum", as follows:
1) LZW: sum = 14+2+3+4+.c0ceveeseotn

which can be expressed as

- n(n+l)
2

2) LZWL: sum = L+L+2+2Hiit8+BHLE6+16. ... ... . . 42 0 ((R71)/2)

which can be expressed for n = 2m as

m-l)

sum = 2(1+2+4+8+. s 0 veunnee ot

m
. 21

2-1
2m+l -2
= o(m/2)+L _

2 sy n=2,4,6,38....

3) LZW2: sum = 1+1 +2+2 +4 +6+6 +12 +18+18 +36 +54+54 +108....

forn =2 + 3mand n > = 5 we get

sum = 1+1 +(2+2+6+6+18+18+54+54+....)

+(4+124+36+108+...)

1+1 +4 (143494274, ... ) +4(L+3+9427+.....)
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m-1

= 2 +8(1+3+9427+. .. 43T

=2 +8(l+3+9+27+....+3(((n-2)/3)_1))

in=5,8,11,14,...

(n-2
3
_ 3 -1
=2 + 8 -1
(n—z
=2+43 2 -1)
;n=5,8,11,14,...
4) LZW3: sum = 1+142+3+5+8+13+21.......... +a

from [45], we get

ek (B5) - (55)7)

where a, = 0, a, = 1, a, = 1, a, = 2, and so on.

0 1 2 3

These terms can be summed as two geometrical series. Hence, after

rearranging, we get:

1+/5." 1-/5."
, | G 1 S -1
sum = —— +
V5 /5-1 /541

Table 6.1 contains the results of sum with respect to some values
of n for LZW, LZW1-LZW3. These values are drawn in Figures 6.1 and 6.2.
From the above table and figures, we see that for small values of n, LZW
gives higher value of sum than the other methods. LZW3 crosses LZW at
almost n = 6 and then rises very fast. LZW1 and LZW2 cross LZW at almost
n =9 and 8, respectively, then rise but not as fast as LZW3, with LZW2

being the highest. We will use these results in our analysis of the
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Table 6.1. Size of the data represented by n symbols for each LZWx

method

n "LZW LZW1 LZW2 LZW3
1 1 1 1 1
2 3 2 2 2
3 6 4 4 4
4 10 6 6 7
5 15 10 10 12
6 21 14 16 20
7 28 22 22 33
8 36 30 34 54
9 45 46 52 88
10 55 62 70 143
11 66 94 106 232
12 78 126 160 376
13 91 190 214 609
14 105 254 322 986
15 120 382 484 1596
16 136 510 646 2583
17 153 766 970 4180
18 171 1022 1456 6764
19 ' 190 1534 1942 10945
20 210 2046 2914 17710
21 231 3070 4372 28656
22 253 4094 5830 46367
23 276 6142 8746 75024
24 300 8190 13120 121392
25 325 12286 17494 196417
26 351 16382 26242 317810
27 378 24574 39364 514228
28 406 32766 52486 832039
29 435 49150 78730 1346268
30 465 65534 118096 2178308
31 496 98302 157462 3524577
32 528 131070 236194 5702886
33 561 196606 354292 9227464
34 595 262142 472390 14930351
35 630 393214 708586 24157816
36 666 524286 1062880 39088168
37 703 786430 1417174 63245985
38 741 1048574 2125762 1.0E+08
39 780 1572862 3188644 1.7E+08

40 820 2097150 4251526 2.7E+08
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Figure 6.1. Plot of size of data (sum) vs. number of symbols
used (n) for compressing a white image of infinite
size (n = 1 to 10)
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Figure 6.2.

13 18 17 19

Number of symbols sent, n

Plot of size of data (sum) vs. number of symbols
used (n) for compressing a white image of in-
finite size (n = 11 to 20)
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images compression results., Note that although this theoretical treat-
ment shows a big difference between the methods for the infinite image,
the results are not the same for an image of limited size. Table 6.2
contains the results of compressing a white screen using each of the LZW
methods. This table shows that there is no big difference in the c.f.
of the 4 LZW methods.

The results of compressing each group by methods LZW1l, LZW2, and
LZW3 are presented in Tables 6.3, 6.4, and 6.5, respectively. Table 6.6
contains the results of compressing each group using "LZW3+LzZWBl" which
is similar to LZWbl but with the LZW3 used instead of LZW. From these
tables and the corresponding tables for LZW and FAX, we get the follow-
ing remarks:

1) The results of LZW2 and LZWl1l are very close to LZW. LZW1 and
LZW2 have very small advantage in c.f. and table size. LZW2 has slight-
ly higher c.t. than LZWl. The c.t. of both methods are slightly higher
than the c.t. of LZW. The table size of both LZW1l and LZW2 are very
slightly higher than LZW. Taking all the groups into consideratiom, it
seems that LZW1l and LZW2 give better c.f. and d.t. than 1ZW.

2) 1LZW3 gives better c.f. than LZW for all groups except g3. The
d.t. of LZW3 is similar to LZW but its c.t. is very big. 1In fact, the
c.t. of LZW3 is bigger than one minute; for this reason, we do not in-
clude c.t. in the tables of LZW3,

3) LZW gives better c.f. than LZW1l and LZW2 for g3 and g4. This

can be explained by using the theoretical analysis we presented before.
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Table 6.2. Results of compressing a white screen using methods FAX,
LZW, LZWL, LZW2, and LZW3

Comprs. Decomprs.

Comprs. time time Table Extra
Method factor s s size calls
FAX 305.49 2.79 1.54 NA? NA
LZW 59.48 8.95 1.59 . 434 0
LZWl1 340.43 2.64 1.48 286 0
LZW2 363.64 3.13 1.49 284 0
LZW3 410.26 5.44 1.54 281 0

%Na = entry not valid for this method.

Table 6.3. Results of compressing each group of the image data using
method LZW1

Comprs. Dcmprs.

Comprs. C.F. C.F. time time Table Extra
Group # factor FAX LZ s s size calls
GROUP 1 6.29 0.64 1.10 13.32 1.20 2118 49
GROUP 2 5.72 0.68 1.00 13.43 1.37 2209 0
GROUP 3 3.60 1.28 0.95 29.14 1.46 3388 268
GROUP & 3.62 0.91 0.98 22.60 1.36 3127 33
GROUP 5 5.31 0.55 1.10 3.20 0.47 941 0
GROUP 7 4.27 1.15 1.02 30.28 1.46 3208 308

AVERAGE 4.80 0.87 1.03 18.66 1.22 2499 110
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Table 6.4, Results of compressing each group of the image data base

using method LZW2

Comprs. Dcmprs.
Comprs. C.F. C.F. time time Table Extra

Group # factor FAX LZW s s size calls
GROUP 1 6.35 0.64 1.11 15.04 1.20 2113 48
GROUP 2 5.78 0.69 1.01 15.16 1.36 2187 0
GROUP 3 3.62 1.29 0.96 32.82 1.47 3386 260
GROUP 4 3.64 0.92 0.99 24.25 1.35 3113 31
GROUP 5 5.40 0.56 1.12 3.68 0.43 936 0
GROUP 6 4,30 1.16 1.03  29.20 1.46 3200 309
AVERAGE 4.85 0.88 1.046 20.03 1.21 2489 108
Table 6.5. Results of compressing each group of the image data base

using method LZW3

Dcmprs.

Comprs. C.F. C.F. time Table Extra
Group # factor FAX LZW s size calls
GROUP 1 6.62 0.67 1.16 1.43 2056 39
GROUP 2 6.12 0.73 1.07 1.57 2048 0
GROUP 3 3.74 1.33 0.99 1.59 3345 216
GROUP 4 3.77 0.95 1.02 1.48 3047 14
GROUP 5 5.82 0.61 1.21 0.47 894 0
GROUP 7 4.54 1.23 1.08 1.59 3149 268
AVERAGE 5.10 0.92 1.09 1.36 2423 90
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Table 6.6. Results of compressing each group of the image data base
using method LZW3 combined with LZWB1

Dcmprs.

Comprs. C.F. C.F. time Table Extra
Group # factor FAX LZW s size calls
GROUP 1 6.06 0.61 1.06 1.01 2215 182
GROUP 2 5.53 0.66 0.97 0.98 2323 0
GROUP 3 3.00 1.07 0.79 2.04 3567 858
GROUP 4 3.34 0.84 0.91 1.28 3294 69
GROUP 5 5.77 0.60 1.20 0.27 930 0
GROUP 7 4,14 1.12 0.99 1.74 3261 451

AVERAGE 4.64 0.82 0.98 1.22 2598 260
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Since the analysis showed that LZW is better than LZW1 and LZW2 for small
values of n adding to that the fact that g3 and g4 contain a lot of text
(which means the run-lengths of these two groups consist of small runms),
the length of the strings LZW1l and LZW2 produce in the LZW table is
small, hence LZW is better.

4) The same conclusion reached in 3 about LZW1 and LZW2 can be
reached for LZW3. But as the calculation shows, LZW3 crosses with LZW
for smaller values of n and does much better than LZW for bigger.values
of n; hence, in general, LZW3 is better than 1ZW. Table 6.5 showed
that LZW3 always had bigger c.f. than LZW except for g3 where the c.f.
of the two methods were very close to each other.

4) The c.f. of LZW1-LZW3 compared to FAX are, as was the case for
LZW, higher for g3 and g5 and lower for the other groups. The ratio of
the c.f. of LZW3 to that of FAX is 1.35 for g3 which is screens full of
text. This big gain in c.f. for g3 justifies using LZW3 at least for
g3.

5) From Table 6.6, it is clear that the only advantage LZW3+LZWB1
has over LZW3 is a slightly less d.t. LZW3+LZWBl1 has the disadvantage
of lower c.f. and slightly bigger table size. Compared to LZWBl1l alone,
LZW3_LZWBl gives a higher c.f. The same analysis and conclusion we got

for LZWB1 in Chapter 4 applies to LZW3+LZWB1.
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7. METHODS R8, R4, AND BIG

7.1. Method R8

The following observations led to the development of methods R8 and
R4:

1) LZW gives higher c.f. if the input contains repeated strings
and strings that can be built from each other. The methods LZWBs were
an attempt to change the input data to LZW from just the pels of the
screen in their regular form to other form, run-lengths symbols, that
might result in a higher c.f. using LZW. As was shown in Chapter 5,
this attempt was successful for some groups and not successful for
others. So, another attempt to produce bettef input. to LZW was de-
veloped by the auphor.

2) The attempt of Chapter 6 to produce better versions of LZW gave
modified versions of LZW (namely, LZWl, LZW2, and LZW3) that gave bet-
ter c.f. than LZW but not as high as expected.

3) LZw, LZWl, LZW2, and LZW3 gave better c.f. than FAX for g3
which consists of screens full of text. At the first glance, it seems
that groups consisting of mainly graphical data, and not g3, should give
higher c.f. because there is no relation between the screen bytes in
the case of g3. But, besides the fact that FAX is not optimum for
screens that have a lot of small white and black runs, a closer look at
the functioning of LZW and the structure of the input data suggests that

LZW does better than FAX for g3 because LZW benefits from the dependency
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between the characters themselves. That is to say, if character "B"
comes after "A", the rows of pels representing "B'" come after the rows
of pels representing "A". This results in adding, to the LZW table,

a number of strings equal to the character height (assume from now on
that the character height is 8). So, the next time "B" comes after "A",
LZW will detect that 8 strings have already been encountered before and
are in the table. Hence, LZW represents these 8 strings with fewer sym-
bols than in the case of an input from the normal scan. Note that at
this point LZW denotes any of LZW, LZW1l, LZW2, and LZW3.

Taking the above 3 points into consideration, we developed methods
R8 and R4. Method R8 can be explained as follows.

Instead of reading the screen in the normal scan, R8 divides the
screen into blocks of 8 lines and reads each block column by column,
where a column width is one byte. Figure 7.1 represents the normal
scan and the scan in method R8. So, method R8 is not a compression
method; it is only a way of arranging the screen data in the best form
for compression. Consequently, method R8 (similarly, R4) should be
used with any LZW method. The notation for using LZW combined with
R8 will be "LZW+R8". Throughout the rest of the thesis the notation
LZWx will be used to denote LZW, LZWl1l, LZW2, or LZW3 (so, x = 0, 1, 2,
or 3 with LZWO denoting LZW). The notation Ry will be used to denote
R8 or R4. The letter "R" in the method name stands for "rotated" scan.

The numbers 4 and 8 stand for the column width in pels.
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7.2. Method R4

Method R8 was designed with the screen viewed as characters in
order to increase the c.f. of compressing textual data. But for graphics
screens or blocks this view may not be the best idea for compression.
To investigate this point, we developed method R4. R4 works similar to
R8 except that the column width in the rotated scan is 4 pels or half a
byte. It is envisioned that this will work better for graphics data
because it can isolate longer strings, specially runs of black pels.

Another reason for developing R4 is that such a scanning method
might be necessary when scanning typed material where the character width

of each letter is not the same for all letters.

7.3. Method BIG

LZW is known to work better as the input data size increases, up
to a certain limit [41]. In all the previous LZWx methods, we compress
a screen or part of a screen; this means that the input data maximum
size is 16 KB. The previous methods (e.g., LZWx+Ry) results showed that
the table size was smaller than the table maximum size. This means,
as will be cleared later, there is a room for increasing the input size.
In method BIG, we use any of the previous methods to compress more than
one screen. So, BIG is not an actual method but we name it as a method

to make the comparison and investigation clearer.
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7.4. Results and Analysis of R8 and R4

Tables 7.1 and 7.2 contain the results of using LZW with R8 and

R4, respectively. Tables 7.3 and 7.4 contain the results of using

LZW1l with R8 and R4, respectively. Tables 7.5 and 7.6 contain the re-

sults of using LZW2 with R8 and R4, respectively. Tables 7.7 and 7.8

contain the results of using LZW3 with R8 and R4, respectively.

From the above mentioned tables, we get the following points:

D)

2)

For all groups, Ry+LZW3 gives higher c.f. than Ry+LZWx
(where x=0, 1, 2) and LZWx without Ry.

c.f. of R8 vs. c.f. of R4: the c.f. results of the dif-
ferent groups can be classified as follows:

a) For gl, R4+LZW or R4+LZW1 is almost the same as
R8+LZW or R8+LZW1l, respectively, and R4+LZIW2 or
R4+LZW3 is better than the R8+LZW2 or R8+LZW3,
respectively.

b) For g2, R4 is better than R8 when any of them is com-
bined with LZW1l, LZW2, or LZW3. For the LZW, R8 is
better.

¢c) For g3, R8 is better than R4 for any LZWx.
d) For g4, R4 is better than RS for any LZWx.

e) For g5, R4 is better than R8 for LZW1-LZW3 and R8
is better than R4 for LZW.

£) For g7, R4 is better than R8 for LZW1 and LZW2, same
as R8 for LZW3. For g7, using LZW, R8 is better than
R4.

From the above classification, it is clear that, as ex-
pected, R8 is better than R4 when the data is only, or
mostly, a textual screen., But for graphical data, R4 is
better. When the data are a combination of text and
graphics R4 is better or at least the same as R8 for all
the LZWx methods except LZW.



145

Table 7.1. Results of compressing each group of the image data base
using method LZW combined with method R8

Comprs. Dcmprs.

Comprs. C.F. C.F. time time Table Extra
Group # factor FAX LZW s s size calls
GROUP 1 6.96 0.70 1.21 14,58 1.79 1706 0
GROUP 2 6.70 0.80 1.18 16.78 2.09 1928 0
GROUP 3 5.84 2,08 1.54 20.09 2.09 2313 0
GROUP 4 4.41 1.11 1.20 24.33 1.99 2761 0
GROUP 5 5.44 0.57 1.13 3.89 0.67 855 0
GROUP 6 4.67 1.26 1.11 24.01 2,07 2882 167
AVERAGE 5.67 1.09 1.23 17.28 1.78 2074 28

Table 7.2. Results of compressing each group of the image data base
using method LZW combined with method R&4

Comprs. Dcmprs.,

Comprs. C.F. C.F. time time Table  Extra
Group #  factor FAX LZW ] s size calls
GROUP 1 6.95 0.70 1.21 15.10 2.06 1726 0]
GROUP 2 6.61 0.79 1.16 17.67 2.41 1959 0
GROUP 3 5.40 1.92  1.42 22,65 2.39 2513 24
GROUP 4 4,67 1.18 1.27 24.32 2.25 2620 0
GROUP 5 5.47 0.57 1.13 4.07 0.76 859 0
GROUP 7 4,59 1.24 1.10 25.74 2.38 3207 208

AVERAGE 5.62 1.07 1.22 18.26 2.04 2147 39
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Table 7.3. Results of compressing each group of the image data base
using method LZW1l combined with method R8

Comprs. Dcmprs.,

Comprs. C.F. C.F. time time Table  Extra
Group #  factor FAX LZW s s size calls
GROUP 1 7.51 0.76 1.31 7.83 1.16 1598 0
GROUP 2 6.78 0.81 1.19 10.21 1.33 1895 0
GROUP 3 7.58 2.70 2.00 11.68 1.43 1974 0
GROUP 4 4,71 1.19 1.28 17.46 1.31 2698 0
GROUP 5 5.80 0.60 1.20 2.42 0.44 839 0
GROUP 7 4.86 1.3 1.16 25.10 1.43 2948 228
AVERAGE 6.21 1.23 1.36 12.45 1.18 1992 38

Table 7.4. Results of compressing each group of the image data base
using method LZW1l combined with method R4

Comprs. Dcmprs.

Comprs. C.F. C.F. time time Table Extra
Group # factor FAX LZW s s size calls
GROUP 1 7.52 0.76 1.31 7.63 1.17 1590 0
GROUP 2 6.95 0.83 1.22 9.72 1.35 1864 0
GROUP 3 6.98 2.48 1.84 13.05 1.44 2127 21
GROU? 4 5.19 1.31 1.41 14.83 1.32 2453 0
GROUP 5 6.02 0.63 1.25 2.33 0.45 824 0
GROUP 6 4.94 1.34 1.18 24.51 1.45 2905 249

AVERAGE 6.27 1.22  1.37 12.01 1.20 1961 45




147

Table 7.5. Results of compressing each group of the image data base
using method LZW2 combined with method R3

Comprs. Dcmprs.

Conmprs. C.F. C.F. time time Table Extra
Group #  factor FAX LzW s s size calls
GROUP 1 7.56 0.76 1.32 9.04 1.16 1589 0
GROUP 2 6.84 0.82 1.20 11.65 1.36 1884 0
GROUP 3 7.64 2,72 2.02 14.37 1.42 1970 0
GROUP 4 4,65 1.17 1.26 18.98 1.32 2701 0
GROUP 5 5.83 0.61 1.21 2.78 0.41 837 0
GROUP 7 4.82 1.30 1.15 21.80 1.44 2944 226
AVERAGE 6.22 1.23 1.36 13.10 1.19 1988 38

Table 7.6. Results of compressing each group of the image data base
using method LZW2 combined with method R4

Comprs. Dcmprs.

Comprs. C.F. C.F. time time Table  Extra
Group # factor FAX LZW s s size calls
GROUP 1 7.64 0.77 1.33 8.91 1.18 1521 0
GROUP 2 6.91 0.82 1.21 11.33 1.37 1877 0
GROUP 3 6.59 2.35 1.74 15,88 1.47 2133 15
GROUP 4 5.12 1.29 1.39 17.03 1.31 2474 0
GROUP 5 6.06 0.63 1.26 2,65 0.41 822 0
GROUP 7 4.99 1.35 1.19 21,92 1.45 2893 249

AVERAGE 6.22 1.20 1.35 12.95 1.20 1953 44
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Table 7.7. Results of compressing each group of the image data
base using method LZW3 combined with method R8

Dcmpré.

Comprs. C.F. C.F. time Table Extra
Group # factor FAX. LZW s size calls
GROUP 1 8.07 0.82 1.41 1.48 1515 0
GROUP 2 7.33 0.87 1.29 1.57 1781 0
GROUP 3 7.84 2.79 2.07 1.58 1915 0
GROUP 4 4,93 1.24 1.34 1.51 2599 0
GROUP 5 6.41 0.67 1.33 0.51 790 0
GROUP 7 5.30 1.43 1.26 1.63 2835 200
AVERAGE 6.65 1.30 1.45 1.38 - 1906 33
Table 7.8. Results of compressing each group of the image data

base using method LZW3 combined with method R&4

Dcmprs.

Comprs. C.F. C.F. time Table Extra
Group # factor FAX LZW s size calls
GROUP 1 8.17 0.83 1.43 2.14 1506 0
GROUP 2 7.41 0.88 1.30 2.40 1773 0
GROUP 3 7.31 2.60 1.93 2.41 2075 0
GROUP 4 5.41 1.36 1.47 2.28 2387 0
GROUP 5 6.60 0.69 1.37 0.72 783 0
GROUP 7 8

5.30 1.43 1.26 2.43 2827 22

AVERAGE 6.70 1.30 1.46 2.06 1892 38
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Although the c.f. ratios (LZW3/FAX) and (LZW3/LZW) seem
to be the same for R4 and R8 when combined with LZW3, the
average c.f. of all groups is higher in the case of R4
(6.7 for R4 vs. 6.65 for R8).

R4 has higher d.t. than R8 when any of them is combined
with LZW or LZW3 and almost the same as R8 when any of
them is combined with LZW1l or LZW2. The d.t. of R8+LZW3
is approximately 2/3 of the d.t. of R4+LZW3.

d.t. of R8+LZWx (x=1, 2, 3) are less than d.t. of R8+LZW
with R8+LZW1l and R8+LZW2 having the smallest values.

d.t. of R4+LZW1 or R4+LZW2 are less than d.t. of R4+LZW.
d.t. of R4+LZW3 is the same as d.t. of R4+LZW.

So, for Ry+LZWx (x=1, 2, 3), although LZW1-LZW3 have longer
strings to be decomposed than LZW, the number of strings

in the case of LZW1-LZW3 is less, resulting in a d.t.
smaller than or equal to the d.t. of LZW.

Although unexpected, the c.t. of Ry+LZW1l or Ry+LZW2 are
smaller than the c.t. of Ry+LXW. Most of the c.t. of
LZW3 or Ry+LZW3 are longer than one minute, so it was
decided not to include them in the tables.

The table size for Ry+LZWx decreases as x increases. The
table size of R4+LZWx is close to the table size for
R8+LZWx for each corresponding value of x.

For g3, the c.f. of R8+LZWx increases as X increases. R4
has a similar trend except for R4+LZW2, where the c.f.
is less than R4+LZW1 but still higher than LZW,

The c.f. of Ry+LZW3 is higher than FAX for g3, g4, and g7
and less for easy graphics such as g2, g5, and gl which is
mixed of text and easy graphics. The result of compress-
ing gl can be explained by the fact that the majority of
the documents in gl are easy graphics; only document 4
can be considered as a "text only" document. Hence, the
effect of documents totally or partially consisting of
graphics cause the c.f. of FAX to be higher than Ry+LZW3.

The highest ratio of the c.f. of Ry+LZWx to FAX c.f.
is for R8+LZW3 where it is 2.79.

LZW1 or LZW2 when combined with Ry give c.f. that are
smaller than LZW3+Ry by no more than 10%; but they have
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the advantage of lower d.t. and extremely lower c.t. in
comparison to LZW3. So, if the c.t. is not important,

as in our case, LZW3+Ry is the best choice. Choosing
between R4 and R8 depends on the group of data to be
compressed and the d.t. allowed. But as we saw before,
LZW3+R4 gives an overall c.f. that is higher than LZW3+R8
and its d.t. is only in the range of 2 s (=1.5 times the
d.t. of LZW3+R8). Hence, we think LZW3+R4 should be the
choice.

Furthermore, R8 may not do as well for variable width
characters as it did in the case of g3 as shown in Tables
7.7.

If the c.t. is important, Ry+LZWl or Ry+LZW2 is the choice.
From the previous data and analysis, there is no big dif-
ference between Ry+LZWl and Ry+LZW2, and choosing any of
them will do as well as the other.

7.5. Results and Analysis of BIG

To investigate BIG, we grouped two or more files for a total of
19 groups or combinations. To avoid confusion with the group numbering
that we made in Chapter 3, we call these "combinations" and denote them
by cl, c2,... 2tc. Table 7.9 lists these combinations and the images
they combine. The images in each combination are listed in their com-
pression order. Tables 7.10-7.12 contain the c.f. results of BIG+Ry+LZWx
(x=0, 2, and 3). Table 7.13 contains the c.t. results of BIG+Ry+LZW and
BIGH+Ry+LZW2. Since the c.t. results of BIG+Ry+LZW3 are bigger than 1
min, they will not be included. Table 7.1l4 contains the summation of
the c.t. of the individual images in each combination when each indi-
vidual image is compressed alone using Ry+LZW and Ry+LZW2. Table 7.15
contains the extra calls made when compressing each combination. The

presence of negative values of the "extracalls" is used to denote that
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Table 7.9. The combinations used in BIG

Combi;ation Image 1 Image 2 Image 3 Image 4 Image 5
1 docla doclb doclc
2 doc2a doc2c doc2c
3 docé4a docé4b
4 docba doc6b
5 docla doclb
6 doc2a doc2b
7 doc4a docé4b romtxt
8 doc4a docé4b frnch2a
9 docé4a doc4b doc4c romtxt frnch2a
10 docé4a docé4b doc4a
11 doc4a doc4b doc2a
12 doc4a doc4b cprog
13 docéa doc2a docé4b
14 docs4a electrc doc4b
15 docba docéb doc8
16 docba doc6b frnch3a
17 docba doc6b electrc
18 i doc6a doc6b flowchrt

19 docba docéb flowchrt electre
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Compression factor results using Ry+LZW

Table 7.10.
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Table 7.11. Compression factor results using Ry+LZW2

Combi-
nation R8+LZW2 R4+LZW2
i BIG IND BIG/IND BIG/FAX BIG IND BIG/IND BIG/FAX
1 6.68 6.14 1.09 1.00 6.73 6.30 1.07 1.01
2 10.97 9.05 1.21 0.74 11.10 9.18 1.21 0.75
3 8.67 7.04 1.23 5.10 8.15 6.55 1.24 4.79
4 8.50 7.91 1.07 0.71 8.96 8.18 1.10 0.75
5 5.05 4.80 1.05 1.01 5.10 4.92 1.04 1.02
6 9.33 8.19 1.4 0.69 9.46 8.35 1.13 0.70
7 7.86 6.83 1.15 4,94 7.17 6.41 1.12 4,51
8 5.57 5.20 1.07 3.13 4.09 4.43 0.92 2.30
9 4.61 5.41 0.85 2.78 4,05 4.79 0.85 2.44
10 10.49 7.13 1.47 5.99 9.99 6.59 1.52 5.72
11 8.82 7.53 1.17 3.66 8.54 7.20 1.19 3.54
12 10.03 8.42 1.19 4,52 9.41 7.74 1.22 4,24
13 8.68 7.53 1.15 3.60 8.37 7.20 1.16 3.47
14 6.55 6.04 1.08 3.64 6.14 5.72 1.07 3.41
15 8.38 7.84 1.07 0.59 9.00 8.21 1.10 0.63
16 8.58 7.67 1.12 0.71 9.03 7.80 1.16 0.75
17 6.74 6.44 1.05 1.47 6.75 6.47 1.04 1.48
18 7.34 6.88 1.07 0.85 7.81 7.09 1.10 0.90
19 5.25 6.15 0.85 1.10 4.97 6.23 0.80 1.04
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Table 7.13. Compression time of each combination using Ry+LZW and

Ry+LZW2
Combination R8-+LZW R4+LZW R8+LZW2 R4+LZW2
it s s s s
1 99 100 60 60
2 60 61 36 38
3 55 61 34 35
4 37 39 24 23
5 64 65 47 47
6 31 32 23 24
7 129 131 66 70
8 121 125 96 121
9 264 276 183 187
10 96 104 52 53
11 111 108 55 57
12 111 112 47 49
13 105 112 59 62
14 105 114 83 89
15 81 85 52 49
16 70 85 48 47
17 82 88 66 66
18 75 78 58 56

19 116 124 122 132
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Table 7.14. Summation of the compression times of the images in each
combination using Ry+LZW and Ry+LZW2

Combination R8+LZW R4+LZW R8+LZW2 R4+LZW2
# s s s s
1 58 60 36 36
2 41 42 23 24
3 44 48 26 27
4 30 31 18 17
5 46 46 32 31
6 26 27 17 17
7 66 72 40 42
8 69 83 56 67
9 98 115 75 87

10 66 72 38 40
11 55 60 34 36
12 60 66 31 33
13 55 60 34 36
14 64 70 44 46
15 45 46 28 26
16 45 46 29 27
17 50 53 37 36
18 48 50 33 30

19 68 72 51 49
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Table 7.15. Extra calls required when compressing each combination
using Ry+LZW, Ry+LZW2, and Ry+LZW3

Combi~
nation .
# R8+LZW R4+LZW R8+LZW2 R4+LZW2 R8+LZW3 R4+LZW3
1 936 1001 948 907 775 739
2 -1059 -1028 " =930 =963 ~1093 -1115
3 ~268 12 -1382 ~1225 -1371 -1299
4 -1331 -1376 =1334 ~1464 -1622 ~1665
5 346 422 381 338 219 214
6 =1666 2434 =1557 ~1589 -1679 ~1707
7 3523 8738 227 615 222 417
8 4016 7422 1902 3981 1781 3496
9 15320 16904 7705 9290 8179 9518
10 995 1354 =794 -641 -809 =722
11 936 1393 -218 -98 ~299 =247
12 947 2256 =655 =444 -692 =564
13 874 1072 -159 =24 =293 -238
14 2273 2633 1041 1365 816 936
15 -6l =132 =28 =290 =413 =560
16 =244 =229 -115 =300 =507 =547
17 966 1038 906 898 480 547
18 435 419 513 251 13 ~88

19 3861 4567 4281 4745 3612 3732
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there were no extra calls and the number given is equal to the table
size minus the table maximum size, i.e., minus 4096.

Checking the c.f. results in Tables 7.10-7.12, we observe that
the method BIG, in general, produced the desired increase in the c.f.
We also observe that the trends in the three tables are very similar,
Hence, we chose to comment on only Table 7.12 which has the results of
using BIG+Ry+LZW3.

From Table 7.12, we see that the difference between using R4 and
R8 is very small, except for c8. In general, as expected and explained
before, R8 produces a higher c.f. for textual data and R4 produces a
higher c¢.f. for graphics data. In the following, we will look at the
results of BIG+R8+LZW3. We will refer to the results of BIG+R4+LZW3
when necessary.

1) Combinations cl, c2, c¢3, and c4 represent the combination
of the parts of each of the CCITT documents. This means
the images combined in each combination are related to-
gether. For this reason, the result of c¢l, c2, c3, and
c4 shows an increase in the ratio of the c.f. if the
combination is compressed at once, over the total c.f.
if each image was compressed alone. Tables 7.10-7.12
denote this ratio by BIG/IND, and we will use this nota-
tion in the rest of the thesis. Among the BIG/IND ratios
of cl, ¢2, c3, and c4, the highest ratio was that of c3.
This is expected since this combination is a combination
of two textual screens. Note that the c.f. of c¢3 is 8.63
which is higher than the c.f. if each screen was sent
as an ASCII text. If each screen was sent as ASCII text,
then the c.f. is given by

c.f. = 16000/(80x25) = 8.0

We should note that the two textual screens in c¢3 have only
24 lines each with the last line being blank characters.
So, for a completely filled screen the c.f. may be a little
less, or may be higher.
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The fact that we get a c.f. of ¢3 that is higher than the
c.f. .1f we send the screen as ASCII is a very interesting
and important result. It means that without any pattern
recognition we get a c.f. higher than the c.f. if pattern
recognition 1s used.

Combinations c¢5 and ¢6 are each the combination of the
first two images in cl and c2, respectively. Their c.f.
result shows that for such images, compressing three
images is better than compressing two images in one com~-
bination.

Combinations c¢7 and c8 consist of doc4a and docéb each,
followed by romtxt and frnch2a, respectively. The BIG/IND
ratio of ¢7 is higher than that of c¢8. This difference
can be explained by the following remarks:

a) The characters in frnch2a are different from the
characters in doc4a and doc4b while the characters
of romtxt are the same.

b) The image frnch2a is a screen filled with 22 lines
while the images docé4a, doc4b, and romtxt are textual
pages with 24 lines as a text and line 25 is blank.
This means that, first image romtxt is more similar
to doc4a and doc4b than image frnch2a. Second, the
compression of frnch2a will not be as good as any of
the other images because it is not in the best form
for R8, i.e., it does not consist of lines that are
next adjacent to each other and frnch2a has charac-
ters of 8 pels high.

The ratio of the c.f. of c8 using BIG+R8+LZW3 to the
c.f. of BIGH+R4+LZW3 is the highest ratio in Table 7.12
for any combination.

Each of ¢9 and cl9 represent a combination of 5 images
of textual and graphics screens, respectively. In the
result of both combinations, BIG/IND is less than 1 but
BIG/FAX is bigger than 1. The fact that BIG/IND is less
than 1 suggests that, as expected, the LZWx methods lose
their adaptation if the input size increases beyond a
certain limit,

Combination ¢l0 shows how LZWx benefits from repeated
strings and how it is highly adaptable. These two ob-
servations come from the fact that doc4a is the first and
third image in this combination.
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8)

9)

10)
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13)
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Combinations cll and cl2 have images doc4a and docé4b as
their first two images and doc2a and cprog as their third
image, respectively. Although the third image is a
graphics image in cll and a textual image in cl2, both
combinations have BIG/IND around 1.15. This also shows
the adaptability of LZUWx.

The second and third images in cl3 are the third and
second images in cll. It is interesting that with this
flipping of the images order, the resulted c.f. are still
almost the same. BIGH+R4+LZW3 gives similar results.

Combinations cl3 and cl4 both have doc4a and docéb as
their first and third images, and their second image is
a graphical screen. Both combinations give BIG/IND big-
ger than 1.10. This also shows the adaptability of LZWx.

In the combination cl5, the third image is completely
different from the first two images and still BIG/IND
is bigger than 1. This also shows the adaptability of
LZwWx. ’

Combinations c¢l6, cl7, and cl8 start each with two related
graphics screens, namely, docba and doc6bb, followed by

a third image that is also a graphics screen. The BIG/IND
is bigger than 1 in the three combinations. The BIG/IND
ratio increases with the c.f. of the third image.

In most combinations, there were some extra calls made
but this did not affect the c.f. very much.

The compression time of the document increases as its
order in compression increases. The compression time for
images other than the first image is usually longer than
when compressing this image alone. This is due to the
fact that the method takes longer time to search the table
as the table size increases.
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8. GENERAL ANALYSES

In the previous chapters, we looked at the methods when we developed
them. In this chapter, we will present some general remarks about these

methods.

8.1, Building the Screen

In Chapter 3, we defined group 6 as a group that contains an image
that is built gradually and can be divided into smaller blocks. We saw
in Chapter 4 that, when using FAX, this division does not increase the
total c.f. of the small blocks. We did not look at this point for the
methods LZWx in the last chapters. Table 8.1 presents the results of
dividing the image pdraw3 into 4 smaller blocks using all the methods
developed so far.

From Table 8.1, we conclude that LZWx does not benefit from divid-
ing the screen into smaller blocks. This is due to the fact that LZWx
works better as the input size increases, but by dividing the screen we
produce data of sizes smaller than the size of the original block; hence,
the c.f. will decrease. For small blocks, the LZWx method will not

gather enough data about the input to be able to produce a high c.f.

8.2, Screen Division
Table 8.2 gives the total c.f. when the screen is cut into two or
three equal parts then each part is compressed alone using all previous

compression methods. The table shows that the total c.f. of FAX is not
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Compression factors of image pdraw3 taken as a whole and

as 4 parts and using all methods

Table 8.1.

4 parts
whole

Whole

4 parts

Method

0.69
0.65
0.58
0.57
0.64
0.57
0.54
0.64
0.55
0.54
0.65
0.53
0.54
0.64
0.62
0.63
00 63
0.65

4.19
4.00
5.76
5.59
3.95
6.32
6.32
3.96
6.54
6.24
4.08
6.97
6.68
3.40
3.39
3.44
3.42
3.52

2,91
2.58
3.35
3.16
2.53
3.60
3.41
2,53
3.59
3.40
2.64
3.70
3.62
2.18
2.11
2.18
2.15
2.29

LZW+R4
LZW1
LZW1+R8
LZW1+R4
LZw2
LZW2+R8
LZW2+R4
LZW3
LZW3+R8
LZW3+R4
LZW3+LZWB1
LZWB

FAX
LZW
LZW+R8

LZWBl
LZWB2-A
LZWB2-~B
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Compression factors of romtxt and docb6a taken as whole

2-part and 3-part figures using all methods

Table 8.2.
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affected by this division while the total c.f. of LZWx is reduced by
this division. This observation of FAX can be explained by the fact
that FAX uses the information of only the previous line when coding the
current line. This understanding of FAX allows us to assume that the
total c.f. of compressing two or more screens together using FAX is, in
fact, the same as the total c.f. when each screen is compressed alone.
In the previous chapter, we implicitly used this result. Of course,
LZWx benefits from compressing two or more screens together as was shown

by the results of BIG in the previous chapter.

8.3. The Significance of the Groups Averages

Since there is no standard test to compare different compression
algorithms, we developed the image data base described in Chapter 3.
Comparing two compression methods based on the result of only one image
or one group of images can be misleading. We avoid this problem by look-
ing at the results of each group, the average of each group, and the aver-
age of all groups averages. This comprehensive checking makes sure that
we avoid any anomaly that might exist in any image or group. But this
creates another problem that might not be apparently noticeable; this
problem is that this group averaging makes it subtle to notice the power
these methods have when compressing some of the images. So, the best
way is to use the group average and the average of all groups averages
while keeping in mind that for some individual images (or groups) we may
get a c.f. considerably higher than the average value. For the above

reasons, we include Tables 8.3-8.22., Tables 8.3-8.10 contain the results



165

Table 8.3. Results of compressing images in group 1 using method R8+LZW2

Comprs. Decomprs.
Comprs. time time Table Extra
Image factor s s size calls
docla 7.10 8.56 1.37 1757 0
doclb 3.63 23.13 1.48 3191 0
doclc 13.85 4,78 1.31 1025 0
doc2a 8.77 8.19 1.32 1471 0
doc2b 7.69 9.12 1.27 1642 0
doc2c 11.44 6.09 1.26 1187 0
doc4a 7.33 11.80 1.43 1710 0
docéb 6.77 14,44 1.43 1831 0
docé4e 5.21 4,88 0.66 1156 0
doc5la 4.58 11.26 1.10 2116 0
doc51b 7.70 7.64 1.09 1363 0
doc51c 10.93 2,53 0.60 692 0
doc5ra 4.83 11.09 1.04 1910 0
doc5rb 6.64 6.43 0.99 1460 0
doc5Src 4.55 4,73 0.61 1239 0
docé6a 6.07 12,09 1.32 2011 0
doc6b 11.35 6.32 1.32 1195 0
doc8 7.71 9.72 1.32 1638 0
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Table 8.4. Results of compressing images in group 2 using method

R8+LZW2
Comprs. Decomprs.

Comprs. time time Table Extra
Image factor s s size calls
frnch3a 7.23 10.22 1.37 1731 0
flowchrt 5.46 14.83 1.37 2208 0
electrc 4.70 18.23 1.37 2524 0
ordrfrm 7.98 10.16 1.43 1591 0
frnchla 6.05 10.71 1.32 2018 0
doc2a 8.77 8.24 1.37 1471 0
doc2b 7.69 9.17 1.32 1642 0
AVERAGE 6.84 11.65 1.36 1884 0
Table 8.5. Results of compressing images in group 3 using method

R8+LZW2

Comprs. Decomprs.

Comprs. time time Table Extra
Image factor s s size calls
romtxt 6.46 14.00 1.48 1907 0
frnch2a 3.41 29.88 1.42 3387 0
pagel 8.75 9.34 1.37 1474 0
docl-2 10.89 7.41 1.43 1234 0
cprog 13.85 5.00 1.32 1025 0
doclb 3.63 23.07 1.42 3191 0
doc4a 7.33 11.81 1.48 1710 0
docé4b 6.77 14.45 1.43 1970 0
AVERAGE 7.64 14.37 1.42 1970 0
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Table 8.6. Results of compressing images in group 4 using method

R8+LZW2
Comprs. Decomprs.

File Comprs. time time Table Extra

name factor s s size calls
pdraw3 7.31 10.10 1.38 1715 0
sciencel 3.80 22.19 1.37 3063 0
science2 2.92 32.19 1.42 3910 0
doc5la 4,58 11.43 1.10 2116 0

AVERAGE 4.65 18.98 1.32 2701 0
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Table 8.7. Results of compressing images in group 1 using method

R&4+LZW2
Comprs. Decomprs.
Comprs. time time Table Extra
Image factor s s size calls
docla 7.40 8.24 1.37 697 0
doclb 3.68 22.90 1.48 3150 0
doclc 14,39 4.89 1.32 996 0
doc2a 8.95 8.40 1.32 1447 0
doc2b 7.82 9.06 1.32 1619 0
doc2c 11.45 6.37 1.31 1186 0
docé4a 6.65 12.42 1.43 1858 0
doc4b 6.46 14,77 1.48 1907 0
docé4c 4,89 4.89 0.66 1214 0
doc51a 6.06 8.40 1.15 1663 0
doc51b 7.50 7.14 1.10 1392 0
doc5le 10.93 2.14 0.61 692 0
doc5ra 4,56 12.03 1.10 2009 0
doc5rb 6.45 6.98 0.99 1495 0
doc5rc 3.94 5.33 0.60 1392 0
docba 6.24 11.48 1.32 1965 0
doc6b 11.89 5.44 1.32 1152 0
doc8 8.26 9.44 1.32 1546 0
AVERAGE 7.64 8.91 1.18 1521 0
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Table 8.8. Results of compressing images in group 2 using method

R4+LZW2
Comprs. Decomprs.

Comprs. time time Table Extra
Image factor s s size calls
frnch3a 7.13 10.05 1.32 1750 0
flowchrt 5.60 13.35 1.37 2158 0
electrc 4.56 18.90 1.43 2593 0
ordrfrm 8.36 8.84 1.42 1530 0
frnchla 5.96 10.71 1.43 2045 0
doc2a 8.95 8.40 1.32 1447 0
doc2b 7.82 9.06 1.32 1619 0
AVERAGE 6.91 11.33 1.37 1877 0
Table 8.9. Results of compressing images in group 3 using method

R4+LZW2

Comprs. Decomprs.

Comprs. time time Table Extra
Image factor s s size calls
romtxt 6.13 14.34 1.48 1996 0
frnch2a 2.69 40.20 1.54 4096 122
pagel 8.06 9.11 1.37 1579 0
docl-2 9.76 7.80 1.48 1348 0
cprog 12.16 5.38 1.43 1132 0
doclb 3.68 22.90 1.49 3150 0
docéa 6.65 12,52 1.43 1858 0
docé4b 6.46 14,78 1.53 1907 0
AVERAGE 6.95 15.88 1.47 2133 15
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Table 8.10. Results of compressing images in group 4 using method

R4+LZW2
Comprs. Decomprs.

Comprs. time time Table Extra
Image factor s s size calls
pdraw3 7.21 11.20 1.37 1735 0
sciencel ~ 3.98 20.93 1.37 2932 0
science2 3.22 27.68 1.42 3567 0
docSla 6.06 8.29 1.09 1663 0

AVERAGE 5.12 17.03 1.31 2474 0
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Table 8.11. Results of compressing images in group 1 using method

LZW3
Decomprs.

Comprs. time Table Extra
Image factor s size calls
docla 6.97 1.60 1786 0
doclb 3.59 1.65 3228 0
doclc 15.17 3.25 958 0
doc2a 7.96 1.54 1594 0
doc2b 7.32 1.53 1712 0
doc2c 10.78 1.54 1244 0
doc4a 2.77 1.54 4096 0
docé4b 2.35 1.59 4096 701
docéc 2.17 0.72 2418 0
doc5la 3.92 1.26 2434 0
doc51b 6.04 1.21 1668 0
doc51c 12.35 0.66 652 0
docS5ra 2.86 1.26 3054 0
doc5rb 6.64 1.16 1460 0
docSrc 3.11 0.66 1736 0
docba 6.30 1.59 1948 0
doc6b 11.68 1.53 1168 0
doc8 7.09 1.53 1760 0
AVERAGE 6.62 1.43 2056 39
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Table 8.12. Results of compressing images in group 2 using method

LZW3
Decomprs.

Comprs. time Table Extra
Image factor s size calls
frnch3a 7.06 1.54 1766 0
flowchrt 4.63 1.59 2558 0
electrc 4,25 1.60 2762 0
ordrfrm 5.38 1.59 2236 0
frnchla 6.25 1.59 1962 0
doc2a 7.96 1.54 1594 0
doc2b 7.32 1.54 1712 0
AVERAGE 6.12 1.57 2084 0

Table 8.13. Results of compressing images in group 3 using method

LZW3
Decomprs.

Comprs. time Table Extra
Image factor s size calls
romtxt 2.22 1.65 4096 970
frnch2a 2.74 1.60 4096 51
pagel 3.99 1.64 2926 0
docl-2 4.61 1.54 2566 0
cprog 7.62 1.54 1654 0
doclb 3.59 1.59 3228 0
doc4a 2.77 1.54 4096 0
docéb 2,35 1.64 4096 701
AVERAGE 3.74 1.59 3345 216




173

Table 8.14. Results of compressing images in group 4 using method

LZW3
Decomprs.

Comprs. time Table Extra
Image factor s size calls
pdraw3 4.71 1.48 2520 0
sciencel 3.70 1.59 3136 0
science2 2.74 1.59 4096 56
doc5la 3.92 1.27 2434 0

AVERAGE 3.77 1.48 3047 14
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Table 8.15. Results of compressing images in group 1 using method

R8+LZW3
Decomprs.
Comprs. time Table Extra
Image factor s size calls
docla 7.35 2.08 1707 0
doclb 3.81 1.59 3056 0
doclc 15.15 3.35 959 0
doc2a 9.49 1.59 1379 0
doc2b 8.35 1.59 1532 0
doc2c 12.21 1.59 1128 0
docé4a 7.29 1.54 1718 7
docé4b 6.99 1.59 1780 0
docé4c 5.20 0.72 1158 0
doc51a 4.83 1.31 2022 0
doc51b 8.36 1,27 1276 0
doc5lc 12.38 0.72 641 0
doc5ra 5.06 1.15 1836 0
doc5rb 6.94 1.15 1408 0
doc5re 4,85 0.66 1179 0
docé6a 6.87 1.59 1808 0
doc6b 11.73 1.54 1164 0
doc8 8.39 1.60 1526 0
AVERAGE 8.07 1.48 1515 0
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Table 8.16. Results of compressing images in group 2 using method

R8+LZW3
Decomprs.

Comprs. time Table Extra
Image factor s size calls
frnch3a 7.83 1.65 1617 0
flowchrt 5.79 1.53 2098 0
electrc 4.99 1.49 2392 0
ordrfrm 8.60 1.54 1495 0
frnchla 6.27 1.59 1956 0
doc2a 9.49 1.59 1379 0
doc2b 8.35 1.59 1532 0
AVERAGE 7.33 1.57 1781 0

Table 8.17. Results of compressing images in group 3 using method

R8+LZW3
Decomprs.

Comprs. time Table Extra
Image factor s size calls
romtxt 6.40 1.53 1922 0
frnch2a 3.58 1.59 3238 0
pagel 9.41 1.60 1389 0
docl-2 11.49 1.59 1183 0
cprog 13.76 1.59 1030 0
doclb 3.81 1.64 3056 0
docéa 7.29 1.54 1718 0
docé4b 6.99 1.54 1780 0
AVERAGE 7.84 1.58 1915 0
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Table 8.18. Results of compressing images in group 4 using method

R8+LZW3
Decomprs.

Comprs, time Table Extra
Image factor s size calls
pdraw3 7.95 1.54 1597 0
sciencel 3.94 1.53" 2962 0
science2 3.00 1.70 3814 0
doc5la 4.83 1.27 2022 0

AVERAGE 4.93 1.51 2599 0
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Table 8.19. Results of compressing images in group 1 using method

R4+LZW3
Decomprs.
Comprs. time Table Extra
Image factor s size calls
docla 7.48 2.42 1681 0
doclb 3.86 2.47 3018 0
docle 15.12 3.68 960 0
doc2a 9.65 2.37 1360 0
doc2b 8.49 2.41 1511 0
doc2c 12.19 2,42 1130 0
" doc4a 6.84 2.36 1814 0
docéb 6.48 2.37 1902 0
docé4c 5.01 1.04 1191 0
doc5la 6.39 1.98 1590 0
doc51b 8.15 1.92 1302 0
doc5le 12.85 1.10 627 0
doc5Sra 4.69 1.81 1960 0
doc5rb 7.06 1.82 1388 0
doc5rc 4.13 1.05 1339 0
docéa 6.92 2.41 1797 0
doc6b 12,96 2.42 1078 0
doc8 8.84 2.42 1461 0
AVERAGE 8.17 2.14 1506 0
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Table 8.20. Results of compressing images in group 2 using method

R4+LZW3
Decomprs.

Comprs. time Table Extra
Image factor s size calls
frnch3a 7.96 2.37 1594 0
flowchrt 6.03 2.42 2025 0
electrc 4.91 2.36 2429 0
ordrfrm 8.83 2.41 1462 0
frnchla 6.01 2.42 2030 0
doc2a 9.65 2.42 1360 0
doc2b 8.49 2.41 1511 0
AVERAGE 7.41 2.40 1773 0

Table 8.21. Results of compressing images in group 3 using method

R4+LZW3
Decomprs.

Comprs. time Table Extra
Image factor s size calls
romtxt 6.25 2.36 1963 0
franch2a 2.79 2,47 4073 0
pagel 8.62 2.42 1493 0
docl-2 10.48 2.41 1273 0
cprog 13.17 2,42 1065 0
doclb 3.86 2.41 3018 0
docéa 6.84 2.36 1814 0
docé4b 6.48 2,41 1902 0

AVERAGE 7.31 2.41 2075 0
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Table 8.22. Results of compressing images in group 4 using method

R4+LZW3
Decomprs.

Comprs., time Table Extra
Image factor K size calls
pdraw3 7.81 2.42 1620 0
sciencel 4,13 2.36 2840 0
science?2 3.29 2.41 3496 0
doc5la 6.39 1.92 1590 0
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of compressing gl, g2, g3, and g4 using Ry+LZW2. Tables 8.11-8.22 con-
tain the results of compressing the above groups using LZW3 and Ry+LZW3.
We have chosen these tables to show the detailed results of compressing
each image or group using any LZWx method. Specifically, LZW3 was chosen
because it has the highest c.f. among all LZWx methods and LZW2 was
chosen because it is close to LZWl.

To illustrate the above points, we give the following examples:

1) The average c.f. of Table 8.22, which contains the results
of compressing g4 using R4+LZW3, is bigger than the aver-
age c.f. of Table 8.18, which contains the results of com=-
pressing g4 using R8+LZW3; but the c.f. of the image pdraw3
in Table 8.18 is bigger than its c.f. in Table 8.22.

2) From Table 8.17, the average c.f. when compressing the
images in g3 using R8+LZW3 is 7.84 whereas the c.f. of
image docl-2 is 11.49, i.e., considerably higher than the
average c.f.

3) Tables 7.7 and 7.8 give the group averages using R8-+LZW3
and R4+LZW3., From these tables, we see that R4+LZW3 gives
higher groups average but R8+LZW3 gives higher c.f. for g3.

Chapter 6 went into more detailed comparison of the groups
results using Ry+LZWx.

8.4. Using the CCITT Documents for Comparison
To help in comparing the different methods we present Table 8.23
which contains the results of the total compression factors of images
docl, doc2, doc4, doc5, and docb, where docx means docxa+docxb+...etc.
Since these documents represent typical documents, it is easier to
compare the methods using Table 8.23. Comparing the methods using this
table, we get:

1) For docl, R4+LZW3 has the highest c.f. among the other
LZW methods. This c.f., 6.54, is slightly less than the
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Table 8.23. Compression factors of the CCIIT standard documents using
all methods
Documents

Method docl doc2 docé doe5 docé6 Average
FAX 6.67 14.89 1.69 4,74 12.00 8.00
LzZwW 6.03 7.97 2.66 4.32 5.67 5.33
LZW+R8 6.07 9.34 4,89 5.38 7.55 6.65
LZW+R4 6.05 9.35 4,52 5.37 7.82 6.62
LZW1l 5.95 7.90 2.40 4.31 7.74 5.66
LZW1+R8 6.16 8.95 6.64 5.78 7.74 7.05
LZW1+R4 6.21 9.03 6.13 5.94 8.09 7.08
LZw2 5.95 7.96 2.14 4,32 7.81 5.64
LZW2+R8 6.14 9.05 6.62 5.83 7.91 7.11
LZW2+R4 6.30 9.18 6.17 5.95 8.18 7.16
LZW3 6.15 8.45 2.47 4.49 8.19 5.95
LZW3+R8 6.46 9.77 6.69 6.20 8.67 7.56
LZW3+R4 6.54 9.89 6.28 6.34 9.02 7.61
LZW3+LZWBl 5.79 8.05 1.90 3.82 7.72 5.46
LZWB 5.79 8.01 1.95 3.80 7.45 5.40
LZWBl 5.82 7.99 1.97 3.80 7.42 5.40
LZWB2-A 5.90 8.13 1.96 3.85 7.59 5.49
LZWB2-B 6.18 8.58 1.99 4.01 7.91 5.73




2)

3)

4)

5)

6)

7)

8)

182

c.f. of FAX, 6.67. FAX did better because the image con-
tains a lot of empty spaces.

For doc2, R4+LZW3 has the highest c.f., 9.89, among the
other LZW methods. The c.f. of FAX is 507 higher. FAX
did much better than R4+LZW3 because the image is a very
simple graphics screen with long black rums and short
white runs.

For doc4, R8+LZW3 has the highest c¢.f. among the other LZW
methods and the ratio of this c.f. to the corresponding
c.f. of FAX is 3.96. This ratio is too high because docé4
contains only textual data; and as we showed before Ry+LZWx
does extremely better than FAX for textual data.

For doc5, R4+LZW3 has the highest c¢.f. among the other LZIW
methods and the ratio of this c.f. to the corresponding
c.f. of FAX is 1.34, The ratio is higher than 1 because
the screen contains textual data. The fact that doc5 con-
tains both text and graphics explains why the ratio is not
as high as in the case of doc4. R4+LZW3 has higher c.f.
than R8+LZW3 in this case due to the effect of the graphics
data in doc5.

For doc6, R4+LZW3 has the highest c.f. among the other LZW
methods. This c.f. is 75% of the c.f. of FAX., The reason
that FAX has the highest c.f. is that doc6 is any easy
graphics screen. doc6é is not an easy graphics screen as
doc2 is; this explains the difference between the ratio of
the c.f. of R4+LZW3 to that of FAX for doc6 and the same
ratio for doc2. This shows that as the graphics get more
complex R4+LZWx becomes better till it produces a c.f.
higher than FAX.

We note that among the LZW methods, R4+LZW3 has the
highest c.f. for graphics screens and scrz@nsg that have
both textual and graphics data. R8+LZW3 has the highest
c.f. for textual screens.

Points 1 to 6 above agree with the observations we found
in Chapter 7.

Among all the LZW methods, R4+LZW3 has the highest average
of the 5 images c.f. The average in the case of FAX was
higher because of the high c.f. that FAX has for doc2 and
docé.
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9) The c.f. of Ry+LZW3 is close to the c.f. of Ry+LZW1l and
Ry+LZW2. The c.f. of Ry+LZW3 is bigger by no more than
10%. A similar trend is observed when the c.f. of LZW3
is compared to the c.f. of LZWl and LZW2.

8.5. Results of Group 5

In Chapter 4, we presented the results of compressing the graphics
blocks in g5. In Chapter 5, we presented the corresponding results using
LZW. The results of LZW show that LZW do not produce a c.f. higher than
the c.f. of FAX for g5. The tables for the groups averages using all
the LZW methods agree with this. This result agrees with the observa-
tion we mentioned before in Section 8.1 that the LZW c.f. will decrease
if the image is divided into smaller blocks. Hence, in the results of
the modifications on LZW, we do not give a table for g5; instead, we

only give the averages of each group.

8.6. Results of Group 8
In Chapter 3, group 8 was introduced to test the power of each
method. To help in comparing the results of these methods when com-
pressing the images in g8, we included the c.f. for all the methods in
Table 8.24. From this table, we observe the following:

1) For images blok6, boxes, and lines LZW3+LZWB1l gives

the highest c.f. among all the methods, including FAX.

This shows that the concept of the LZWBs is optimum for
this kind of data. It also shows the need to use dif-

ferent varieties of true images, as we did in the image
data base, to compare the methods because, as we showed
in Chapter 6, LZW3+LZWBl1 did not perform as good as it

is performing here.

2) The c.f. of Ry+LZW1l or Ry+ZLW2 are close to the c.f. of
Ry+LZW3. Similarly, LZW1 and LZW2 give c.f. close to the
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Table 8.24. Compression factors of group 8 using all methods
Image

Method blok3 blok6 boxes lines testl usamap
FAX 109.03 24,54 69.57 32.07 49.60 1.56
LZW 27.97 10.98 16.06 15.19 12.79 6.57
LZW+R8 15.47 11.80 21.30 15.41 15.01 7.64
LZW+R4 16.79 14.00 23.39 16.68 14.61 7.27
LZW1 51.78 60.61 58.18 81.22 26.19 6.36
LZW1+R8 36.87 24,84 38.37 52,81 18.99 7.33
LZW1+R4 37.91 27.35 44.94 55.75 21.84 7.51
LZW2 56.74 63.49 65.04 82.47 30.49 6.37
LZW2+R8 41.99 25.44 54.05 54.05 20.22 7.36
LZW2+R4 37.12 31.94 43.36 54,98 22.75 7.26
LZW3 60.15 66.12 68.67 101.27 29.88 6.82
LZW3+R8 49,38 28.07 55.75 65.84 27.65 8.26
LZW3+R4 46.11 42.11 59.93 73.06 25.54 7.93
LZW3+LZWB1 70.18 91.95 75.47 137.93 30.29 6.47
LZWB 54.05 24.69 30.36 38.37 22.60 NA
LZWB1 46,11 26.53 29.47 37.65 21.61 5.68
LZWB2-A 54.05 25.04 30.36 38.37 23.94 NA
LZWB2-B 24,92 30.36 30.36 38.37 23.94 NA
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c.f. of LZW3. This shows that although LZW1l or LZW2 are
not the optimum LZWx, they are close to the optimum
method LZW3 without its complexity.

3) The image "usamap" is an example where FAX fails to take
advantage of the redundancy present in some images.
The redundancy of this image is in the interior of the
map which consists of strings of 010l... etc. that repre-
sent the filling of the map. LZWx was able to detect
this redundancy and give a higher c.f. R8+LZW3 has the

highest c.f. for usamap, namely, 8.26. The ratio of the
c.f. of R8+LZW3 to that of FAX is 5.29.

8.7. The Significance of "Extracalls"

The method LZW has a maximum number of symbols that it can recog-
nize; this number is the table maximum size. The compressor and de-
compressor agree not to put more symbols in the table if the table is
filled up. This means that the LZW method loses its adaptability to the
new input if the table is filled up. To measure the effect of filling
up the table on the compression process, we count the number of the
unsuccessful calls to the table after the table is filled up; this
number is the variable "extracalls" in the results of LZW and the mod-
ified LZWs.

In the results of LZW, and its modifications, the extracalls were
averaged for each group. This average value is misleading most of the
time since most of the images do not require extracalls but the average
shows that they do. So, the average of extracalls is meaningful only

if compressing each image in a group requires extra calls.
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8.8. Table Size
The methods LZWx assume the maximum size of the LZW table to be
4096, which requires 12 bits to represent each symbol. But the results
show that, for some images and groups, the number of symbols that are
actually used is considerably less than the table maximum size. Using
this fact, we propose to limit the size of the table for the images
or groups that use symbols less than the table maximum size. By limit-
ing the table size, we limit the length of each symbol, decrease the
size of the output of LZWx, and, hence, increase the c.f. For example,
if we let the table maximum size be 1024, the length of each symbol is
only 10 bits; for an image that has a table size less than 1024 the c.f.,
will increase by exactly 20%, ((12/10)-1)100. This table size limita-
tion is not arbitrary if we use a fixed addressing or a fixed symbol
length scheme, which we will. In the case of a fixed length symbol,
the table size must be only a number that is a power of 2 since any
other number will result in losing some symbols. For example, if the
maximum table size was chosen to be 2000, LZW needs 12 bits to address
or represent each symbol. But if we use 12 bits, we can represent up to
4096 symbols. So, this 12-bit length of the symbol allows us to use the
symbols 2001 to 4096 which we will lose if we choose the maximum size to
be 2000 symbols.
From the results of Ry+LZWx, we find the following:
1) For all Ry+LZWx, the average table size of g5 never ex-
ceeded 1024. Hence, the table size of compressing g5 can

be limited to 1024 giving an approximately 20% increase
in the c.f. The increase is approximate because some of
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the images in g5 require more than 1024 symbols.

2) TFor all Ry+LZWx, the average table size of gl and g2 is
less than 2048. Hence, the table size of compressing
gl and g2 can be limited to 2048 giving an approximately
9% increase in the c.f.

3) For R8+LZWx (x=1, 2, and 3), the average table size of
g3 is less than 2048. Hence, as in the above point, the
table maximum size can be set to 2048.

4) For docbda and romtxt using R8+LZW2, the tables size are
1710 and 1907, respectively, and the c.f. are 7.33 and 6.46,
respectively. If we let the table maximum size be 2048,
the c.f. of docda and romtxt will be 8 and 7.05, respective-
ly. These new c.f. are very close to the c.f. if the image
was sent as an ASCII code. This is an important result
because it shows that, as we mentioned in last chapter,
we can get a c.f. very close to and sometimes better than
the c.f. of pattern recognition without worrying about the
difficulties of pattern recognition.
It should be noted that the way the code for the LZWx was written
makes it easy to change the code in order to let the table maximum size

be adaptive but no more than 4096.

8.9. Remarks about R8 and R4
R8 and R4 were designed with the assumption that it is easy to find

the characters'

height and then divide the screen accordingly; neverthe-
less, it was envisioned that even if this information is not known,
these two methods will still give a high c.f. The image frnch2a proves
our vision because, although the image is in a textual format that is
different than the one R8 and R4 was designed for, the ratio of the re-

sulted c.f., to the c.f. when using FAX is 1.77 which is a considerable

increase.
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Finding the height of the text lines is a matter that can be easily
solved. In fact, in some of the pattern recognition techniques, finding
the height of each character is one feature, among many features, that

should be extracted. Refer to [11] and [8].
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9. CONCLUSION

In this work, the author developed a number of new improved com-
pression algorithms, an extended test data base, an analysis of library
needs, and a variety of test results. From this work, a number of
conclusions were drawn as enumerated below.

1) For easy graphics images, i.e., images containing long
runs of black pels and short runs of white pels, FAX
gives high c.f. that is satisfactory to the goal of this
research. For textual screens and complex graphics FAX
performs poorly.

2) The LZW method was simulated and gave a c.f. better than
that of FAX for the images for which FAX did poorly.
But LZW was not as good as FAX for the easy graphics
images.

3) Three new methods, that use the fact that the input to
LZW is a long string of pels of a scanned screen, were
proposed and investigated. The first method, LZWB, counts
the run-lengths of the screen and sends them to LZW. The
second method, LZWBl, uses part of the run-lengths used
in the first method and adds to them codes for some of the
most probable two and three runs. The third method, LZWB2,
counts the run-lengths as in the first method; in addition
to that, it initializes the LZW table with some of the
most probable two and three run-lengths. Each of these
proposed methods showed an improvement in the c.f. It
was explained that in the case of colored images, it
would be expected from these methods to give a better c.f.

4) An improvement, LZW3, in LZW, as suggested in [43], was
simulated, and, in general, a gave c.f. higher than LZW.
LZW3 needs long c.t., so we proposed two versions that
avoid the long searches required by LZW3. These two pro-
posals, LZWl1 and LZW2, give c.f. close to that of LZW
but much shorter c.t.

5) Two improvements in the way LZWs scan the screen were
suggested. These improvements, R8 and R4, work with any
of the above LZWs. They produced higher c.f. than when
using the LZWs alone and even in some cases gave smaller
d.t.
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6) Combining two or three images in the compression using

Ry+LZWx (for x = 0, 2, 3) was investigated and, in general,

produced a higher compression factor than compressing
each image alone.

7) The library survey that was presented in Chapter 3 showed

that about 50% of the library material was in text format.

The detailed format of the text varies from one library
material, e.g., a book or a magazine, to another.

8) Using some of the proposed methods, e.g., R8+LZW2, it
was possible to reach a c.f. for a textual screen that
is close to or even higher than the c.f. of compression
methods that employ a pattern recognition technique.

The proposed methods are much simpler to implement, need
much less computation, and are more adaptive to the data
change.

From the above observations, we reach the conclusion that R8+LZW3
should be used unless we are compressing a screen that is full of easy
graphics. In this case of easy graphics screens, the system should be
able to compress the screen using FAX and inform the receiver of the
change in the compression method. The library system can handle the
long c.t. of R8+LZW3. The d.t. of R8+LZW3, which is in the range of 1
2 s, is acceptable for the library system. The c.t. of LZW3 is higher
than that of other LZWx methods but, as was mentioned at the beginning

of the research, the compression in the library system is done once so

to

the c.t. is allowed to be long. For real time compression, LZW1l or LZW2

should be used instead of LZW3.
The system should also be able to detect the needed maximum size

of the table and signal the receiver accordingly.



191

9.1. Suggestions for Future Work

The following points are suggested and should be investigated:

1)

2)
3

4)

5)

6)

7

8)

9)

The maximum size of the LZW table should be increased
over 4096 to compress many images at the same time or

to compress colored images. Increasing the table size
increases the c.t., d.t., and, hopefully, the c.f. Long
c.t. is tolerable in the library system. Since both

the d.t. and the c.f. increase at the same time, there
is a trade-off that needs to be investigated.

The modifications of LZWBs to work on colored images.

The use of method BIG to compress an actual page which
usually consists of more than one screen.

The success of LZW for this type of data indicates that
more methods in the field of data compression via textual
substitution should be investigated as image compression
methods.

LZW builds its table using the first character that has
not been sent yet. This gives LZW a look-ahead feature
that raises its c.f. The methods LZW1l, LZW2, and LZW3
do not have this look~-ahead feature so their d.t. is
shorter than LZW, but this feature may raise their c.f.,
specifically for textual screens. So, a modified LZWl-
LZW3 that include the look-ahead feature should be in-
vestigated.

The application of LZWx in more than one pass that may in-
crease the c.f. This may be better than increasing the
table size.

Implementing the LZWx in hardware. [43] reported on a
hardware implementation but with no details.

The use of Ry+LZWx for library material images captured
using a camera or a scanner. The c.f. obtained in this
thesis using FAX for the screen images are much smaller
than the values reported for images scanned at high

resolution and compressed using FAX. So, the c.f. for
scanned documents using Ry+LZWx should be investigated.

Applying Ry+LZWx to images other than library material
like astronomical and medical images.
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Changing the FAX modified Huffman table, although we
think it will not be beneficial as we induced before.

Improving FAX so that it can use the information from
lines before the previous line in order to code the
current line, and from parts other than the parts next
to each other.

Compressing the output of FAX, after modifying this
output, using any of the LZWx methods.

The extension of both FAX and Ry+LZWx to colored images.

Developing a method similar to R4 but whose block height
is only 4 pels. Developing similar methods with different
block height.

Using a hashing function to speed up the search in the
LZW table in order to decrease the c.t. Examples of simple
hashing functions are thg following:

a) The number of characters, and not symbols, in the
string.

b) The count of the values of the characters in the
string.

¢) The third character in the string.

For the kind of strings we get in the LZW table while
compressing the library material images, it is envisioned
that any of these simple functions will perform success-
fully.
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12. APPENDIX A. IMAGES USED IN THE DATA BASE



THE SLEREXE COMPANY LIMITED
SAFORE LANE BOOLE DOREST BEHPS EER

TELEPHONE BOOLE (04613) 61617 . TELEX 123456

Our ref. 358/PJC/EAC i18th January, 1972,

Ir. P.N. Cundal)
Mining Surveys L{d..
Nolroud Road,
Reading,
| Berks,
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661



Dear Peta,

Pernit ne to introduce you to the facility of facsimile
transnission,

In facsinile a photocell is caused to perfora a rastar scan over

the subgeet eupy. m vamtmns of pr{nt densn ty on the doeument
ﬁm t to qenerate an analoaous electrical video siamal.

This signal is use«l to wodulate a carrier, which is transwitted to a
renote destination over a radio or cable comsunications link.

At the remote terumal demodulation reconstructs the video

signal, uhich 15 used to Ju late the density glnt produced by a

prmtmg device. This deuwe i5s scanning in a ras r scan sgncl.romzed
that at the transnitting terwinal. ds a result, a facsimile

nopg of the subject document is produeed.

Prabably you have uses for this facility in your organization.

Yauws cispawaln

Figure 12.2. 1Image doclb
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Regletersd In En
Regoterer Offle N

Sray

P.J. CROSS L
Group Leader - Facsinile Research

m No. 204U
4 Lane Hfond Feson

Figure 12.3.

Image doclc
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Tordre de Jancenent et de realisation des applications Tait I lp.let de decis
iveau de la Direction Genera.e des lelecouuunlcatluns. Il n'est certes
onstruire ce systew integre "en bloc" wais bien au contralrg de proceder
aliers successn 5, Certnnes al:plwatlons. Jont la rentabilite ne pourra e
eront pas_ entreprises. llenent, sur trente applications qui ont pu
lehmes snélen sont au stade de I’ expimtatlon. six autres se sont vu donne
eur realisation,
haque application est confiee a um "chef de projet®, responsable suc
onception, de son analgse-progrm ion et de sa mise en oeuvre dans un
a ?enerahsatmn ulterieure de 1’ asy leatmn realisee dans cette re 1on—pll
asultats obtenus et fait 1’objet une decision de la Direction enerale
pro.jet dmtudgf_“l.: d:ga:otngunsl Erer ue ssn ast‘nlgzte!a llme voca lon
i Eoure d'un rou de ogncep mnl eharge : ;edx er le . ngeuuent 3 |
wectlfs globaux" puis le "cahier des ¢ Kg lca ion, ?n sont
tous les services utlllsateurs sotentle s et aux chefs de pro,:m des au
e groupe de conception coupren 8 personnes represen
igggwﬁoneemes par le projet, et coupnrte obligatoirenent un bon analgste

Il - L'INPLANTATION GEOGRAGHIQUE D’UN RESEAU INFORMATIQUE PERFORMANI
'‘organisation de 1’entreprise francaise des telecommunications repose sur

Figure 12.7. Image doc4a
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regions. Des calculateurs ont ete Inplantes dans le passe au moins dans
importantes, On trouve ainsi des machines Bull Gamma 38 a Lyon et Marseil
Lille, Bordeaux, Toulouse et Montpellier, un GE 437 a Massy, enfin q
Bull 3 b 11 a progrmmes cables etaleat recemnent ou sont encore em S
egions de Nancy antes, Linoges, Foitiers et Rouen ; ce parc est essent
our la_ onupatlﬁlll telephonique.
"avenir, si la plupart des fichiers necessaires aux applications decrites
etre _geres enlenps differe, un certain nonbre d’entre eux deyront necessai
cessibles, voir wis a Jour en tewmps reel parnis ces derniers le fichier
abonnes, le fichier des renseignenents nmumﬂmm,umm
abnnnes cnntlendront das quantites cnns:ierables d’ 1nl‘oruatmn.

[-7)

volume de caracteres a gerer en phase lnale sur un ordinateur
uelquei 503 800 abonnes a ete estime a un mil t acteres au woin
1ers des onnees seront concernees par des raltenen § En TENPS ree

ucun es calculateurs enumeres plus haut ne permettait d’envisager de

u\ ] ra ion progresswe de toutes les a llcatlons sup ose la creatmn d’un
utes les _infornations, ume veri "Ranques de donnees® repart

e tralteuent nationaux et regmnaux. et qul eura rester alinentee, nise a.

ence, a_partir de la base de 1’entreprise, o'est-a-dire les ehantlers. le

mehets des services d'abonnement, les seryices de personnel etc.

'etude des differents fichiers a constituer a donc pernis de definir les pr

teristiques du reseau d’ordinateurs nouveaux a mettre en place pour aborder

u systew informatif. L'obligation de faite appel a des ordinateurs de trois

tres puissantes et dotes de volumneuses memoires de masse, a conduit a en

Figure 12.8. Image doc4b
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TelTenent Te nonbre.

luplantatmn de sept centres de calcul interro lonaux constituera unm

'une part le desir de reduire le eout econonique de 1’ensenble de taclllter
es equlpes d' lntornatlclens. et d'autre part le refus de creer des centres
if lcl e5 a gerer et a mger. et posant des problenes delicats de securi
ent des tral enents relatifs a plusieurs regions sur chacun de ces sept ¢
e leur donmer une taille relativement howogenme. Chaque centre "cersra
lion d’abonnes a 1a fin du Uleme Plan.

a Hise en place de ces oentres a debute an debut de 1'annee 1971 um ordina
1a Cuupazme Internationale pour 1’Infornatique a ete installe a Toulouse e
ene Hachine vient d’etre wise en service au centre de caleul interregion

L0t

Figure 12.9. Image doc4c



Tela est d'aufant plus valable que TAJ est plus
rand. A cet egard la tl ure 2 represente la vraie courbe
onnant_|#(f)| en functlon de J pour les valeurs nune-

riques indiquees page precedente,

LI

o todi

Flg. 2

Dans ce cas, le filtre adagte pourra etra constitue,
conformenent a la figure par la cascade

- d'un filtre passe-bande de transfert umte pour
fo£ F £ foapf }t de transfert quasi nul ﬁnur
F<fo et f>forAf, filtre ne wodifiant pas ]a phase

802

Figure 12.10. Image doc5la



des cowponants Je traversant :

—J L La |[——

Fig. 3

-- filtre SlllUl d'une llgne retard (LAR) dts;er-
sive ayant un de a ion de groupe
gcroissapt lmealreuent auec a frequence f suivant
express1on

Toe = To + U’o-—j’]A (avee To > T)

I
(voir fig. 4)

|1

Figure 12.11. 1Image doc5lb
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ToT coeecfecmccanna e

-,
basssens

fo fo+Af

Fig. 4

Figure 12.12. 1Image doc5lc
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Telle Tigne a retard est donnee par !
1
¢ = — 2n _|' To df

o [l

Et cette phase est bien 1’oppose de /&(f),

a un dephasage constant pres (sans iwportance)
et a un retard To pres (inevitable).

Un signal utile 5'(t) trauersant un tel hltre aJaK
donne a la sortle (a un retar gres et un depha
sage Fm-es de la porteuse un si nal don ‘ ans rue
uﬂer est reelle, constante entre ?
et pulle de part et i'autre de fo et defﬂ es-
a-dire un signal de frequence porteuse et
dont l’enveloppe a la fome indiquee a la h ure
ou ]’on a represente siwultanement le siona (4}
et le signal S(f) correspondant obtenu a la sortle
du filtre adapte. On_ couprend le now de recepteur
gl%onpressmn dmrulswn c(lnnne a _ce genre de
col-

14 ¥/

Figure 12.13. Image doc5Sra



prive etant egale a LUf, le rapport de compression
est de T . TAS

1/aF
2&(t)

Envelsppe do |

w0 00
; b

.T. = 14 s
Af = 5z
T=28

Flg. §

Figure 12.14. Image doc5rb
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saisit phgsmuenent le phenowene de com-
sression en realisant ?ue nrsque le signal 5(t) entre
ans la ligne a retard 1a frequence qui entre

1a preniere a_ 1'instant 0 est la frequence basse
qui #et un tewp To pour trauerser. la frequence “

entre a I'instant t =(f - fo)nr et elle wmet un tewps

To-(f-fo) {}-_ pour traverser, ce qui la fait ressortir

a I’instant 7o egalesent, Ansi donc le signal 5(t)

Figure 12.15. Image doc5rc
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na " ess 1ines and the output uorﬂut Tines fron a crossed array o
lmes, i.e. a grid stmcture. At each ile\l intersection is {laee a devlce di
de hlpolar, or KOS transistop) or not, endln on W ethen he cmesxmn ing -
ord bit is to be 1 or . (In cases whe t*e here lS no_special interest 1n the ty
e of device, the coupling betueen address iine and bit line is often shown sin
y by a dot at the grid lntersectlon.) In a rogranuable RON (PHOH) the manufac
rep locates a conpecting device at avery gm int ersec mn. However, in series
with each such device there is provided a fusihl e ll'l . fAny farhcular fusible 1
ink is_located at the mtersenhon of somwe line Zi and some line Hi. BY making ¢
nnectlon to Zi and Wi and passing an adequately large current thwough the link
he link can be burned out, Thus, the usep of such a PRON way burn o t llnlrs a
necessary, leaving transns ors onl y on lonatmns requlred to estahl h the ueul

sg i opage esuﬁ One y e of erasable o ta lt? l‘loa gga&
ransistors. ese are r-ansns rs i« lc a norn opera ng uo age @

ate is entirely insulated an 150 a ed !‘rou el ec teical cunnec ion to agg

art of the mtegrate -clmul ch 1{ urns ou to be possible to estahlish a
egatwe clm‘ﬁ: on these gates he ap lca ion of high voltage hetueen source

mn. 1 negatwe charge eft on the gate suc treatuent leaves the co
pesgtmn ing transistor with a con uctmg channel. ROII ¢an he eprased by expos
ul naumlet llgh which serves to discha charged gate. Consider ¢
at we wvant to perforw the arithuetic opewation o uul iplication, As we have se
n_in Seg. 11,16, multipl watmn can be performed by a sequence of shifting oper|
ations, i.e. wul hp lying by pouers of two, and a sequence of additions. On the o
iner hand, we may view a multiplication takle as a truth table. Thus, the entwmy

Figure 12.24. Image romtxt
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Deux éclatements de taille se sont produits en 1968, A Paris 91
wai, & Prague en aout, 1’un pour le socialiswe dans la liberte, 1’autr
pour la liberté dans le socialiswe. Une fois depouillés de quelques ap-
parences et oripeaux, les deux objectifs socialiswe et liberte apparaig
sent bien ceux de la grande majorite de 1’bumanité évoluée. En dehors
de 1’fnérique du Mord, peu nonbreux sont ceux qui osent les repudier
ouvertenent. Du noins personne ne se prononce-t-il contre la justice s¢
ciale, ni pour la mise en condition ou en tutelle des individus, ni
newe pour la société de classes. .
~ Ceux qui ont peur du socialisms ne sont pas tous des proprie-
taires endurcis de grandes usines ou de centaines d'hectares, mais
d’accablants precedent leur font craindre pour la plus precieuse des
propriétés, celle de disposer de soi-meme. Et ceux que n’anthousiasue
ras 1'expression “wnde libre” ont bien presemtes a 1'esprit les exac-
tions que recouvre ce beau drapeau.
_ fpres deux siecle de recherches, de revolutions, de thesries)
d'eériences en tous sens, aucun point n’apparait sur le planete, aw
ilot, ou les deux ohjectifs socialiswe et liberté soient concilies de
facon satisfaisante.
Pendant un siecle ou presque, la démocratie, appelée dans 1

suite démocratie bourgeoise ou démocraite, occidentale, selon le deg
de sumpathie qui lui est porté, a vecu sous la banpieye de la libertei

Figure 12.25. 1Image frnch2a
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3
Uo = T Us (2.4-1)

and the short-circuit current is

Us f Us A Rt
fo = - Ui = - Us (2.4-2)
R+R Ro R+RM R R+RJ

n these _equations we have ignored the amplifienr mput urdance Ri, Tlus

tianl ed ti h E he
ug 1slsog:§-(l:?“rcﬂltg { ;:E ?:g m'}oﬂ es ka eeihn incihgrenls a

‘pirtual ground s mg Ri. ) ue have used the relation Ui =

t¥lls/(R + Rf). For this relatwnslup Letueen Ui and Us to be valid it is onla
ecessary that Ri be large in comparison with the parallel combination of
nd Rf, a requirsent which in practice invariably satisfied.

he second terw in Eq. (2.4-2) is overuhelmnyl? larger than the first terw
ecause R _is verny large. Hence, when the first teww dropped, the output

esistance 2o is
% = Uo / 1o = RoC14RE/R)/A = Bo (1 - AF)/A (2,.4-3)

Figure 12.26. Image pagel
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Dear Pefe

Peruit we to introduce you te facsimile
[transnisson,

mmMMaMMMHumuqemamm“mmr
E:“s' tﬂ:c copy. The variations of print densi y in the documen

hotocell to generate an analogous electrical video sngnal.
his sni:a is used ta modulate a crrier, which is transmitted to
note destination over a »adio or cahle communications link.

At the reMote tewnal demodulation reconstructs the video
tl. which is *ied &g woduj ate the density of print produced by a
nnn 1ng evice. vice 15 scanning in a raster scan sync nlzel
hat at the transmitting termuinal. As a result, a facsnulle
nopy of the subject document is produced.
Probably you have uses for this facility in your onganisation.

Yours sincerely,

P.J. CROSS

Figure 12.27. 1Image docl-2
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total bits=total hifst Tactorlil];
gap:sgggfgr[ii:xgi:eﬁgg;:sfa:tg:fgi:ac ors

lif{ tend}tstart)
cuprstine=tend-tstart;

cuprstine=(6008-tstart)+tend;

rrintt('gouprissign ended\n");
or(n:l;i(:951xe;1i:1)

pintf("#Bu”,cuprsfactorlil); /% £ -)u ¥
vofactor=xsizel¥ysizel/totalouprshits

plse

rlngf('aug cowprission factorcid ,tolalcursdbits:%lu \n",avyf acton, totalcuprsh)

s
pintf("copurission time=tu \n®,cuprstine):

Figure 12.28. 1Image cprog
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ninimun_input volfage in ordep o change state, the rise time of the
input signal ¥ nust he less than some maxinum value. For exanple,
cansider that a leuel hange at S or R of 0.75 U is needed to change
the state ot the tllp-flog then if the mput vol tage changes by 3
and tau = 2 ns, the prise tine T must he less than 8 ns.

sa o rs 0 [IEN LT
logic 0 - i
level 1 i o (L |
e ;% _ i i " 1
R 1 1 used
(a) (b)
FIGHRE 9.8-3

(a) Edge-triguered f1ip-flop using NAND gates and (h) truth table.

Figure 12.29. Image pdraw3
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FIGIRE 2.3-1
Circuit used to calculate output impedance
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FIGIRE 2.4-1

Circuit used to calculate output impedance

The output impedance can be calculated frowm fig, 2.4-1 as the ratio of
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13. APPENDIX B. PROGRAM LIST OF THE CCITT ONE

DIMENSIONAL COMPRESSION TECHNIQUE
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The C programs in this appendix and the following appendices

were compiled with Microsoft C Compiler version 4.0 and used the
library functions of this compiler,

The assembly programs in this appendix and the following

appendices were assembled with Microsoft Assembler version 4.0.

/ b3
¥
%
s

%

i

3
¥

%
3
3y

¥
¥
tH
%

%

13.1. File Main.c

init_screen(): Function to initialize the screen, by setting
the mode and choosing the screen to display.
get(xl,yl,x2,y2,buffer ): Takes the portion of the screen with
the x,y coordinates and saves it in
the buffer. .
cmprs_line(uncmprsdbufr): Apply the CCITT one-Dimensional
compression technique, using a modified
Huffman table, to compress each line of
the specified portion of the screen and
put the result in the uncompressed
buffer.
scrfilebufr: Array to hold the output of get(). The first 2 bytes
hold the "xlength" of the block; the second two bytes
hold the 'ylength" of the block. The size of
"scrfilebufr" is set to the maximum size of the
blocks we want to capture.

Xsize : Horizontal length, in bits, of each line.

¢ ysize ¢ Block height in bits.
tstart : Time at start of compression or decompression.
tend : Time at end of compression or decompression.

cmprstime : Compression time.
dcmprstime : Decompression time.

% /
#include <stdio.h>
#include <memory.h>
#include <dos.h>

#include <io.h>

#include <fcntl.h>

#include <malloc.h>

ffdefine LINT_ARGS
fdefine screensize 16384
ffdefine XMAX 640
#define YMAX 200
fidefine HI_RES 6
fdefine TEXT_MODE 3
fdefine ulong unsigned long

void get(int,int,int,int,char *);



unsigned
void
unsigned
void

static
static
static

static

main(arg
int
char

{

static

_ static
static
unsigned
unsigned
unsigned
register

if( argc
{

else

}
if( argce

init_scr
uncmprsb
uncmprsb
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cmprs_line(char *);
demprs_line_1d();
gttime();
print_results(char *, int, int, int, int,
unsigned, unsigned, float);
float avgfactor;
ulong totalcmprsbits=0;
unsigned cmprstime,dcmprstime;
/* window coordinates.
int x1l,yl,x2,y2;
/% figure input file.
char datafile(41];
c,argv)
argc;
*argvl];
char scrfilebufr[4+(XMAX/8)(YMAX) ];
unsigned cmprsbufr [ XMAX] [ (¥YMAX+32)/161;
char “uncmprsbufr;
xsizeinbytes,xsize;
tstart,tend;
cmprsfactor(200];
unsigned i,ysize;
/* No data were entered at the
<6 ) /% command line.

printf("enter x1 yl x2 y2 \n'");
scanf("%d %d %d %d",&xl,&yl,&x2,&y2);

while((getchar())!='\n') /% Read the end of the line *

/* marker.

xl=atoi(argv[2]); yl=atoi(argv[3]);
x2=atoi(argv(4]); y2=atoi(argv[5]);

>1)
strcpy( datafile, argv[l] );

P
~ S~

g
S

/% Read data from the input filew/

een(argc); /% and dump it to the screen.
ufr= scrfilebufr;

ufr+=4; /% Skip over '"xsize" and "ysize'

/% Get the specified portion of

¥ /

'/
¥ /

/% the screen into “scrfilebufr':/
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get(xl,yl,x2,y2,(char *)scrfilebufr);
for(i=0;i<=55000;i++) ; /% A delay loop. %/
setscmode(TEXT_MODE) ;
ysize=y2-yl+l;
xsize=x2-x1+1;
xsizeinbytes= (xsize/8)+((xsize%8)>0) ;
/% First two numbers in the */
/* "screenfilebufr'" represent ¥/
*(unsigned *)scrfilebufr=xsize; /% the width and the height of */
*(unsigned *)(scrfilebufr+2)=ysize;/* of the block. 5/

printf("starting to compress \n");
tstart=gttime(); /% Get the starting time for */
/% the compression. Initialize ¥/
/% "comprsbufr" and the other =/
/% static variables. =/
init_cmprsdblk((unsigned *)cmprsbufr);
init_line_parm(xsize);
for(i=1;§<=ysize;i++)

cmprsfactor(il=cmprs_line(uncmprsbufr);

/% Point to the next uncom- %/
uncmprsbufr+=xsizeinbytes; /% pressed line on the screen. %/

tend=gttime(); /% Get the time at the end of  */
/% the compression. %/
for(i=lji<=ysize;i++)
{
totalcmprsbits=totalcmprsbits+emprsfactor(il;
cmprsfactor(il=xsize/cmprsfactor(il;
}
if(tend>tstart)
cmprstime=tend-tstart;
else
cmprstime=(6000-tstart)+tend;
printf("compression ended\n");

for(i=lji<=ysize;i+=1)
/% Print the results on the %/
/% screen. %/
printf("%8u",cmprsfactor(il);

}

avgfactor=(float ) xsize * ysize/totalcmprsbits;

/% Initialize "“scrnfilebufr" to ¥/
/% ASCII zero. */
memset((scrfilebufr+4),'\0',16000);
printf(" starting to decompress \n");
tstart=gttime(); /% Start of the decompression. %/
init_dcmprsbfr((scrfilebufr+4),xsize);
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init_cmprs(cmprsbufr);
for(i=0;i<ysize;i++)
demprs_line_1d();

tend=gttime(); /% End the decompression. */
if(tend>tstart)
dcmprstime=tend-tstart;
else
demprstime=(6000-tstart)+tend;
/% If no argument was entered */
/% at the command line then %/
if( arge < 2 ) /* display data to the screen. */
{
setscmode(HI_RES);
put(xl,yl,scrfilebufr);
getchar();
setscmode(TEXT_MODE) ;
}

print_results(datafile,xl,yl,x2,y2,cmprstime,dcmprstime,avgfactor);

e END main() =—----mmmmmmmmmmmmmmmmomoooooi
[ m e e END main.c ~=——————=m—mmmmmmmmmm e ¥/

13.2. File Cmprsln.c

Ye== = J—— _——

* FUNCTIONS :

%

% cmprs_lastbits( word, no. of bits, color) : Compress the bits that

% did not fit into the word boundary (connect with the previous
¥ bits in the whole words portion of the line to be compressed.)
* get_emprs_reslt() : Returns the no. of compressed bits since the

¥ last time we zeroed "cmprscounter". This function is in the

¥ file "update.c", which in turn has the update() function that
¥ updates the compressed line after each compression.

* init_lastbits (no. bits that did not fit into the line boundary) :
¥ Pass the number of the last bits to the file "clast.c'".

* swapbyts( from, to , number of words) : Swap the high and low byte
¥ of each word stored in 'from' and store the result in 'to'; do
¥ it for the passed number of words.

% VARIABLES :

% oldlineptr : Pointer to the current line of uncompressed buffer.
% newlineptr : Pointer to the compressed line.

* xsize : Horizontal length, in bits, of each line.

% currentword : Pointer to current position, in words ,

¥ in the '"uncmprsbufr."

* lastbits : Number of bits in the last word of the uncompressed

% line if the number of bits in a line does not fit on



nmbrwords

* color
¥ lastcolor

ee oo
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the word boundary.

Word length of the portion of the uncompressed line
that fits in the word boundary.

Color of the current bit.

Color of the last bit processed in the whole words
portion of a line.

* bitcolor ¢ Color of the current bit (temporary storage.)

% word ¢ Current word in the uncompressed line.

* bitpos ¢ Index to the position in "word".

bitpos = 16 for the left-most bit and
1 for the right-most bit.

a‘t/
#include <dos.h>
fdefine LINT_ARGS
fidefine BLACKBIT 0
fidefine WHITEBIT 1
fdefine ENDBITS 2
unsigned get_cmprs_reslt();
void init_lastbits(unsigned);
void init_cmprsdblk(unsigned *);
void update_cmprsdblk(unsigned, int);
void cmprs_lastbits(unsigned,unsigned, int);
void swapbyts(unsigned *,unsigned *,unsigned);

static unsigned

lastbits,nmbrwords;

/% cmprs_line() == %/
unsigned cmprs_line (oldlineptr)

char *oldlineptr;

{

unsigned scurrentword;

int wordcount;

int color,lastcolor,bitcolor;

unsigned bitcontr=0;

register unsigned word,bitpos;

wordcount=nmbrwords; /* Initialize the variables. %/

currentword=(unsigned *)oldlineptr;

set_cmprscontr_to_zero();

swapbyts((unsigned *)oldlineptr,(unsigned *) oldlineptr,nmbrwords);
word=*currentword;

if ((word)&0x8000)

{

% /
v /

/* Is bit 16 in "word" white ?
/* Yes, bit 16 was white.

update_cmprsdblk(0,BLACKBIT);
color=WHITEBIT;

}
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else
{ /% Bit 16 was black. =/
color=BLACKBIT;

/* Negate the word so we can */
word="word; /* check for the new color. ¥/
}

/% We assume "xsize" >= 16, to */

/* take care of "xsize" < 16. We¥*/

bitpos=16; /% have to modify the code here.*/
while(color<ENDBITS) /* While not end of line, do.  */
{

/% While the color is the same */

/% and we are still inside ¥/

/% "currentword', do. %/
while( (word&0x8000) && (bitpos > 0) )

{
bitcontr++;
bitpos-—; /% Bit position in a word. =/
word=word<<l; /% Get the next bit in bit 16. %/
}
if(bitpos > 0) /% still inside "currentword" ? %/
{
update_cmprsdblk(bitcontr,color);
word="word;
color=(color) 20 : 1;
bitcontr=0;
}

/% Done with all the bits in =/

else /* the current word. =/
{
bitpos=16; /* Start again with bit 16 ¥/
currentword++; /% of the next word. w/

/% If the color is black then %/

/% negate the word pointed to byx/

/% "currentword" to check for */

/% the color later. v/
word= (color) ? *currentword : ~(sccurrentword);

/% Test for the end of the line %/

/% marker. 3/

if(--wordcount == 0)
{ /% Save the last calor in this ¥/
/% line. e/

lastcolor=color;
/% Signal "eol'" to the outer ¥/
/% loop. */
color=ENDBITS; -
}
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if(lastbits == 0) /% Does the line fit in the word¥*/
/% boundary ? %/
update_cmprsdblk(bitcontr,lastcolor);
else
cmprs_lastbits(*currentword,bitcontr,lastcolor);
if(color>ENDBITS)

/% Return the number of bits %/
return(get_cmprs_reslt()); /* in that compressed line. */
[ mmmm e END cmprs_line() -~=--——---mmmmmmmmme—x/
/% init_line_parm() %/
/% Initialize some static variables to the appropriate values. %/
/% = %/
void init_line_parm(xsize)
unsigned xsize;

{

nmbrwords=xsize/16;

lastbits=xsize & 0x000f; /* Let '"lastbits" = "xsize" % 16%/
init_lastbits(lastbits);

}

[ e END init_line_param() -==---==---cmmwo——mm i/
[ m e e END cmprsln.c ——===-——mm=———memm— e ¥/

13.3. File Cupdt.c
/ %

% STATIC VARIABLES :

®

* bitsleft ¢ Number of bits still vacant in the compressed word,
% it starts with 16 bits left in the word.
%* cmprscounter : Count the number of bits in the compressed block
* which is filled from left to right.
% cmprsdwordptr: Pointer to the current word position in the
% compressed block.
¥ /
static int bitsleft;
static unsigned cmprscounter;
static unsigned *cmprsdwordptr;
/ UPDATE_CMPRSDBLK() ====== */

/% This is function update_cmprsdblk( bitcounter, color), where */
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/% bitcounter is the number of consecutive bits of current color. */
/ e % /
void update_cmprsdblk(uncmprsdbitscont,color)

unsigned uncmprsdbitscont;

register int color;

{

struct FAXDATA

/% Code for a sequence of bits
/% of type color and run-length *
/* = # of the uncompressed bits.*
unsigned bits;
/* Length of the code in the *
/* bits.
int length;

{\ \\{

/% Initialize "FAX". FAX[0][] ==+/

/* black data , FAX[1][] == */

/* white data. =/

static struct FAXDATA FAX[2][74]={ {

0x35,8, 0x7,6, Ox7,4, O0x8,4, Oxb,4, Oxc,4, Oxe,4,
oxf,4, O0x13,5, Ox14,5, 0x7,5, Ox8,5, 0x8,6, 0x3,6,
0x34,6, 0x35,6, 0Ox2a,6, 0x2b,6, 0x27,7, Oxc,7, O0x8,7,
0x17,7, 0x3,7, Ox4,7, 0x28,7, Ox2b,7, 0x13,7, 0x24,7,
0x18,7, 0x2,8, 0x3,8, Oxla,8, Ox1b,8, 0x12,8, 0x13,8,
0x14,8, Ox15,8, 0Ox16,8, 0x17,8, 0x28,8, 0x29,8, 0x2a,8,
0x2b,8, 0x2c,8, 0x2d,8, 0x4,8, O0x5,8, O0xa,8, Oxb,8,
0x52,8, 0x53,8, 0x54,8, 0x55,8, 0x24,8, 0x25,8, 0x58,8,
0x59,8, 0x5a,8, 0x5b,8, 0Ox4a,8, Ox4b,8, 0x32,8, 0x33,8,
0x34,8, Oxlb,5, O0xl12,5, Oxl17,6, 0x37,7, 0x36,8, 0x37,8,
0x64,8, 0x65,8, 0x68,8, 0x67,8} , {

0x37,10, 0x2,3, 0x3,2, 0x2,2, 0x3,3, 0x3,4,
0x2,4, 0x3,5, 0x5,6, 0x4,6, 0x4,7, 0x5,7,
0x7,7, 0x4,8, 0x7,8, 0x18,9, 0x17,10, 0x18,10,
0x8,10, O0x67,11, 0x68,11, Ox6c,11, O0x37,11, 0x28,11,
Ox17,11, 0Ox18,11, Oxca,l12, Oxcb,12, Oxcc,12, Oxcd,l2,
0x68,12, 0x69,12, Ox6a,12, 0x6b,12, Oxd2,12, 0xd3,12,
Oxd4,12, 0xd5,12, 0xd6,12, 0xd7,12, Ox6¢c,12, 0x6d,12,
Oxda,l12, Oxdb,12, 0x54,12, 0x55,12, 0x56,12, 0x57,12,
0x64,12, 0x65,12, 0x52,12, 0x53,12, 0x24,12, 0x37,12,
0x38,12, 0x27,12, 0x28,12, 0x58,12, 0x59,12, 0x2b,12,
0x2c,12, 0x5a,12, 0x66,12, 0x67,12, Oxf,10, Oxc8,12,
0xc9,12, 0x5b,12, 0x33,12, 0x34,12, 0x35,12, 0x6¢c,13,
0x6d,13, Ox4a,13} } ;

register unsigned code; /% Code for the run of the pels.*/
int length; /% Length of the above code i/
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unsigned multiple; /* = "uncmprsdbitscont'" / 64. ¥/
unsigned bitcont; /% Local run-length. */

/* To get the least significant */

static unsigned maskl=0x003f; /* 6 bits. i/
/% Is "uncmprsdbitscont" a */
/* multiple of 64 ? */
if((multiple=(uncmprsdbitscont>>6))>0)
{
/% Compress the multiple of */
bitcont=multiple+63; /% 64 part. *f

code=FAX[color][bitcont].bits;
length=FAX[color][bitcont].length;
cmprscounter=cmprscounter+length;
/% Is old "bitsleft" > length ? */
if ((bitsleft=bitsleft-length)>Q)
/% Put the new code at the %/
/% current compressed word, */
/% using the new "bitsleft" to */
/* put it in the correct *f
/* position. */
(*cmprsdwordptr) |=code<<(bitsleft);
else /% The old "bitsleft" <= length.*/

{ /% Negate "bitsleft" and put the*/
/* part of the code that fills 3/
/% the word in the compressed */
/% word. %/
(*cmprsdwordptr) |=(code) >> (-bitsleft);
/% Move to a new word and put */
/* the rest of the code in a 5/
/% new compressed word, filling */
/* from the left to the right. */
*(++cmprsdwordptr)=(code) <<
(bitsleft = (16 + bitsleft));

}

/% Now compress the part that %/

/% is less than 64 bits. *f

/% If the no. of bits = 640 we ¥/

if(multiple<10) /% skip putting the zero part. =/
{

/* "bitcont" is the remainder of*/

/* dividing "uncmprsdbitscont" ¥/

/% by 64. */

bitcont=uncmprsdbitscont & maskl;
/% Get the corresponding code */
/% and the "code-length". */
code=FAX[color][bitcont].bits;
length=FAX(color]l(bitcont].length;
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/% Update "cmprscounter' by the*/
/% “code-length". */
cmprscounter=cmprscounter+length;
/% If there are still more */
/% unprocessed bits in the */
/% current word then put the */
/% compressed bits in the */
/* corresponding part of the */
/% word in the compressed buffer:/
if(( bitsleft=bitsleft-length)>0 )
(*cmprsdwordptr) [=code<<(bitsleft);

else
{ /% Otherwise split the code 3/
/% among the current and next */
/% words of the compressed %/
/* buffer. */
((*cmprsdwordptr)) [=(code) >> (-bitsleft);
(#++cmprsdwordptr)=(code) <<
(bitsleft = (16 + bitsleft));
}
}
}
/% Run-length was less than 3/
else /* 64 bits. */
{

/% Get the corresponding number */
/% of bits and '"run-length" =*/
/% then update '"cmprscounter". ¥/
code=FAX[color][uncmprsdbitscont].bits;
length=FAX[color][uncmprsdbitscont].length;
cmprscounter=cmprscounter+length;
/% Same case as the one before. */
if ((bitsleft=bitsleft-length)>0)
(*cmprsdwordptr) |=code<<(bitsleft);

else
{
((#cmprsdwordptr))|=(code) >> (-bitsleft);
(#++cmprsdwordptr)=(code) <<
) (bitsleft = (16 + bitsleft));
}
}
[ e e e UPDATE_CMPRSDBLK() -----—-==--—==c-mmmwe—e %/
/= INIT_CMPRSDBLK() =====/
/% Initialize the compression buffer pointer to the first word of */
/* the space allocated, set the compression counter to zero and %/
/% start with the most left bit of the first word in the compressed*/
/% buffer. %/

/* ====1/
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void init_cmprsdblk(newblkptr)
unsigned *newblkptr;

{
cmprsdwordptr=newblkptr;
bitsleft=16;
cmprscounter=0;

}

e e END INIT_CMPRSDBLK() —-====——————mc———— e %/
/% get_cmprs_reslt() */
/% This function returns the number of compressed bits since last 3/
/% initialization of '"cmprscounter". %/
/1'( =9
unsigned get_cmprs_reslt() .

{

return(cmprscounter);

}

Y END get_cmprs_reslt() ——-—————emmmmmmmmmeo ¥/
/% set_cmprscontr_to_zero() = ====s===i/
/% Set_cmprscontr_to_zero() :it sets "cmprscounter" to zero. Use it*/
/* if you are compressing a block and want to get "cmprscounter" %/
/* for each line alone. */
/*"‘— === -===:’:/
void set_cmprscontr_to_zero()

{

cmprscounter=0;

}

J e EE END set_cmprscontr_to_zero() —-==-—-—--e=veo-—- %/
[% —mmmmmm e END cupdt.c ===———=-=——mmmmmmeemomm s/
13.4, File Clast.c

#include <dos.h>

fidefine LINT_ARGS

fidefine BLACKBIT 0
ffdefine WHITEBIT 1
fdefine ENDBITS 2
fdefine £lip(word) \

{ \
inregs.x.ax=word; \
inregs.h.bl=inregs.h.al;
inregs.h.al=inregs.h.ah;
inregs.h.ah=inregs.h.bl;
word=inregs.x.ax;

Pl g

}

void update_cmprsdblk( unsigned, int);
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static unsigned lastbits;

/% CMPRS_LASTBITS %/
/% The bits left in the last word after compressing the whole 7/
/% screen should be handled as a special case. First the word */
/% should be flipped, or swapped. It would not be necessary to */
/% check for the word boundary since we are sure that the number */

/% of bits left is less than 16. */
/% %/
cmprs_lastbits(word,bitcontr,color)
register unsigned word; /* Last word. %/
unsigned bitcontr; /% Counter of bits left */
int color; /* Last color. s/
{
struct b%ts

unsigned rest 2153

unsigned bitlé I

s
union

{

struct bits b;

unsigned w3

} wordbitsl;
union REGS inregs;
int bitcolor;
register int bitpos;

flip(word)

bitpos=0;

while(color < ENDBITS)

{

wordbitsl.w=word; /* Last word. 3/

/% Loop wuntil either "color" */
/% changes or all bits are =/
/* processed. */
while( (wordbitsl.b.bitl6é == color) &&
(bitpos < lastbits) )

{
bitcontr++;
bitpos++;
/% Get the next bit. s/
wordbitsl.w = word = word << 1;
}

if(bitpos < lastbits)

{ /% The color changed, hence */
/% update the compressed buffer.*/

update_cmprsdblk(bitcontr,color);
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/% Let "color" = new color. i/
color=wordbitsl.b.bitl6;

/% Start looking for a new run. */
bitcontr=0;

}
else
{ /% All bits were processed, */
/% update the compressed buffer */
/* and exit the main loop. */
update_cmprsdblk(bitcontr,color);
color=ENDBITS;
}
}
}
[ e e END cpmrs_lastbits() ==—-—-=-—--oomemmmi/
/% == init_lastbits() = ===/
/% Initialize "lastbits" to the no. of bits in last word of the s/
/% uncompressed line. */
/7‘:-—— —:':/
void init_lastbits(lastcont)
unsigned lastcont;
{
iastbits=lastcont;

[Hmm e e END init_lastbits() ~—-=—=m—-—mcommmmmm—/
[ —mmm e e END clast.¢ —==-———==—m—mmommmm e %/
13.5. File Dcmprsin.c

#include <stdio.h>

#include <io.h>

#include "colordef.h"

int update_cmprs{int);

int uncmprs_blak(), uncmprs_white();

int match_blak(int *,int *), match_white(int *,int *);

int update_dcmprs_blakmk(int), update_dcmprs_whitemk(int);
int update_dcmprs_blakreg(int), update_dcmprs_whitereg(int);
/% DCMPRSLN() ===/

/% This function decompresses or decodes one horizontal line using */
/% the CCITT one-dimensional coding standard. The function %/

/% consists of a while lLoop to process all the codes in a line. 7
/ % % /
void demprs_line_1d()

{

/% Each line is assumed to begin/
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/% with a black run, if it does ¥/
/* not, then the code of zero */
/* black run was inserted before*/
/* the compressed code of the %/
/* line at the compression time.>/
/% Decode the compressed buffer */
/* until the end of line is ¢
/% encountered. */
while( uncmprs_blak() && uncmprs_white() )

?

} .
[demmmm o m e END DCMPRSLN() —===-===—mmmmommmm oo */
/% UNCMPRS_BLAK() - —

/% When either a make-up or a terminating black code is processed, ¥/
/% both of the compressed and decompressed buffer are updated. The */

/% latter is updated by sending the corresponding number of bits %/
/% to that buffer. s/
[ de== === =======%/
uncmprs_blak()

{

int clrbits,codebits;

register int *clrbitsptr=&clrbits;

register int *codebitsptr=&codebits;

match_blak(clrbitsptr,codebitsptr);

/% In case "clrbit" is
/% smaller than 0 then a
* make-up code was encount-
/% ered as a first code, so
/% updated compression and
/% decompression buffers.

e % N N
N e

if(*clrbitsptr<0)
{

*clrbitsptr=-*clrbitsptr;
update_cmprs(*codebitsptr);
update_dcmprs_blakmk(*clrbitsptr);

/* Find new clrbits & codebits ¥/
match_blak(clrbitsptr,codebitsptr);

}
/% Update "cmprsbufr" with the */
/% first terminating code */
/% length encountered. ¥/

update_cmprs(*codebitsptr);
/% Put “clrbits" black pels =
/% in the decompression buffer. ¥/
/% 1f the line ended return 1  */
/% else return O. %/
return( update_dcmprs_blakreg(*clrbitsptr));
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}
[t mm e END UNCMPRS_BLK() ---=-=====-=-==m=ommommeom */
/s = UNCMPRS_WHITE() */

/% When either a make-up or a terminating white code is processed, */
/% both of compression and decompression buffer are updated. The */
/* latter is updated by sending the corresponding number of bits %/
/* to that buffer. %/
/% W/
uncmprs_white()

{

int clrbits,codebits;
register int *clrbitsptr=&clrbits;
register int *codebitsptr=&codebits;

match_white(clrbitsptr,codebitsptr);
/* Refer to the comments in ¥/
if(*clrbitsptr<0) /% function uncmprs_blak. %/

*clrbitsptr=-*clrbitsptr;
update_cmprs(codebitsptr);
update_dcmprs_whitemk(*clrbitsptr);
match_white(clrbitsptr,codebitsptr);
}

update_cmprs(*codebitsptr);

return( update_dcmprs_whitereg(*clrbitsptr));

¥

[emmmmmmm e END UNCMPRS_WHITE() --—-==--====--——mommeee i/

[¥% =mmmmmmmmmmmmm oo END demprsln.c —--——==-—=-=———-ommeo—mmm v/
13.6. File Dupdtc.c

/%

% STATIC VARIABLES :

* cbitsremain : Bits remained in a given word, initial value is

% 16 bits.

% currentword : Holds the current word to be decoded.

* nextwordptr : Points to the next word to be processed after the
% current word.

* nextword ¢ It is set to the contents of word pointed to by

¥ "nextwordptr'". After each code match, ''nextword" is
%* masked so that it will contain the unused portion,
% it is right justified.

¥ The rest of it is filled with zeros.

* rightbitsword : Masks to get lst bit, lst and 2nd bits and so on.
* leftbitsword : Masks to get 16th bit, 16th and 15th bits and so on.
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‘,
”

¥ /

static unsigned currentword;

static wunsigned nextword, *nextwordptr;

static wunsigned cbitsremain;

static unsigned rightbitsword(1={0,0x0001,0x0003,0x0007,
0x000£,0x001£,0x003f,
0x007£,0x00££,0x01£ £,
0x03f£,0x07££,0x0£f££,
Ox1f££f,0x3£££,0x7££F,
Oxffff};

unsigned leftbitsword [1={0,0x8000,0xc000,0xe000,
0x£000,0x£800,0x£fc00,
Ox£e00,0x££00,0x££80,
OxffcO,0xffe0,0x£££0,
Oxfff8,0xfffc,0xfffe,
Oxffff};

/% UPDATE_CMPRS() */

/* This function updates '"currentword", which is a window into the */

/* compressed buffer. *;

/i ====7

update_cmprs(codelngth)

int codelngth;

{ /% Variable "tempword" is not %/

/* necessary, it is used to */
/% speed processing. %/

register unsigned tempword;

register int . difference;

tempword = currentword;

tempword <<= codelngth; /% Get rid of this code. =/

/% Can the wvacant place in */
/% "currentword" be filled from */

/* what is left in nextword? */

if((difference = cbitsremain-codelngth) > 0)
{ /% Yes, "bitsremain" is big */
/* enough. /

/% Copy the new bits of the code¥*/
/* into the places vacant due to*/

/% the mathed code. %/
tempword |= nextword>>(difference);
else
{ /% No, the code bits remaining */

/% in "nextword" can't fill the */
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/% places vacated due to the */

/* matched code. */

/% Correct "difference". %/
difference =- difference;

/* Copy all the code bits in ¥/

/% "nextword" to their correct ¥/

/* positions in ‘"tempword". */
tempword |= nextword << (difference);

/* Advance "nextwordptr" and */

/% copy its content to */

/% "nextword". -/
nextword = *(++nextwordptr);

/% Adjust "difference" then use */

/% it to copy the necessary =/

/% part from the new "nextword" */

/* into "tempword". %/
tempword |= nextword >> (difference=(16- (difference)) );

/* Mask the used part to zeros. */
nextword &= rightbitsword[differencel;

cbitsremain = difference; /% Update '"cbitsremain". =/
currentword = tempword; /% Update "currentword". */
}

[ e END UPDATE_CMPRS ——==—===——==——mem e e %/
/% init_cmprs s=====3x/
init_cmprs(cmprsbfrptr)

unsigned *cmprsbfrptr;

{

cbitsremain = 163

currentword = *(cmprsbfrptr);

nextword = *(nextwordptr=cmprsbfrptr+1);

3

[ End init_cmprs -—==-—--=-——--—mm—mmmmmmee o w/
/% MATCH_BLAK == ========i/

/% It looks at the content of "currentword"(currentword is a window#/
/% that slides on the "cmprsdbfr") from left to right ( up to bit */
/% 9 ) and tries to match the first four bits with a code of black */
/% runs whose length is four bits. If no match is found it tries %/
/% to match the first 5 bits and so on until it finds a match. The */
/% last bits to be looked at are the first 8 bits. It is assumed */
/% that a match should be found otherwise an error message is sent */
/% to the screen and the program is halted. s/
/% It returns the length of the matched code and the length of 3/
/% the corresponding run in locations pointed to by "codebitsptr" ¥*/
/% and"clrbitsptr' respectively. %/

[ de== — —
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match_blak(clrbitsptr,codebitsptr)

register int *clrbitsptr;
int *codebitsptr;
{

/* Huffman table for the black

/% codes. It is read from

/% right to left with the

/% vacant bits filled with

/% zeros in every word.

static unsigned ?LK_CODES[] =

/% BARRAY_4 bits.
0x7000,0x8000,0xb000,0xc000,0xe000,
0x£000,

/% BARRAY_5 bits.
0x9800,0xa000,0x3800,0x4000,0xd800,
0x9000,

/% BARRAY_6 bits.

0x1¢00,0x2000,0x0c00,0xd000,0xd400,

0xa800,0xac00,0x5c00,

/ ¥

0x4e00,0x1800,0x1000,0x2e00,0x0600,
0x0800,0x5000,0x5600,0x2600,0x4800,

BARRAY_7 bits.

0x3000,0x6e00,

/ %

0x3500,0x0200,0x0300,0x1a00,0x1b00,
0x1200,0x1300,0x1400,0x1500,0x1600,
0x1700,0x2800,0x2900,0x2a00,0x2b00,
0x2c00,0x2d00,0x0400,0x0500,0x0a00,
0x0b00,0x5200,0x5300,0x5400,0x5500,
0x2400,0x2500,0x5800,0x5900,0x5a00,
0x5b00,0x4a00,0x4b00,0x3200,0x3300,
0x3400,0x3600,0x3700,0x6400,0x6500,

BARRAY_8 bits.

0x6800,0x6700

/ ¥
/%
&3
/%
/ ¥

/ %
static int BLK_RUNS[] =
{ / %
2 ,3
/ %

8 9

/ v

1, 12,

/ b

Run-lengths corresponding
to the codes in "BLK_CODES".
Make-up runs are stored as
negative values to
distinguish them from
the terminating runs.

BCODE_4 bits.,
94 05 ’6 ’7 ’
BCODE_5 bits.

,10  ,11 ,-64 ,-128 ,
BCODE_6 bits.
13, 14, 15, 16, 17, -192 ,
BCODE_7 bits.

¥ /
¥ /
i/
i/
i/

% /

”* /

it/

¥ /

7 /

R
NN

i/
¥ /
b1 /
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18, 19, 20, 21, 22, 23, 24, 25, 26,
27, 28, -256,

/% BCODE_8 bits. %/
0, 29, 30, 31, 32, 33, 34, 35, 36,
37 , 38, 39, 40, 41, 42, 43, 44, 45,
46, 47, 48, 49, 50, 51, 52, 53, 54,
55, 56, 57, 58, 59, 60, 61, 62, 63,
-320, -384, -448, -512, -576, 640

/% The black codes are grouped */
/% in the "BLK_CODES" array %/
/% according to their length.  */
/% Their corresponding runs are %/
/% stored in "BLK_RUNS" array. =/
/* The first element in %
/% "BGROUPS" is equal to the no.*/
/% of the pairs. First no. in %/
/% each pair is the length of =/
/% the code in bits. Second no. */
/% is the number of codes with */
/% this length.
static int BGROUPS[}={5, 4,6, 5,6, 6,8, 7,12, 8,42 };
register word;

word = currentword;

switch (1)
{
case 1:
{ /% Find the first part of "word'¥/

/* that can be matched to a code*/
/% of a black run. When a match */
/* occurs return the '"clrbits'" i/
/* and "codebits". s/
if( match_all_bits{word,BLK_CODES,BLK_RUNS,BGROUPS,
clrbitsptr,codebitsptr) )

break;
}
default : {
printf("Wrong code encountered in 'match_blak'\n");
exit(0) ;
}
}
}
[emmmmm e e END MATCH_BLAK -==-—-===-——==-——=———-oooo ¥/
/== MATCH_WHITE ==== %/

/% Codes of length = 2, 3, 4, 5, 6, 7, 8, 9 are processed in a ¥/
/% tree data structure in order to find a match for them with the */
/% first 2, 3,...9 left bits of "currentword". Whenever a match is ¥/
/% found we exit from the tree. If no match is found in the tree, */
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/% the function Llooks at the content of currentword (current word */
/* is a window that slides on the "cmprsdbfr") from left to right */
/% (up to bit 4) and tries to match the first ten bits with a code */
/* of white runs whose length is ten bits. If no match is found ¥/
/* it tries to match the first 11 bits and so on until it finds a ¥*/
/* match. The last bits to be looked at are the first 13 bits. It */
/% is assumed that a match should be found otherwise an error ¥/
/% message is sent to the screen the and program is halted. */
/% The function returns the length of the matched code and the 3/
/% length of the corresponding run in locations pointed to by */

/% "codebitsptr" and "clrbitsptr" respectively. =/
/ % =3 /
match_white(clrbitsptr,codebitsptr)
int *clrbitsptr,*codebitsptr;
{

/* See comment for "BLK_CODES'". */
static unsigned WHITE_CODES[] =

{

/% Codebits = 10. s/
0x05c0, 0x0600, 0x0200, 0x03cO,
0x0dcO,

/* WARRAY_l1 bits. %/

0x0ce0, 0x0d00, 0x0d80, 0x06e0,
0x0500, 0x02e0, 0x0300,

/% WARRAY_12 bits. */
0x0ca0l, 0x0cb0Q, 0x0ccO, 0x0cd0,
0x0680, 0x0690, 0x06a0, 0x06b0,
0x0d20, 0x0d30, 0x0d50, 0x0dé0,
0x0d470, 0x06c0, 0x06d0, 0x0dal,
0x0db0, 0x0540, 0x0550, 0x0560,
0x0570, 0x0640, 0x0650, 0x0520,
0x0530, 0x0240, 0x0370, 0x0380,
0x0270, 0x0280, 0x0580, 0x0590,
0x02b0, 0x02c0, 0x05a0, 0x0660,
0x0670, 0x0c80, 0x0c90, 0x05b0,
0x0330, 0x0340, 0x0350,

/% WARRAY_13 bits. s/
0x0360, 0x0368, 0x0250

s
/* See comment for "BLK_RUNS". */
static int WHITE_RUNS([] =
{
/* WCODE_10 BITS. ¥/
16, 17, 18, -64, O,
/#* WCODE_11 bits. s/
19, 20, 21, 22, 23, 24, 25,
/* WCODE_12 bits. ¥/

26, 27, 28, 29, 30, 31, 32, 33,
34, 35, 36, 37, 38, 39, 40, 41,
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i/

42, 43, 44, 45, 46, 47, 48, 49,
50, 51, 52, 53, 54, 55, 56, 57,
58, 59, 60, 61, 62, 63, -128, -192,
~256, -320, -384, -448,
/% WCODE_13 bits.
-512, -576, 640
s
static unsigned WGRoups(l={4, 10,5, 11,7, 12,44, 13,3 };
register unsigned tmpword,word;
word = currentword;
swi%ch @P)
case 1:
{
if(word ? 0x8000) /% Bit 16 =1,
if(word & 0x4000) /# Bit 15 = 1 hence code=2.7¢
*clrbitsptr = 2;
else /% Bit 15 = 0.
*clrbitsptr = 3;
*codebitsptr = 2; /% Code length = 2.
break;
}
if(word ? 0x4000) /% Bit 15 = 1.
if(word & 0x2000) /% Bit 14 = 1.
*clrbitsptr=4; /* Code = 4 .,
else /% Bit 14 = 0.
%clrbitsptr=1; ;* Code = 4,

*codebitsptr=3;

break:
1 .
if(word & 0x2000) /%
{ .
if(word & 0x1000) /3
*clrbitsptr=5; /*
else /%
*clrbitsptr=6; /%
*codebitsptr=4; /%
break;
}
if(word & 0x1000) /%
{
if(word & 0x0800) /%

{

*clrbitsptr=7; /%
*codebitsptr=5; /¥
break;

}

Code length

Bit 14 = 1.
Bit 13 = 1.
Code = 5,
Bit 13 = 0.
Code = 6.

Code length

Bit 13 = 1.
Bit 12 = 1.
Code = 7

Code length

¥ /
% /
%/
¥ /
¥ /



else

if((tmpword=(word&0xfe00))

545

{
if(word & 0x0
*clrb
else
%clrb
*codebitsptr=
break;
}
/*
/*
/*
/*
/:
/

{ *codebitsptr=7;
if(tmpword==0x0a00)

{ *codebitsptr=7;
if(tmpword==0x0e00)

{ *codebitsptr=7;

if((tmpword=(word&0x££00))

if(tmpword==0x0700)

if((word&0x££80)==0x0c00)

/*
/*
/*

{ *codebitsptr=8;

{ *codebitsptr=8;

{ *clrbitsptr=15;
/%
/*
/*
/*
/%
/*

if( match_all_bits(word,WHITE

clrbi
break;
}
default : {
printf(

" Wrong code enco

exit(0) ;

}

/% Bit 12 = 0. ¥/

/% Bit 11 = 1. 174
400)

/% Code = 8 i/
itsptr=8;

/% Bit 11 = 0. %/

/3% Code = 9. */
itsptr=9;
6; /% Code length = 6. */

By reaching this points it  */
means that only 4 zero bits ¥/
were found. %/
—-——-——————-——————————————————*/
* mask with 1111 1110 0O... i/
to handle runs 10, 11, 12 %/
0x0800)

*clrbitsptr=10; break; }
*clrbitsptr=11; break; }

%clrbitsptr=12; break; }

—————————————————————————————— %/
mask with 1111 1111 00... */
to handle runs 13, 14, 15 %/
0x0400)

*clrbitsptr=13; break; 1}
*clrbitsptr=14; break; }
*codebitsptr=9; break; }

e — e - ﬁ/
find the first part of %/
"word" that can be matched  */
to a code of a white run. %/
When a match occurs return %/

the '"clrbits" and "codebits".¥*/
CODES ,WHITE_RUNS,WGROUPS,
tsptr,codebitsptr) )

untered in ‘match_white'\n");
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13.7. File Dupdtd.c

* STATIC VARIABLES :

% dbitsremain : Bits remaining in a given byte, initial value is
% 8 bits.

% xsize : Horizontal dimension of the block = length of
¥ each line,
% xlength : Counter for number of bits processed in the
% current line,
* linestart : Points to the start byte of every line in
* compressed buffer.
* currentbyteptr : Points to the current byte, in the decompression
¥ buffer, to be filled.
* currentbyte : Equals the contents of byte pointed to by
¥ "currentbyteptr".
* leftbitsbyte : An array of masks to get the 16th bit, the 16th
¥ and 15th bits, and so on.
* rightbitsbyte ¢ An array of masks to get the lst bit, the lst
% and 2nd bits, and so on.
*/
#include <memory.h>
ffdefine uchar  unsigned char
static int dbitsremain;
static int xsize, xlength;
static char *linestart;
static uchar *currentbyteptr, currentbyte;

static uchar rightbitsbytell=
{0,0x01,0x03,0x07,0x0f,0x1f,0x3f,0x7f,0xff};

static uchar leftbitsbytell] =
{0,0x80,0xc0,0xe0,0xf0,0x£f8,0xfc,0xfe,0xff};

/% update_dcmprs_whitereg =======i/
/* Put into the decompression buffer '"dcmprsbufr" the exact number */
/% of white bits that equals the passed run length. *f
/*—~ S=EsosSnssSsSsSssss =*/

update_dcmprs_whitereg(clrbits)
/* Number of white bits to be #/
register int clrbits; /* added to the buffer. %/

{
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int difference;
nmbrbytes;

difference = clrbits-dbitsremain;

if( clrbits >= (dbitsremain+8) ) /* Can we use memset() ? %/
{ /* YES we can, hence set the %/

/% remaining bits of the current®/

/* byte to 1's. i/

else

*currentbyteptr |= rightbitsbyteldbitsremainl;
/* Divide by 8 to get the number/

nmbrbytes=(difference)>>3; /* of bytes that need to be %/
/% updated. %/
/% Set '"nmbrbytes" bytes to ones*/

memset(++currentbyteptr,Oxff,nmbrbytes);

currentbyteptr +=nmbrbytes; /* Advance the pointer position®/
/% If the difference was not */
/% divisible by 8 then there */
/% are some bits to be set %/
/% to ones in the next byte. *f

if((difference=difference &0x7) !=0)

“currentbyteptr=leftbitsbytel(difference)l;
dbitsremain=8-(difference);

}
{ /* No we can not use memset(). %/
if(difference < 0)
{ /% Only few bits need to be set */
/% to one within the current */
/% byte, hence OR contents of =/
/% "currentbyteptr" with the */
/* mask that is shifted left by */
/% the negated difference. %/
*(currentbyteptr) |= ( rightbitsbytelclrbits] <<
(dbitsremain-clrbits) );
dbitsremain -=clrbits;
}
else /% There are some bits in the  */
/* current and next byte to be */
/% set to one . xf
{
/% Set those bits left in */
/% the current byte to 1's */
*currentbyteptr |=rightbitsbyteldbitsremain];
/% Set the required bits of the */
/* next byte to one. %/
#(++currentbyteptr) =leftbitsbytel[differencel;
?bitsremain = 8 - (difference);
}

/* If the end of the line is %/
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/* reached then initialize the ¥/
if( (xlength+=clrbits) >= xsize ) /* variables to process the next:/
/% line. */

{

xlength=0;
/% If "dbitsremin'"=8 this means */
/% that ‘'currentbyteptr" is %/
/* pointing to the first byte of¥*/
/% the next line and, of course,*/

/* "dbitsremain" is correct. %/
/% So start a new line. %/
if(dbitsremain!=8)
{
dbitsremain=8;
++currentbyteptr;
}
linestart=currentbyteptr;
return(0);
}
else
return(1l); /* Line did not end yet. %/
}
[Hmmm e e END UPDATE_DCMPRS_WHITEREG() —-——==-—====—=-—==i/
[ %e== = update_dcmprs_blakreg */

/% Put into the decompression buffer "dcmprsbufr" the exact number */
/% to black bits that equals the passed run length. Since initially%*/
/% every bit in the buffer is set to zero, it is enough to advance */

/% the pointer by the run length. =/
/;‘c —-.-.__=:':/
update_dcmprs_blakreg(clrbits)

register int clrbits;

{

register int difference;

unsigned nmbrbytes;

difference=clrbits-dbitsremain;

if(clrbi%s >= (dbitsremain+8) ) /% Update more than two bytes. */
/* No need to set the remaining */
/* bits of the current byte */
/% to 0's since the buffer is %/
/% initialized to zero's. %/

/% Divide by 8 to get the numberi/
nmbrbytes=(difference)>>3; /* of bytes to be updated. */

/% Advance the pointer position.¥*/
currentbyteptr +=nmbrbytes+l1;

/* By ANDING '"difference" with¥*/
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/% 0000 0111 we get the bit */
/* position to start with in¥*/
/% the next process. %/
dbitsremain=8-(difference &0x7 );
}
else . /* Update one or two bytes. %/
if(difference<0)
/% only few bits need to be */
/% set to zero within the %/
/* current byte, hence advance */
/* "dbitsremain' by "clrbits", =/
/* thus bits = run-length are */
/% set to zero in the current  */
/% byte. /
dbitsremain -=clrbits;
else
{
/% Advance 'dbitsremain'" by %/
/% "clrbits", thus bits = run- */
/% length are set to zero in */
++currentbyteptr; /% the current and next byte. %/
dbitsremain=8- (difference);
}
}
/% If the end of line is reached*/
/% then initialize the variables¥/
if( (xlength+=clrbits) >= xsize ) /* to process the next line. %/
xlength=0;
/% 1f "“dbitsremin"=8 this means */
/* that 'currentbyteptr" is 3/
/% pointing to first byte of */
/* the next line and, of course,*/
/% "dbitsremain" is correct. =/
if(dbitsremaint=8) /* So start a new line. v/
{
dbitsremain=8;
++currentbyteptr;
}
linestart=currentbyteptr;
return(0);
¥
else
return(1); /% Line did not end yet. s/
}
[Fmmm e e e END UPDATE_DCMPRS_BLAKREG() ---—=====-===wo——mm */
/% ==== ypdate_dcmprs_whitemk =s====s==s======s====== */

update_dcmprs_whitemk(clrbits)
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int clrbits;

{

register int difference;
register unsigned nmbrbytes;

/* Refer to the comments in the */
/* function update_dcmprs_whitereg.*/
difference=clrbits-dbitsremain;
*currentbyteptr |= rightbitsbyteldbitsremainl];
nmbrbytes=(difference)>>3;
memset(++currentbyteptr,0x£ff,nmbrbytes);
currentbyteptr +=nmbrbytes;
if((difference=difference &0x7) !=0)
*currentbyteptr=leftbitsbyte((difference)];

dbitsremain=8-(difference);
xlength +=clrbits;
return(l);

}

J e END UPDATE_DCMPRS_WHITEMK() ----—--—--—=mc-—= =/

/% update_dcmprs_blakmk =/

update_dcmprs_blakmk(clrbits)

register " int clrbits;

{

register int difference;

unsigned nmbrbytes;
/% Refer to comments in function  */
/% update_dcmprs_blakreg. */

difference=clrbits-dbitsremain;

nmbrbytes=(difference)>>3;

currentbyteptr +=nmbrbytes+1;

dbitsremain=8-(difference &0x7);

xlength +=clrbits;

return(l);

}

J R END UPDATE_DCMPRS_BLAKMK() -------=--—-mcec—-i/

/% Even number of bytes only.  */
/% 1f the line length is odd do */
static unsigned bytelinelngth; /¥ not process the last byte. %/

/% init_dcmprsbfr ====i/
init_dcmprsbfr(demprsbfrptr,sizexbits)
unsigned char *dcmprsbfrptr;

int sizexbits;
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linestart=currentbyteptr=dcmprsbfrptr;

by
x1

telinelngth= ( ( ((xsize=sizexbits)/8) /2)%2);
ength=0;

dbitsremain=8;

}

J e END INIT_DCMPRSBFR() --==---~--—memmmmmemst/f
/% adjst_line %/
/% swap every pair of bytes in every word of the current line. %/
/z'. ——.—:'t/
adjst_line()

{

swapbyts(linestart,linestart,bytelinelngth);

}

F e END ADJST_LINE() —---==——mmmmmmmmmmem =/
[ e e END dupdtd.c -———=-—===—-—=cmmmmem e %/
13.8. File Initscrn.c

#include <stdio.h>
finclude <memory.h>
#include <dos.h>
#include <io.h>
#include <fcntl.h>
#include <malloc.h>
fidefine LINT_ARGS
fdefine SCREENSIZE 16384
ffdefine HI_RES 6
ffdefine TEXT_MODE 3

/% window coordinates. */
extern int xl,yl,x2,y2;

/* figure input file. =/
extern char datafilel]:
/% == INIT_SCREEN s====s========= i/
/* init_screen(value) : Function to initialize the whole screen. %/
/% It takes its input interactively. If "value'" is equal to one %/
/% then the input file was entered at the command line. %/
/7': ====== a’:/
init_screen(value)
int value;
{
char *screenbufr; /% Temporary buffer. i/
int fhl,bytesread,modeval, loop=l;
char flag,c;

/% "src" is a far pointer %/
char far *srcy /% initialized to "screenbufr". */
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if( value <=1 )

{
while(loop)
{
printf("enter name of data file \n");
gets(datafile);
printf("your data file is %s \n'",datafile);
printf("Are the values entered correct \n");
printf("enter Y or N ")
flag=getchar();
while( ((flag!='y')&&(flag!='n"')) )
{
flag=getchar();
printf("enter y or n ");
flag=getchar();
}
while((c=getchar()) !='\n"')
if(flag——'y )
loop=0;
}
}

setscmode(HI_RES);
/% do the first bank (even) by */
/% allocating the half total */
/* size. =/
screenbufr=malloc(SCREENSIZE/2);
fhl = open(datafile,O_RDONLY|O_BINARY);
/% read the first bank. %/
bytesread=read(fhl,screenbufr,SCREENSIZE/2);
src=(char far *)(screenbufr+7);
/% The screen format has the first byte */
/% of the lst bank at offset 8000 of the*/
/* screen segment. Move the data from  */
/* the file to that segment. Note that */
/% in the screen segment the bytes %/
/% starting at offset 8000 till (8192-7)%/
/% will be filled with whatever the file¥/
/% has. This part is not from the */
/* physical screen.
movedata(FP_SEG(src),FP_OFF(src),0xb800,0x0000,
(SCREENSIZE/2)-7);
bytesread=read(fhl,screenbufr,SCREENSIZE/2);
src=(char far *)(screenbufr);
/% The lst seven bytes of the 2nd half ¥/
/% of the file are a continuation of the¥/
/% (192-7) bytes that BASIC took from ¥/
/% the screen memory and dumped it to */
/% the file. So the second half of the */
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/* screen starts after 7 bytes of the */

/* 2nd part of the file. By copying the */

/* second half of the file into offset */

/% (0x2000-7) we will f£ill the 7 bytes */

/% at (0x2000-7) then the 2nd half of */

S . /% the screen will be copied to offset */
‘ /% (0x2000). This fills the odd part of */

/* the screen. The remaining (192-7) of 3/

/% the file will fill offset s/
/% (0x2000+8000) till offset %/
/% (0x2000+8000+(192-7)). %/
movedata(FP_SEG(src),FP_OFF(src),0xb800,(0x2000-7),
SCREENSIZE/2);
close(fhl);
free(screenbufr);
}
[Hemmm e m e m e END INIT_SCREEN ---——=---=-=-----moo—moi /
/% ==== SETSCMODE === =====1/
/* Sets the screen to the desired video mode. */
3 % /
int setscmode(mode) /% set the video mode function. */
int mode;
{
union REGS inregs;
union REGS outregs;
/* return the code and the /
/* interrupt for function %/
/* "gdosint". =/
int ret_code,int_no;
/* "set video mode" BIOS %/
/* function call. =/

inregs.h.ah=0;
inregs.h.al=mode;
ret_code = int86(0x10,&inregs,&outregs);
/* return the code to check for */

/* any errors. %/
return(ret_code);
}

[dmmmm e mm e END SETSCMODE --==--=——-=-=c-—————oooooooe %/
JF —mm e END initsern.c ——————=m=—s————omeme %/
13.9. File Gttime.c

#include <dos.h>
fdefine LINT_ARGS

ffdefine INT_TIME Oxla
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/% GTTIME

3 /

/% It returns the current time, only the seconds and the hundredthss/

/* of a second. The return value is the addition of

the two, in */

/* hundredths of a second. *f
/7'( */
unsigned gttime()

{

union REGS inregs;

union REGS outregs;

unsigned tc;

inregs.h.ah=0x2c;

intdos(&inregs,&outregs);

tc = (outregs.h.dl) + (100 * outregs.h.dh);

return(tc):

}

[ e END GTTIME () —-===-—=—m————mmmmmemmmem %/
fH mmm e END gttime.c -—=-—=——===———cm————mo e %/
13.10 File Print.c

#include <io.h>

#include <stdio.h>

/% PRINT_RESULTS() s=====s==i/
/% Print the results to the output file. The data to be printed outs/
/% are the compression time, the decompression time and the s/
/* compression factor. %/
/,'; ====—'———7'(/
print_results(thefile,x1l,yl,x2,y2,cmprstime,dcmprstime,avgfactor)
char thefilel41];

unsigned xl,yl,x2,y2;

unsigned cmprstime,dcmprstime;

float avgfactor;

{

FILE *outfile;

printf(" Compression factor is %f \n", avgfactor) ;
printf(

"Compression time is %u in 1/100 of a second \n", cmprstime );

printf(

"Decompression time is %u in 1/100 of a second \n", dcmprstime );
/% Send data to table.dat file. %/

if( (outfile = fopen( "table.dat", "r" )) == NULL )
{

/% Open the file for writing. */
/% Print the table heading too. */

outfile = fopen( '"table.dat", "w" ) ;
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fprintf(outfile,

"File name xl yl x2 y2 cmprs cmprs ");
fprintf(outfile,"dcprs \n" );
fprintf(outfile,

" fctor time ");
fprintf(outfile,"time \n" );

else
{ /% Appending. %/
outfile = fopen( "table.dat', "a" ) ;
}
/% Output formats. %/
fprintf(outfile,"%-20s %3u %3u %3u %3u %6.2f %4u  %5u\n",
thefile, x1, yl, x2, y2, avgfactor, cmprstime, dcmprstime );

fclose(outfile);

}

Ho o END PRINT_RESULTS() -=-——-==--==--=--meee—ui/

[ == END print.c ————=-==—=--==-mom——ommee i/
13.11. File Geth.asm

NAME GET

TITLE GET GRAPHIC SCREEN GETH

_TEXT SEGMENT BYTE PUBLIC 'CODE’
_TEXT ENDS

CONST SEGMENT WORD PUBLIC 'CONST'
CONST ENDS

_BSS SEGMENT WORD PUBLIC 'BSS'

_BSS ENDS

_DATA SEGMENT WORD PUBLIC 'DATA'
_DATA ENDS

DGROUP GROUP CONST, _BSS, _DATA

ASSUME CS: _TEXT, DS: DGROUP, SS: DGROUP, ES: DGROUP

_DATA SEGMENT WORD PUBLIC 'DATA'

EXTRN __CHKSTK:NEAR
MASK2 DB OFFH
DB 080H,0COH,0EQOH, OFOH, OF8H, QFCH, OFEH
GTSETMOD DB 0
_DATA  ENDS
PUBLIC _get,MASK2
s+ INPUTS :
BUFFER EQU [BP+12] ; POINTER TO MEMORY BUFFER.
YO EQU (BP+6] s Y OF UPPER LEFT CORNER.
9

Y2 EQU (BP+10] Y OF LOWER RIGHT CORNER.



INXO
INX2

X0

SORC_INC
SORC_INDX2
DEST_INDX2
SHFT_RGT
LINE_CNTR
PXLENGTH

ODDORG = 02000H

-BSS

LAST_MASK

LTl

RT1

BIT1

_BSS

_GET PROC
PUSH
MOV
MOV
CALL
PUSH
PUSH
PUSH
PUSH
PUSH

PUSH

EQU
EQU

EQU

EQU
EQU

EQU
EQU
EQU
EQU

SEGMENT word

EVEN

DB
EVEN
DB
DB
DW
ENDS

NEAR
BP
BP,SP
AX, 14
—chkstk
DI

SI

ES

DS

DX

cX

306

(Bp+4)
[BP+8]

[Bp-2]

[BP-4]
[(BP-61

[(BP-8]

[BP-10]
(BP-12]
[BP-14]

we we Ws we ws we ws we we

NI N N

WORK VARIABLES :
X OF THE BYTE IN WHICH IS
THE UPPER LEFT CORNER OF
THE BLOCK

0 <= X0 <= 79 BYTES.

SOURCE INCREMENT AFTER

EACH LINE MOVE. DEST_INC =
DX, IT ISN'T DEFINED HERE
BUT WE NEED IT TO SKIP
LINES OF THE OTHER BANK.
SOURCE ( SCREEN ) OFFSET
OF THE FIRST BYTE.
DESTINATION (BUFFER) OFFSET
OF THE FIRST BYTE IN THE
2ND BANK. SEE FINDPARAM

NO. OF LINES IN EACH BANK.

WO We We we We we We We W we Ve we ws we wo 0o

public 'BSS'

"LAST_MASK" IS A VARIABLE TO BE
INITIALIZED FROM THE VALUES IN
"MASK1". "LAST_MASK" IS USED IN
"BLOKX" AND "XBLOK'". IT IS OF BYTE
SIZE. IN FUNCTION PUT() "BLOKX"
WILL HAVE "RIGHT_MASK" OF SIZE
BYTE AND "XBLOK' WILL HAVE
"LAST_MASK" OF SIZE WORD, SO IT IS
DIFFERENT FROM THIS "LAST_MASK".



PUSH
PUSH
GET_SMODE:
MOV
INT
CMP
JNE
MOV
MOV
MOV
JMP
HIGH_RES:
CMP
JNE
MOV
MOV
MOV
JMP
NOT_GRAPH:
JMP
FIND_PARAMS:
CALL
COMMENT

BX
AX

AH,15

16

AL,4
HIGH_RES
RT1,2
LT1,1
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WORD PTR BITI1,3

FIND_PARAMS

AL,6
NOT_GRAPH
RT1,3

WORD PTR BIT1,7

LT1,0
FIND_PARAMS

GT_DONE

FINDPARAM

FIND_PARAMS WILL RETURN "DX = XLENGTH'" (CASEl AND CASE3_B) OR

"XLENGTH-1" (FOR CASE 2 AND CASE3_A) WHERE "XLENGTH"= NO. OF BYTES
NEEDED TO STORE EACH LINE.
BX = COUNTER FOR Y LINES= NO. OF LINES IN THE FIRST BANK.
CX = KIND OF BLOCK.

¥

INIT_BUFFER:
MOV
MOV
1 (0)%

MOV

STOSW

MOV
SUB
INC

STOSW

MOVE_SETUP:
MOV
SUB
MOV
MOV
SHR

MOV
MOV

AX,DS
ES,AX
DI,BUFFER

AX, PXLENGTH

AX,Y2
AX, YO
AX

AX, 80

AX,DX
SORC_INC,AX
AX, YO0

AX,1

SI,bX
BL, 80

-e we we we

-s we we

-e we we

LET ES = DS.

DI = ADDRESS OF THE 1ST BYTE IN
THE BUFFER. STORE "XLENGTH" IN THE
1ST WORD OF THE BUFFER.

"XLENGTH" IS IN PELS.

AX = Y2~Y0 + 1.
STORE "YLENGTH'" IN THE 2ND WORD OF
THE BUFFER.

"SORC_INC" = 80 ~ SIZE.

AX = NUMBER OF THE 1ST LINE ON THE
SCREEN.
STORE "DX" IN "sI",



ORG_EVEN:

CHOOSE:

MUL
MOV
ADD
MOV
AND
JZ

ADD

MoV

MOV
ADD
MOV
MoV
ADD
ADD
MOV

MOV
SUB
INC

MOV
SHR

MOV
AND
ADD

CMP
JBE

MOV
MOV
CLD
JCXZ
CMP
JNZ

RIGH_TBAD:

LEFT_BAD:

CALL
JMP

CcMP
JNZ
CALL
JMP
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BL

DX,SI
AX, X0
BX, YO
BX,1
ORG_EVEN

-e we

AX,ODDORG

we we we we ws

BX, 80

SI,AX

AX,BX
SORC_INDX2,AX
AX,BUFFER
AX, 4

AX,DX
DEST_INDX2,AX

ws we we we Wwe we we we we

AX,Y2
AX,YO
AX

BX,AX
AX,1

LINE_CNTR,AX
BX,1
BX, AX

BX,0
Y_ERROR

We W We Ve W WE We we We We WE we wes we

AX,0B800H
DS,AX

e

ALL_OK
cX,1
LEFT_BAD

GTBLKX
GT_DONE

cX,2

X_ERROR
GTXBLKX
GT_DONE

RESTORE '"DX".
AX = (Y0/2) * 80 + XO.

IF BL = 1 THEN YO IS ODD.

IF BL = 0 THEN YO IS EVEN.

YO IS ODD SO ADD THE ORIGIN OFFSET
OF THE ODD BANK INTO THE SCREEN
SEGMENT.

SI = SOURCE INDEX OF THE FIRST BANK
IF YO IS ODD THEN SORC_INDX2 =
SOURCE INDEXl + 80.

DEST_INDX1 WAS ALREADY INITIALIZED
TO 4 AFTER WE FILLED THE FIRST TWO
WORDS OF THE BUFFER.

DEST_INDX2 = BUFFER + 4 (DUE FIRST
TWO WORDS) + DX (DUE TO THE FIRST
LINE)

BX = AX = Y2-Y0 + 1 = "YLENGTH"
IN PELS.

AX = NO. OF LINES IN THE SECOND
BANK.

SO STORE IT IN THE LINE COUNTER.
IF "YLENGTH" IN PELS WAS ODD THEN
BX = 1, HENCE ADD IT TO THE LINE
COUNTER.

STORE THE RESULT IN BX, WHICH WE
USE AS Y LINES COUNTER.

IF BX (i.e. NO. OF Y LINES IN THE
FIRST BANK) <= O THEN Y VALUES
WERE WRONG)

LET DS = B800 = SCREEN SEGMENT.

JUST TO MAKE SURE.



X_ERROR:

Y_ERROR:

ALL_OK:
GT_DONE:

_GET

MoV
JMP

MOV
JMP
CALL

POP
POP
PoP
POP
POP
pop
POP
POP
MOV
POP
RET
ENDP

FINDPARAM

LEFT_OK:

RIGHT_X:

MOV
MOV
MOV

SHR

MOV
Mov
SUB
INC

MoV
MOV
SHR
AND
JNZ

AND

JNZ
SUB

RET

AX,1
GT_DONE

AX,1
GT_DONE
GTBLK

AX
BX
cX
DX
DS
ES
SI
DI
SP,BP
BP

PROC NEAR
AX, INXO
BX,AX

CL,RT1

AX,CL

X0,AX
DX, INX2
DX, BX
DX

SI,DX
PXLENGTH, DX
DX,CL
BX,BIT1
LEFT_X

SI,BITI

RIGHT X
cXx,cx
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-e

“e we we we ws we we

-e

we we we we we we we we we

STORE "XLEFT" (PELS) IN AX AND BX

BITS 0,1 SPECIFY ONE PEL OUT OF 4
GET RID OF THEM TO GET THE BYTE
COORDINATES

STORE THE RESULT IN X0. X0 = THE
BYTE IN WHICH "XLEFT'" (PELS) LIES
DX = "XRIGHT" (PELS).

SI = DX = XRIGHT - XLEFT + 1 =
XLENGTH (PELS).
DX = XLENGTH IN BYTES.

XLEFT IS AT THE BYTE BOUNDARY, SEE
IF XRIGHT IS AT THE BYTE BOUNDARY
TOO

IF XRIGHT IS NOT AT THE BYTE
BOUNDARY

GO TO RIGHT_X.

THE BLOCK IS AT THE BYTE BOUNDARY
SO CX = 0.

DX IS EXACT.

SI = NO. OF PELS IN THE LAST BYTE.



LEFT_X:

SET_LST_M

FINDPARAM

MOV
SHL
MOV
MoV

INC
MOV
RET

MoV
INC
SUB
MoV
SHL

MOV

AND
JZ

INC

SK:
MOV
SHL
MOV
MOV
MOV
RET
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SI = 1,2,3 (=0 IS A PREVIOUS CASE).

CL,LTI
SI,CL
AL, [SI+MASK2]
LAST_MASK,AL
; DX = NO. OF BYTES NEEDED IN
DX ; THE ARRAY.
cx,1

AX,BITI
AL
AL,BL
CL,LT1
AL,CL
; WE USE SHFT_RGT TO SHIFT THE WORD
;+ IN WHICH A PEL (OTHER THAN ZERO)
; IS THE START OF EACH LINE.
BYTE PTR SHFT_RGT,AL
; THE SCREEN BYTE THAT WE WANT TO
TRANSFER TO THE BUFFER .
; WE SHIFT THE WORD TILL THE DESIRED
BYTE FITS INTO AL.
FOR THE LAST BYTE WE NEED ONLY PART
OF THE BYTE SO WE ZERO THE EXTRA
PELS USING LAST_MASK.
IF SI = 0 WE HAVE NO EXTRA PELS,
HENCE THE LAST BYTE IS COUNTED IN
DX.
INCREMENT DX TO TAKE THE LAST BYTE

]
H
?
H
]
H
3
SI,BIT1 H
H
H
3 OUT OF DX.
H
H
9
H
]
H
9
?
L
H
H

SET_LST_MSK
DX

SINCE SI WAS CALCULATED FROM
XLENGTH IT INCORPORATED THE EFFECT
; OF X0 AND X2 IN THE LAST BYTE OF
THE BUFFER. LAST_MASK TAKES CARE OF
; THE EXTRA PELS IN THE LAST BYTE.
THE DIFFERENCE BETWEEN "GET' AND
"PUT" FUNCTIONS IS THAT IN "PUT" WE
; WANT TO PRESERVE THE OLD CONTENT OF
; THE SCREEN (i.e. THE EXTRA PELS IN
THE LAST BYTE). BUT IN “GET" WE
ZERO THE EXTRA PELS BY LAST_MASK,

CL,LT1

SI,CL

AL,MASK2 [s1] 3 SI = NO. OF PELS IN THE LAST BYTE.
LAST_MASK, AL 3y SI 0,1,2,3

cX,2

ENDP



GTBLK PROC
MOV
LOOP1:
PUSH
MOV
MOV
SHR
REPZ
SHR
JNB
LODSB
STOSB
NEXT_LINE:
ADD
ADD
DEC
JINZ
NEXT_BANK:

LOOP2:

MOV
POP
CMP

JBE

MOV
MOV
CHANG_ORIGN:

XOR

LOOP
GTBLK_DONE:
GTBLK
GTBLKX  PROC
MOV
LOOP1X:
PUSH
MOV
DEC
MOV
SHR
REPZ
SHR
JNB

LOOP2X:

NEAR
cX,2

cX

CX,DX
AX,DX
cx,1
MOVSW
AX,1
NEXT_LINE

SI,SORC_INC
DI,DX

BX

LooP2

BX,LINE_CNTR
cX
BX,0

GTBLK_DONE

SI,SORC_INDX2

DI,DEST_INDX2

SI1,02000H
LooP1

RET

ENDP

NEAR
cX,2

cX

CX,DX

cX

AX,CX

CX,1

MOVSW

AX,1
ADJUST_LAST
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INITIALIZE THE OUTSIDE COUNTER.

STORE THE OUTSIDE COUNTER.
INITIALIZE THE BYTES COUNTER.
STORE IT IN AX ALSO.

CX = CX/2 = NO. OF WORDS.

MOVE AS WORDS.

IF THE NO. OF BYTES WAS EVEN
THEN GO TO DO THE NEXT LINE.
NO. OF BYTES WAS ODD SO WE HAVE
TO MOVE THE LAST BYTE.

INCREMENT SI AND DI BY SORC_INC.

IF THEIR IS MORE LINES START AGAIN.

REINITIALIZE BX TO THE NO. OF Y
LINES IN THE SECOND BANK.
RESTORE THE ROUND COUNTER.

DOES THE SECOND BANK HAVE ANY
LINES ?

IF NOT, THEN THE BLOCK HAS ONLY
ONE Y LINE AND WE ARE DONE.
ELSE, THE 2ND BANK HAS LINES SO
CONTINUE.

SI POINTS TO THE OFFSET IN THE
SECOND BANK.

DI POINTS TO THE 2ND LINE IN THE
BUFFER

GHANGE FROM EVEN TO ODD BANK
OR VICE VERSA.

DX
SO

DID NOT INCLUDE THE LAST BYTE
DO THE LAST BYTE OF ADJUST_LAST.
CX = DX = XLENGTH.

XLENGTH/2 (- 0/1 BYTE).

&

cX

IF
DX

XLENGTH WAS EVEN THEN MOVING
BYTES IS DONE, GO TO ADJUST_LAST



LODSB
STOSB
ADJUST_LAST:
LODSB
MOV
AND

STOSB
NEXT_LINEX:
ADD
ADD
DEC
JNZ
NEXT_BANKX:
MOV
POP
CMP
JBE
MOV
MOV
CHANG_ORGX:
XOR
LOQP
GTBLKX_DONE:
GTBLKX

GTXBLKX PROC

MOV
XLOOPL:
PUSH
MOV
MOV
DEC

XLOOP2:

JZ
LODSW
XCHG

XLOOP3:

SHR
STOSB

CL,ES:LAST_MASK

AL,CL

SI,SORC_INC
DI,DX

BX

LOOP2X

BX,LINE_CNTR
cX

BX,0
GTBLKX_DONE
SI,SORC_INDX2
DI,DEST_INDX2

SI,02000H
LOOP1X
RET

ENDP

NEAR

cX,2
cX
CL,SHFT_RGT

CH,DL
CH

XLAST_BYTE
AH,AL

AX,CL

312

-e we

we we we we we we

we ws we we we we we

-e e ws we we

-e @wo we we

DX WAS ODD SO WE STILL HAVE TO MOVE
ONE MORE BYTE.

LOAD THE LAST BYTE FROM THE SCREEN.
SET TO O THE BITS WE DO NOT WANT.
COPY THE BITS, FILL FROM LEFT TO
RIGHT.

STORE THE RESULT IN THE LAST BYTE
OF THIS LINE.

BEFORE INCREMENTING DL WE HAVE

DX = THE NO. OF BYTES EXCEPT

THE LAST BYTE 0 <= ( DX = XLENGTH )
<= 79 SO DL = DX = XLENGTH - 1.

NOW WE HAVE DL = XLENGTH + 1,

DL = 1 IF ONLY THE LAST BYTE TO BE
PROCESSED. ( 1 <= DL <= 80. )

IF DX WAS ORIGINALLY 0 (i.e. WE
HAVE ONLY ONE BYTE, WHICH IS THE
LAST ONE) THEN WE HAVE TO MOVE ONLY
THIS LAST BYTE SO GO TO LAST_BYTE.

LOAD A WORD FROM THE SCREEN.

SHIFT IT TO THE RIGHT TILL THE
DESIRED BYTE FITS INTO AL.

STORE THIS BYTE INTO THE BUFFER.
SI WAS INCREMENTED BY 2 TO GET



DEC
DEC
JNZ
XLAST_BYTE:
LODSW
XCHG
SHR
AND
STOSB
DEC
XNEXT_LINE:
ADD
ADD
DEC
JNZ
XNEXT_BANK:
MOV
POP
cMp
JBE
Mov
MOV
CHNG_XORG:
XOR
LoOP
GTXBLK_DONE:
GTXBLKX
TEXT

END

/ N ———ra—— e ————

PUBLIC MASK1,

DGROUP GROUP

313

BYTES 3,4 (i.e. WE GOT 1,2).

H
SI s SO DECREMENT SI
CH ; IF THE BLOCKS ARE DONE THEN END
XLOOP3 ;y THE LOOP, IF NOT LOOP AGAIN.
AH,AL
AX,CL

AL,ES:LAST_MASK
S1

SI,SORC_INC
DI,DX

BX

XLOOP2

BX,LINE_CNTIR
cX

BX,0
GTXBLK_DONE
SI,SORC_INDX2
DI,DEST_INDX2

SI,02000H

XLOOP1

RET

ENDP

ENDS >

13.12. File Puth.asm

_PUT, FIND_PARAMS_P

_BSS,_DATA

ASSUME DS :DGROUP

EXTRN __CHKSTK:NEAR

_DATA SEGMENT word public 'DATA'

MASK1 DB ?
DB 07FH,03FH,01FH,00FH,007H,003H,001H
EVEN

MASK3 DW 07F80H,0FFBFH,0FF9FH,0FF8FH,0FF87H,0FF83H
DW OFF81H,0FF80H,03FCOH,0FFDFH,0FFCFH,O0FFC7H
DW OFFC3H,0FFClH,0FFCOH,07FCOH,01FEQH,OFFEFH
DW OFFE7H,0FFE3H,0FFELH,O0FFEOH, 07FEOH, 03FEOH
DW OOFFOH,OFFF7H,0FFF3H,0FFF1H,0FFFOH,07FFOH
DW 03FFOH,01FFOH,007F8H,0FFFBH,OFFF9H,0FFF8H
DW 07FF8H,03FF8H,01FF8H,00FF8H, 003FCH,OFFFDH
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DW OFFFCH,07FFCH,03FFCH,01FFCH,00FFCH,007FCH
DW 001FEH,OFFFEH,07FFEH,03FFEH,01FFEH, OOFFEH
DW 007FEH, 003FEH
EVEN
PTMODSET DB 0
_DATA ENDS
_BSS SEGMENT word public 'BSS'
EVEN
STRNG_MASK
DW ? STRNG_MASK AND LAST_MASK ARE

INITIALIZED IN "FINDPARAMS"

,

LAST_MASK ; FROM THE VALUES IN MASK3

DW ? ; RESPECTIVELY.

; THEY ARE USED IN THE XBLOCK CASE.

RIGHT_MASK ; TO BE INITIALIZED IN

DB ? ; "FINDPARAM'", FOR THE CASE OF

s "BLOCKX'", FROM VALUES IN ''MASK1",

LT2 DB ?

LT3 DB ?

BITI DW ?

RT1 DB ?

ADJST1 DB ?

LT4 DB ?

_Bss ENDS

IX0 EQU [BP+4]

YO EQU [BP+6]

BUFFER EQU {Bp+8]

DEST_INC EQU [BP-2]

SORC_INDX2 EQU [BP-4]

DEST_INDX2 EQU [(BP-6]

LINE_CNTR_P EQU (BP-8]

SHFT_LFT EQU [BP-10]

BANK EQU [BP-12] ; BANKS COUNTER.

X0 EQU [BP-14]

ODDORG=02000H
_TEXT SEGMENT BYTE PUBLIC 'CODE'
ASSUME CS:_TEXT

_PUT PROC NEAR
PUSH BP
MOV BP,SP
MOV AX, 14
CALL  __chkstk
PUSH DI
PUSH SI
PUSH ES
PUSH DS

PUSH AX



PUSH
PUSH
PUSH
GETSC_MODE:
MOV
INT
CMP
JNE
Mov
MOV
MOV
MOV
MOV
MoV
JMP
HIGH_RES_P:
CMP
JNE
Mov
MOV
MOV
MOV
Mov
MOV
JMP
NOT_GRAPH_P:
JMP
FIND_PARAMS_P:
CALL
MOVE_SETUP_P:
MOV
SUB
MOV
MOV
SHR
MoV
MOV
MUL
MOV
ADD
MOV
AND
Jz
ADD
MOV
ORG_EVEN_P:
ADD
MOV
MOV
ADD

BX
cX
DX

AH,15

16

AL,4
HIGH_RES_P
RT1,2
LT2,1
LT3,5
BIT1,3
ADJST1,16
LT4,2
FIND_PARAMS_P

AL, 6
NOT_GRAPH_P
RT1,3

LT2,0

LT3,4

BITL1,7
ADJST1,0
LT4,1
FIND_PARAMS_P

PUT_DONE
FINDPARAM_P

AX,80

AX,DX
DEST_INC,AX
AX, YO

AX,1

BL, 80

DI,DX

BL

DX, DI

AX, X0

BX, YO

BX,1
ORG_EVEN_P
AX,ODDORG
BX, 80
MOV
AX,BX
DEST_INDX2,AX
AX,SI

AX,DX

DI,AX
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.
?

e

DEST_INC = 80-SIZE ( = SCREEN_INC.)

BX =0 OR 80.



MOV
MOV
MOV
SHR
MoV
AND
ADD

CMP
JBE
MOV
MOV
MOV
CHOOSE_P:
JCXZ
CMP
JNZ
G_RIGHT_BAD_P:
CALL
JMP
G_LEFT_BAD_P:
CMP
JNZ
CALL
JMP
X_ERROR_P:
JMP
Y_ERROR_P:
JMP
G_ALL_OK_P:
CALL
PUT_DONE:
POP
pop
POP
POP
POP
POP
POP
POP
MOV
POP
RET

PUT ENDP

FINDPARAM_P
MOV
LODSW
MOV
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SORC_INDX2,AX
AX,LINE_CNTR_P
BX, AX

AX, 1
LINE_CNTR_P,AX
BX,1

BX, AX

BX,0
Y_ERROR_P

BYTE PTR BANK, 2

AX,0B800H
ES,AX

G_ALL_OK_P
CcX,1
G_LEFT_BAD_P

PUTBLKX
PUT_DONE

cXx,2
X_ERROR_P
PUTXBLKX

_ PUT_DONE

PUT_DONE
PUT_DONE
PUTBLK

DX
cX
BX
AX
DS
ES
SI
DI
SP,BP
BP

PROC NEAR
SI,BUFFER

DI,AX

e we wa we we

we wes we wa

AX = NO. OF Y LINES IN THE SECOND
BANK. STORE IT IN THE LINE COUNTER.
IF "YLENGTH'" WAS ODD THEN BX = 1,
HENCE THE FIRST BANK HAS ONE MORE
LINE THAN THE SECOND.

INITIALIZE THE BANKS COUNTER.

SI POINTS TO THE BUFFER.

DI HERE IS USED AS A GENERAL
REGISTER. LET DI="XLENGTH" (PELS).



LODSW

MoV
MoV
Mov

SHR
MOV
SHR
MoV
MoV
AND

JNZ

AND
JNZ
SUB
RET
RIGHTX_P:
MoV
SHL
Mov

MOV
INC
MOV
RET
LEFT_BAD_P:

Mov
INC
SUB
MoV
SHL
MoV
AND
JZ
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LINE_CNTR_P,AX
DX,DI
CL,RT1

DX, CL
AX,IX0
AX,CL
X0,AX
BX, IX0
BX,BIT1

LEFT_BAD_P

DI,BITI
RIGHTX_P
CcX,cX

CL,LT2
DI,CL
AL,MASK1 [pI]

RIGHT_MASK,AL
DX
cX,1

AX,BIT1

AL

AL,BL

CL,LT2

AL,CL
SHFT_LFT,AL
DI,BITI
SET_LST_MSK_P

we we we
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LET "LINE_CNTR" HOLD THE TOTAL NO.
OF Y LINES, i.e. "YLENGTH".
DX = "XLENGTH" (PELS).

LAST TWO BITS SPECIFY THE EXTRA
PELS. GET RID OF THEM.

DX = "XLENGTH" (-1 IF WE HAD
EXTRA PELS.)

BX PELS OF X0 (i.e. BX = 0,1,2,3.)

IF THE BLOCK DID NOT START AT PEL 0O
(i.e. WITHIN BYTE) GO TO LEFT_BAD_P
DI = NO. OF EXTRA PELS

(0,1,2 OR 3 PELS.)

EXTRA PELS ? IF SO, GO TO RIGHTX_P.
NO EXTRA PELS ( DI=0. )

NOTE THAT RIGHT_MASK IS A BYTE, BUT
LAST_MASK IS A WORD ( THIS
LAST_MASK DIFFERS FROM THE ONE USED
IN "GET" FUNCTION. )

SHFT_LEFT SHIFTS A BYTE FROM THE
BUFFER IN AX TILL IT STARTS AT THE
PEL WERE X0 ( OR THE BLOCK )
STARTS. STRNG_MASK WILL ZERO THE
BITS OF A COPY OF THE SCREEN
CORRESPONDING TO THIS BYTE.
"ORING" AX AND THE MASKED WORD
GIVES US THE CORRECT WORD TO

PUT ON THE SCREEN.



INC

SET_LST_MSK_P:

DEC
MoV
SHL

ADD
MoV
SHL
MoV

MOV
MoV
MOV
MOV
END_FIND_P:
FINDPARAM_P

PUTBLK

LOOP1:

LOOP2_P: MOV
MoV
SHR
REPZ
SHR
JNB

LODSB
STOSB

NEXT_LINE_P:
ADD
ADD
DEC
JNZ
NEXT_BANK_P:
MOV
CMP
JZ
Mov
MOV
CHNG_ORG_P:
XOR
DEC
JNZ
PUTBLK_DONE:
PUTBLK

PUTBLKX
LOOP1X_P:

DX

BX
CL,LT3
BX,CL

BL,ADJST1
CL,LT4
DI,CL

AX,MASK3[BX+DI]

LAST_MASK, AX
AX,MASK3 [BX]
STRNG_MASK, AX
cX,2
RET
ENDP
PROC NEAR
CX,DX

AX,DX

cx,1

MOVSW

AX, 1
NEXT_LINE_P

DI,DEST_INC
SI,DX

BX

LOOP2_P

BX,LINE_CNTIR_P

BX,0
PUTBLK_DONE
DI,DEST_INDX2
SI,SORC_INDX2

DI,02000H
BYTE PTR BANK
LOOP1

RET

ENDP

PROC NEAR
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BX <= 7%16 =112 SO WE CAN USE BL
INSTEAD OF BX.

THE LAST_MASK HAS ZERO BITS
STARTING AT THE PEL OF X0

( DEFINED BY BX. ) AND CONTINUES
FOR THE NO. OF EXTRA BITS

( DEFINED BY DI. )



LOOP2X_P:
MOV
DEC
Jz
MOV
SHR
REPZ
SHR
JNB
LODSB
STOSB

ADJST_LASTX_P:

LODSB
MOV
AND
OR
STOSB
NEXT_LINEX_P:
ADD
ADD
DEC
JNZ
NEXT_BANKX_P:
MOV
CMP
Jz
MOV
MOV
CHNG_ORGX_P:
XOR
DEC
JNZ
PUTBLKX_DONE:
PUTBLKX
PUTXBLKX
MOV
XLOOP1_P:
MOV
PUSH
DEC

JZ
XLOOP2_P:

CX,DX

CX
ADJST_LASTX_P
AX,CX

cx,1

MOVSW

AX,1
ADJST_LASTX_P

AH,ES:{DI]
AH,RIGHT_MASK
AL, AH

DI,DEST_INC
SI,DX

BX

LOOP2X_P

BX,LINE_CNTR_P
BX, 0
PUTBLKX_DONE
DI,DEST_INDX2
SI,SORC_INDX2

DI,02000H
BYTE PTR BANK
LOOP1X_P

RET

ENDP

PROC NEAR
CL,SHFT_LFT

CH,DL

DX
CH

XLAST_BYTE_P
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WE DO NOT CHECK IF LAST BYTE IS
FULL BECAUSE THAT CASE IS HANDLED
IN "BLOCK" AND NOT "'BLOCKX".

WE DID NOT NEED THIS IN '"BLOCKX"
BECAUSE REP_STRING WILL TAKE CARE
OF IT AS FOLLOWS : DX=0 SO "REPZ"
WILL NOT MOVE ANYTHING. SINCE ZERO
IS AN EVEN NUMBER THE PROGRAM WILL
JUMP TO THE NEXT LINE WITHOUT
MOVING AN EXTRA BYTE.



XOR
LODSB
SHL
XCHG
MOV
AND
OR
STOSW
DEC
DEC
JNZ
XLAST_BYTE_P:
XOR
LODSB

SHL
XCHG

MOV
AND

OR

STOSW
DEC

NEXT_XLINE_P:
ADD
POP
ADD
DEC
JNZ
XNEXT_BANK_P:
MOV
CMP
JZ
MOV
MOV
CHNG_XORG_P:
XOR
DEC
JNZ
PUTXBLK_DONE:
PUTXBLKX
_TEXT

AH, AH

AX,CL
AH,AL
DX,ES:{DI]
DX, STRNG_MASK
AX,DX

DI
CH
XLOOP2_P

AH,AH

AX,CL
AH,AL

DX,ES:[DI]
DX, LAST_MASK

AX,DX

DI

DI,DEST_INC
DX

SI,DX

BX
XLOOP1_P

BX,LINE_CNTR_P
BX,0
PUTXBLK_DONE
DI,DEST_INDX2
SI,SORC_INDX2

DI,02000H
BYTE PTR BANK
XLOOP1_P

RET

ENDP

ENDS

END
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END puth.asm -—-—-===---=o—cmemmm o

FILL AH WITH ZEROS.

AL = BYTE FROM THE BUFFER THAT NEED
TO BE PUT ON THE SCREEN STARTING AT
THE PEL XO.

THE SHIFT WILL PUT IT IN AX AT

THE SAME PLACE. THE OTHER BITS IN
AX WILL BE ZEROS.

DX = ZEROS IN THAT PART OF THE
BYTE, OTHER BITS ARE SET TO ONES.
AX = NEW SCREEN WORD. PUT IN
PLACE WITHOUT CHANGING OTHER BITS.
PUT THE WORD ON THE SCREEN.

ADJUST DI TO PUT THE NEXT BYTE.

( SAY DO WORD 1+1/2 INSTEAD OF
WORD 2. )

% /
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13,13, File Swap.asm

; SWAP LOW AND HIGH BYTES IN EACH WORD

NAME
TITLE
DGROUP GROUP

SWAP

SWAP BYTES IN EACH WORD
_DATA

CONST, _BSS,
ASSUME (S: _TEXT, DS: DGROUP, SS: DGROUP, ES: DGROUP

PUBLIC _swapbyts

FROMADDRS
TOADDRS
WORDCONT
_TEXT
_swapbyts
PUSH
MOV
PUSH
PUSH
MoV
MoV
MoV
LOOPL:
LODSW
XCHG
STOSW
LOOP
POP
POP
MOV
POP
RET
_swapbyts
_TEXT ENDS
END
/a'c ————————————

EQU [BP+4]
EQU [BP+6]
EQU [Bp+8]
SEGMENT

PROC NEAR
BP

BP,SP

DI

SI

CX,WORDCONT
SI,FROMADDRS

DI,TOADDRS

AH, AL

LOOP1
SI
DI
SP.BP
BP

ENDP

“e We Wwe we We W We ws ws ws we

PARAMETERS PASSED.

SAVE REGISTERS.

PUT THE NUMBER OF WORDS TO BE

SWAPPED IN CX.

SOURCE OPERAND IS ADDRESSED BY SI.

DESTINATION OPERAND IS
ADDRESSED BY DI.

LOOP UNTIL THE NUMBER OF WORDS
IN CX BECOMES ZERO.

TRANSFER A WORD FROM THE
SOURCE [( sI)] TO AX, THEN

LET SI=SI+2,

SWAP THE LOW AND HIGH BYTES

TRANSFER A WORD OPERAND FROM
AX TO DESTINATION ( DI )
THEN LET DI=DI+2.

FIRST LET CX=CX-1 THEN
IF CX=0, EXIT LOOPIL.
RESTORE THE REGISTERS.
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13.14 File Mtchbts.asm

NAME MTCHBITS
TITLE TO MATCH PASSED BITS TO A PATTERN IN APPROPRIATE ARRAYS.
DGROUP GROUP  CONST, _BSS, _DATA

ASSUME CS: _TEXT, DS: DGROUP, SS: DGROUP, ES: DGROUP
_DATA  SEGMENT WORD PUBLIC 'DATA'
EXTRN _LEFTBITSWORD:WORD
_DATA  ENDS
PUBLIC _match_all_bits
WORD EQU [(BP+4] ; PASSED PARAMETERS.
COLORARRAY EQU [BP+6]
CODEARRAY EQU [BP+8]
GROUPARRAY EQU [BP+10]
CLRBITSPTR EQU [(BP+12]
CODEBITSPTR EQU [(BP+14]
GROUPCOUNT EQU [BP-2]
_match_all_bits PROC NEAR

PUSH BP

MoV BP,SP

PUSH DI

PUSH SI

PUSH ES

.PUSH DS

POP ES

MOV DI, COLORARRAY

MOV BX, GROUPARRAY

MoV DX, [BX] ; PUT THE NUMBER OF GROUPS IN THE

; COUNTER DX.

LOOP1:

ADVANCE INDEX (BX) TO THE FIRST
ELEMENT OF PAIRS IN "GROUPARRAY".
GET THE LENGTH IN BITS OF THE
CODES TO LOOK FOR.

MULTIPLY BY 2 TO GET THE INDEX
OF THE MASK IN BYTES SINCE

MASK IS AN ARRAY OF UNSIGNED
NUMBERS ( i.e. WORDS )

COPY THE WORD WE ARE LOOKING FOR.
"LEFTBITSWORD" IS THE MASK. IF
SI IS EQUAL TO 3 FOR EXAMPLE
THEN ONLY THE 3 MOST LEFT

BITS ARE NOT MASKED WHILE THE
REMAINING BITS ARE SET TO ZEROS.
AND AX,_LEFTBITSWORD[SI]

ADD BX,2 ; ADVANCE '"GROUPARRAY" INDEX TO

3 GET THE SECOND ELEMENT OF THE

;

]

ADD BX,2

MoV SI,[BX]

SHL SI,1
MOV AX,WORD

“e we wWs we we We WE W we Wwe WE we wh we

CURRENT PAIR WHICH TELLS THE NUMBER
OF CODES IN '"COLORARRAY'" THAT



MOV

REPNE

JNE

MoV
MOV
MOV

SUB
MOV
MOV
MOV
MoV
MOV
JMP
NO_MATCH:
DEC

JNZ
SUB
POP
POP
POP
MOV
POP
RET
_match_all_bits
_TEXT

DONE:

-t o o o

cXx, [Bx]

SCASW

NO_MATCH

AX, [BX~2]
SI,CODEBITSPTR
{s1],ax

DI,COLORARRAY
BX, CODEARRAY

AX, [BX+DI-2]

SI,CLRBITSPTR
[s1],AX

AX,1

DONE

DX

LOOP1
AX,AX
ES
SI
DI
SP,BP
BP

ENDP
ENDS
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HAS THE SAME NUMBER OF BITS.

KEEP SCANNING FOR A MATCH

WITH THE WORD IN AX UNTIL MATCHED
OR CX IS DECREMENTED TO ZERO.

z=0 MEANS THAT CX WAS

DECREMENTED TO ZERO AND THUS

NO MATCH OCCURRED.

BY REACHING THIS POINT THE

z FLAG WAS NOT SET TO ZERO

AND THUS A MATCH OCCURRED.

SO THE LENGTH OF THE CODE IS
RETURNED IN THE WORD POINTED

TO BY "CODEBITSPTR".

TO GET THE INDEX OF THE MATCHED
PATTERN IN '"COLORARRAY' SUBTRACT
THE CURRENT POSITION FROM THE BASE
OR THE HEAD OF THE ARRAY.

FIND THE CODE IN "CODEARRAY'" OF
THE SAME INDEX IN "COLORARRAY".
THE RUN LENGTH IS RETURNED IN THE
WORD POINTED TO BY "CLRBITSPTR'".
THE RETURNED VALUE OF FUNCTION = 1.

DECREMENT THE GROUPS COUNTER
IF THERE ARE MORE GROUPS

GO TO LOOP1 TO PROCESS THEM.
RETURNED VALUE OF FUNCTION = 0.
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14. APPENDIX C. PROGRAM LISTINGS OF THE CODE OF THE

CCITT TWO DIMENSIONAL COMPRESSION TECHNIQUE
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The files in this listing make use of the files in the following
sections:
- Appendix B: 13.4, and 13.7. - 13.14.

14.1. File Main.c

/ ¥
% The heading and comments are the same
* as those in file main.c appendix B section 13.1.

¥ /
#include <stdio.h>
#include <memory.h>
#include <dos.h>
#include <io.h>
#include <fentl.h>
#include <malloc.h>
fidefine LINT_ARGS
fdefine SCREENSIZE 16384
fdefine XMAX 640
fdefine YMAX 200
ffdefine HI_RES 6
fidefine TEXT_MODE 3
fdefine ulong unsigned long
void get(int,int,int,int,char *);
unsigned cmprs_line(char *);
float get_avgfactor();
void print_results( char *, unsigned, unsigned, unsigned,
unsigned, unsigned, unsigned, float);
static int x1l,yl,x2,y2;
char datafile(41];
static char scrfilebufr(4+(XMAX/8)*(YMAX)];
static unsigned emprsbufr [XMAX] [ (YMAX+32)/161;
static char *uncmprsbufr;
main(argc,argv)
int argc;
char rargvi];
{
unsigned xsizeinbytes,xsize;
register unsigned i,ysize;

if( arge < 6 )
{
printf("enter x1 yl x2 y2 \n");
scanf("%d %d %d %d",&xl,&yl,&x2,&y2);
while((getchar())!='\n")
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}
else
{
xl=atoi(argv(2]); yl=atoi(argv(31);
, x2=atoi(argv(4]); y2=atoi(argv([5]);

if( arge > 1)
strepy( datafile, argv(l] );
/* Read the data from the input ¥/

init_screen(arge); /% file and dump it to the %/
/% screen. s/

uncmprsbufr= scrfilebufr;

uncmprsbufr+=4; /% Skip over "xsize" and "ysize'"’*/

get(xl,yl,x2,y2,(char *)scrfilebufr);

for(i=0;i<=2000;i++) ; /% A delay loop. =/

setscmode ( TEXT_MODE) ;
ysize=y2-yl+l;
Xsize=x2-x1+1;
xsizeinbytes= (xsize/8)+((xsize%8)>0) ;
/* First two numbers in the ¥/

*(unsigned *)scrfilebufr=xsize; /% "screenfilebufr' represent %/
/* the width and the height of */
/* the block. %/

*(unsigned *)(scrfilebufr+2)=ysize;
printf("starting to compress ");
init_cmprsdblk((unsigned *)cmprsbufr);
init_uncmprsdblk((scrfilebufr+4),xsize,ysize);
init_line_parm(xsize);
cmprs_blk_2d();
memset((scrfilebufr+4),'\0',16000);
printf(" starting to decompress \n");
init_dcmprsbfr((scrfilebufr+4),xsize);
init_cmprs(cmprsbufr);
init_dcmprs_blk_2d(xsize,ysize,scrfilebufr+4);
demprs_blk_2d();

/% 1f no argument was entered */

if( argec < 2 ) /% at the command line then */
/* display the data to the %/
/% screen. ¥/

setscmode(HI_RES);
put(xl,yl,scrfilebufr);
getchar();
setscmode( TEXT_MODE) ;
}
print_results( datafile, x1, yl, x2, y2, get_cmprstime(),
get_dcmprstime(), get_avgfactor() );

ettt END MAIN -—---=--=-=--——mmommeoo——eoo oo ¥/
[dmmm e e END main.c —-—=-—===--—==-—=------me—o—o i/



/ %
%

¥

¥ /

#include <stdio.h>

#include <v2tov3.h>

#include <malloc.h>

#include <memory.h>
/% "KFACTOR"-~1 = maximum number
/% of lines coded in the 2-d
/% code after coding in the 1-d.

fdefine KFACTOR 2

ffdefine BLACKCHAR 0’

fidefine WHITECHAR "

fdefine BLACK 0

fidefine WHITE 1

fidefine switch_a0_al_colors {tmpcolorchar=aOcolorchar;\

aOcolorchar=alcolorchar;\
alcolorchar=tmpcolorchar ;}

unsigned gttime();

float get_avgfactor();

unsigned get_cmprs_resit();

unsigned cmprs_line_1d();

void set_cmprscontr_to_zero();

void init_uncmprsdblk(char *, unsigned, unsigned);

void update_cmprsdblk(unsigned, int);

void updt_cmprsblk_code(unsigned, int);

static unsigned *uncmprsdwordptr;

static unsigned nmbrlines,xsize,xmaxplsl;

static unsigned evenxsize,xsizeinbytes;

static unsigned cmprstime;

static char *prvslinestart;

static unsigned long totalcmprsbits = 0O;

/% === CMPRS_BLK_2D

/% This function compresses a block of the screen using MREAD

/ ¥
/ %
/%
/ %
/ ¥
/ ¥
/ ¥
/ Eid

327

14.2. File Cmprs2d.c

Refer to file "cmprsln.c" in appendix B section 13.2
for comments on functions and variables.

standard. For complete description of the details of MREAD see

section 4.3. Each line is assumed to be from pel 1 to pel

"xsize", Pel Q0 is an imaginary pel before the line. Pel

"xmaxplsl" is an imaginary pel after the line.

Black changing element means first black pel after a run of

white pels.

a0 : The reference or starting changing element in the coding
line. At the start of the coding line, a0 is initialized

% /
S /
% /

3% /
% /
% /
b /
b /
%/
% /
¥ /
¥ /
% /



/% to an imaginary black changing element at pel 0. %/
/% al : The next changing element to the right of a0 on the coding */
/% line. This has an opposite color of a0. */
/% a2 : The next changing element to the right of al on the coding */
/% line. %/
/% bl : The next changing element on the reference line to the ¥*/
/% right of a0 and having the same color as al. */
/% b2 : The next changing element on the reference line to the 3/
/% right of bl. ¥/
/% If any of the coding elements al, a2, bl, b2 is not detected ¥/
/% at any time during the coding of the line, then it is set to */
/% pel "xmaxplsl". *
/:'t === :':/
void cmprs_blk_2d()

{

unsigned i,js /% Loop counters. %/
char *refrenceline;

char *codeline;

char *tmpptr;

register unsigned a0,al;

unsigned bl,b2,k;

unsigned a2,alal,ala2;

unsigned tstart,tend;

int alcolor,alcolor, tmpcolor;
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char

tstart=gttime();
refrenceline=malloc{xsize+2);
codeline=malloc(xsize+2);

alcolorchar,alcolorchar,tmpcolorchar;

/ b
/ ¥
/ %
/ %
/%

/¥
/%

refrencelinel0]=BLACKCHAR; /%

for(i=1; i <= nmbrlines; i++) /%

if(k t=0)
{

/ %

/%
/ ¥
/e

set_cmprscontr_to_zero();
swapbits_to_string(uncmprsdwordptr,codeline+l,xsize);
swapbits_to_string(prvslinestart,refrenceline+1,xsize);

a0 = 0;
alcolor

char=BLACKCHAR;
/ %

k should be set to zero  */
before we enter the loop */
and thus the first line %/
( reference line ) would %/
be One-Dimensionally coded. */

This initialization is needed*/
so that the first search for */
bl works correctly. i/
Keep looping wuntil all the */
lines in the page or the =/
screen are processed. %/
Is this line to be 2~d coded 7%/
Line should be 2~d coded. %/

Loop while not end of line. */
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while( a0 < xmaxplsl )
{ /% Detect "alcolor". %/
alcolorchar = ( aOcolorchar == WHITECHAR ?
BLACKCHAR : WHITECHAR);
/% Detect al. o/
/% To detect al, a2, bl, and b2 ¥/
/% we equate the number of bytes/
/% we search to ( "xmaxplsl" - =/
/% index of the lst byte to be */
/% searched.) This is equivalents/
/% to [(xsize-index of lst byte */
/* to be searched ) + 1 . %/
if (tmpptr=memchr(&codelinela0+1]),alcolorchar,
xmaxplsl-a0))
al=tmpptr-codeline;

else
al=xmaxplsl;
while(1)
{
/% Detect bl. %/
if( refrencelinela0] == alcolorchar )
{
/% Pel refrencelinelal]l has %/
/% the same color as al then pelx/
/% refrencelinela0+1] can't *f
/% be a changing element of ¥/
/% "alcolor'". Hence : */
/% (1) search for the first %/
/% changing element of "aOcolor'":/
if (tmpptr=memchr(&refrencelinela0+11],
{ aOcolorchar,xmaxplsl-a0))
/* (2) search for the first */
/% changing element of "alcolor'"x/
/% after "tmpptr". *f
bl=tmpptr-refrenceline;
if(tmpptr=memchr(tmpptr+l,alcolorchar,
xmaxplsl-bl))
bl=tmpptr-refrenceline;
else
bl=xmaxplsl;
}
else
bl=xmaxplsl;
}
else
{

/% Pel refrenceline(a0] has the */
/% same color as a0, then pel */
/* refrencelinela0+1] can be a %/



330

/* changing element of "alcolor's/
/* Hence find it. *f
if(tmpptr=memchr(&refrencelinela0+11],
alcolorchar,xmaxplsl-a0))
bl=tmpptr-refrenceline;
else

}

bl=xmaxplsl;

/% Detect b2. */
if(tmpptr=memchr(&refrencelinel[bl+1],
aOcolorchar,xmaxplsl-bl))
b2=tmpptr-refrenceline;
else
b2=xmaxplsl;
/% If b2 < al then we have to
/% do pass mode coding. Thus
/% this mode is identified when *
/% the position of b2 lies to
/% the left of al. The purpose
/% of this mode is to identify
/% the white or black runs on
/% the reference line which are *
/% not adjacent to the corres-
/% ponding white or black runs
/* on the coding line.

.
=

O b b e

if( b2 < al )
{ updt_cmprsblk_code(0x1,4); a0=b2;}

{
if(abs((int)al-(int)bl)<=3)
{ /% Vertical mode coding : when
/% this mode is identified, the *
/% position of al is coded
/* relative to the the position *
/* of bl. The relative distance */

else

I

/% albl can take one of seven ¥/
/% values each of which is s/
/* represented by a separate /
/% codeword. x/
switc?((int)(al-bl))
/% al to the left of b2 by */
/% 3 bits. %/
case -3:{
updt_cmprsblk_code(0x2,7);
break;
}
/% al to the left of b2 by */
/% 2 bits. %/

case -2:1
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updt_cmprsblk_code(0x2,6);

break;
}
/% al to the left of */
/% b2 by 1 bits. #*/
case -1:{
updt_cmprsblk_code(0x2,3);
break;
}
/% al just under bl. s/
case 0:{
updt_cmprsblk_code(0x1,1);
break;
}
/% al to the right of =/
/% b2 by 1 bit, %/
case 1:{
updt_cmprsblk_code(0x3,3);
break;
}
/% al to the right of =/
/% b2 by 2 bits. %/
case 2:{
updt_cmprsblk_code(0x3,6);
break;
}
/% al to the right of =/
/% b2 by 3 bits. =/
case 3:{
updt_cmprsblk_code(0x3,7);
break;
}
default:printf(
"error in vertical \n");
}
al=al;
;witch_ao_al_colors /% =-=- MACRO --- */
{ /% Horizontal Mode Coding :  */

/ ¥
/ ’
/ ¥
/%
/ b3
/ ¥

If the vertical mode coding */
can't be used to code the */
position of al, then its %/
position must be coded by */
the horizontal mode coding. */

Detect a2. */

if(tmpptr=memchr(&codelinelal+1],

else

aOcolorchar,xmaxplsl-al))

a2=tmpptr-codeline;
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a2=xmaxplsl;
alal=al-al;

/% If the horizontal mode coding¥*/
/% is used to code the first */
/% element on the coding line, */

/% then the wvalue of a0al is */
/% replaced by a0al-1 to ensure */
/% that the correct run-length s/
/% value is transmitted, becausei/
/% the first element was not %/
/% real but an imaginary black */
/% changing element. *f
if( a0 == 0 )
alal -=1;
/* Flag 'codeword" of the %/
/% horizontal mode = '0001'. =/

updt_cmprsblk_code(0x1,3);
update_cmprsdblk(a0al,
aOcolorchar-BLACKCHAR);
update_cmprsdblk(a2-al,
alcolorchar-BLACKCHAR);
al=a2;

break;

}
k-—3

totalcmprsbits+=get_

cmprs_reslt();

uncmprsdwordptr = (unsigned *)

) ((char +*)uncmprsdwordptr + xsizeinbytes);
else
{ /% k = 0, so the current Lline */
/% should be coded by the */
/% One-Dimensional coding %/
/% algorithm. %/
totalcmprsbits+=cmprs_line_1d();
k = KFACTOR-1;
}

prvslinestart += xsizeinbytes
}

free(refrenceline);
free(codeline);
tend=gttime();
if(tend>tstart)

/% Update "prvslinestart" to %/
/* point to the start of the s/
/* next line. %/

cmprstime=tend-tstart;
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else

cmprstime=(6000-tstart)+tend;
}
[ == END CMPRS_2D() —=—-—-=-===—-mwmmmmme %/
/% = 4 init_uncmprsdblk == %/
/* initialize local variables. s/
/ v 7‘:/
void init_uncmprsdblk{blockstart,xsizein,ysizein)
char *blockstart;
unsigned ysizein,xsizein;
{

xsize=xsizein;

uncmprsdwordptr=(unsigned *) blockstart;

xsizeinbytes=(xsize/8)+((xsize%8)>0);

prvslinestart=blockstart - xsizeinbytes ;

nmbrlines=ysizein;

xmaxplsl=xsize+l;
/* The part of the line that */
/% corresponds to words given */

evenxsize=( ( (xsize/8) /2) *2); /* in bytes. %/
}

[H mmmm e END init_uncmprsdblk —-—==-—-==—-—m—ac——-- e/
#include <dos.h>

ffidefine LINT_ARGS

ffdefine BLACKBIT 0

#define WHITEBIT 1

fdefine ENDBITS 2

unsigned get_cmprs_reslt();

void init_lastbits(unsigned);

void init_cmprsdblk(unsigned *);

void update_cmprsdblk(unsigned, int);

void cmprs_lastbits(unsigned,unsigned,int);

void swapbyts(unsigned *,unsigned *,unsigned);

static unsigned lastbits,nmbrwords;

/;'; Cmprs_line( ) =======”t/
unsigned cmprs_line (oldlineptr)

char *oldlineptr;

{

extern unsigned **uncmprsdwordptr;

unsigned *currentword;

int wordcount;

int color,lastcolor,bitcolor;

unsigned bitcontr=0;
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register unsigned word,bitpos;

wordcount=nmbrwords; /%
set_cmprscontr_to_zero();

Initialize the variables. ¥/

swapbyts( uncmprsdwordptr, uncmprsdwordptr, nmbrwords);

word=*uncmprsdwordptr;

Is bit 16 in "word" white ? %/
Yes, bit 16 was white. */
Bit 16 was black. i/
Negate the word so we can =/
check for the new color. i/
We assume xsize >= 16, to s/
take care of xsize < 16. We */

have to modify the code here.*/
While not end of line. s/
While color is the same and */
we are still inside the w/

current word. %/

Bit position in a word. 274
Get the next bit in bit 16.

.
=
~

Still inside current word ? =/

Done with all bits in i/
current word. i/

Start again with bit 16 */
of the next word. */

If the color is black then ¥/
negate the word pointed to by*/
"uncmprsdwordptr" to check */

if ((word)&0x8000) /%
{ / %
update_cmprsdblk(0,BLACKBIT);
color=WHITEBIT;
}
else
N { / ¥
color=BLACKBIT;
/ b4
word="word; /%
}
/ b3
/ %*
bitpos=16; /%
while(color<ENDBITS) /%
{
/ k]
/ %
/%
while( (word&0x8000) && (bitpos > 0) )
{
bitcontr++;
bitpos--; /%
word=word<<l; /%
}
if(bitpos > 0) /%
{
update_cmprsdblk(bitcontr,color);
word="word;
color=(color) 20 : 1
bitcontr=0;
}
/ %*
else /%
{
bitpos=16; /%
uncmprsdwordptr++; /%
/%
/ %
/ %
/ %

for the color later.- */

word=(color) ? *uncmprsdwordptr :

~(*uncmprsdwordptr);
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/* Test for the end of the line */

/* marker. %/

if(--wordcount == 0)
{ /% Save the last color in this */
/* line. %/

lastcolor=color;
/* Signal eol to the outer loop.*/
color=ENDBITS;
}
}
}
if(lastbits == 0) /* Does the line fit in the word/
/* boundary ? %/
update_cmprsdblk(bitcontr,lastcolor);
else
cmprs_lastbits(*uncmprsdwordptr,bitcontr, lastcolor);
if(color>ENDBITS)
printf(" s%d%idkd error in color, color=%d /n'",color);

/% Return the number of bits /
return(get_cmprs_reslt()); /* in that compressed line. */
}

/% = e END cmprs_line() ~--—==--—mcemmmmmmme i/
/% init_line_param() === /
{/* Initialize some static variables to the appropriate values. wf
/7'( ———'""—‘-::':/
void init_line_parm(xsize)

unsigned Xxsize;

{

nmbrwords=xsize/16;

lastbits=xsize & 0x000f; /% Let lastbits = xsize % 16. */
init_lastbits(lastbits);

}

[¥% mmmmo e END init_line_param() -—-=-————~=-cmuo-—- *
/* get_cmprstime() = s====
unsigned get_cmprstime()

return (cmprstime) ;

}

[ —mmm e END get_cmprstime() -—==--—m=—-—mmmommome o =/
/% get_avgfactor() === === %/
float get_avgfactor()

{

¥ mmmmmmmm oo END get_avgfactor() --—-=--=-==--—=m-mmoo—- i/
[H —mmmm e mm e END emprs2d.c =—=——————m=—mmmme e i/
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14.3. File Cupdt.c

% STATIC VARIABLES :

% bitsleft : Number of bits still vacant in "cmprsword", it

¥ starts with 16 bits left in the word.

* cmprscounter : Count number of the bits in the compressed block

% which is filled from left to right.

% cmprsdwordptr: Pointer to the current word position in the

% compressed block.

¥ /
static int bitsleft;
static unsigned cmprscounter;
static unsigned *cmprsdwordptr;
/% UPDATE_CMPRSDBLK() === ====3%/
/* This is the function update_cmprsdblk( bitcounter, color), */
/% where "bitcounter'" is the number of consecutive bits of the %/
/% current color. %/
/% %/
void update_cmprsdblk(uncmprsdbitscont,color)
unsigned uncmprsdbitscont;
register int color;
{

struct FAXDATA
{

/% Code for a sequence of bits %/
/% of type color and the run- %/

/% length = the no. of the */
/* uncompressed bits. */
unsigned bits;
/* Length of the code in the */
/* bits. %/
int length;
I H
/* Initialize FAX. FAX[0][] == =/
/% black data , Fax(11[] == e/
/* white data. %/

static struct FAXDATA FAX[2][74]={ {
0x35,8, 0x7,6, O0x7,4, O0x8,4, Oxb,4, Oxc,4, Oxe,&4,
oxf,4, 0x13,5, 0x14,5, 0x7,5, 0Ox8,5, 0x8,6, 0x3,6,
0x34,6, 0x35,6, 0x2a,6, 0x2b,6, 0x27,7, Oxc,7, 0x8,7,



0x17,7,
0x18,7,
0x14,8,
0x2b,8,
0x52,8,
0x59,8,
0x34,8,
0x64,8,

0x37,10,
0x2,4,
0x7,7,
0x8,10,
0x17,11,
0x68,12,
Oxd4,12,
Oxda,l2,
0x64,12,
0x38,12,
0x2c,12,
0Oxc9,12,
Ox6d,13,

register unsigne
int

unsigned
unsigned

static unsigned

if((multiple=(un
{

bitcont=
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0x3,7, O0x4,7, 0x28,7, 0x2b,7, 0x13,7, 0x24,7,
0x2,8, 0x3,8, O0Oxla,8, O0x1b,8, 0x12,8, 0x13,8,
0x15,8, 0x16,8, 0x17,8, 0x28,8, 0x29,8, Ox2a,8,
0x2c,8, Ox2d4,8, 0x4,8, 0x5,8, O0Oxa,8, 0xb,8,
0x53,8, 0x54,8, 0x55,8, 0x24,8, 0x25,8, 0x58,8,
0x5a,8, 0x5b,8, 0x4a,8, Ox4b,8, 0x32,8, 0x33,8,
Oxlb,5, Ox12,5, 0x17,6, 0x37,7, 0x36,8, 0x37,8,
0x65,8, 0x68,8, 0x67,8%} , {

0x2,3, 0x3,2, 0x2,2, 0x3,3, 0x3,4,

0x3,5, 0x5,6, 0x4,6, 0x4,7, 0x5,7,

0x4,8, 0x7,8, 0x18,9, 0x17,10, 0Ox18,10,
0x67,11, 0x68,11, 0Ox6¢c,11, 0x37,11, 0x28,11,
0x18,11, Oxca,l12, Oxcb,12, Oxcc,12, Oxcd,l12,
0x69,12, 0Ox6a,12, 0x6b,12, 0xd2,12, 0xd3,12,
0xd5,12, 0xd6,12, 0xd7,12, Ox6¢c,12, 0Ox6d,12,
Oxdb,12, 0x54,12, 0x55,12, O0x56,12, 0x57,12,
0x65,12, 0x52,12, 0x53,12, 0x24,12, 0x37,12,
0x27,12, 0x28,12, 0x58,12, 0x59,12, 0x2b,12,
0x5a,12, 0x66,12, 0x67,12, Oxf,10, Oxc8,12,

Ox5b,12, 0x33,12, 0x34,12, 0x35,12, 0x6¢,13,
Ox4a,13} ¥ ;

d code; /% Code of the run of the pels. */
length; /% Length of the above code ¥/
multiple; /% = "uncmprsdbitscont" / 64. */
bitcont; /% Local run-length. %/

/% To get the least significant %/

maskl1=0x003f; /% 6 bits. %/

/* Is uncmprsdbitscont a %/

/* multiple of 64 ? %/
cmprsdbitscont>>6))>0)

/% Compress the multiple of *f

multiple+63; /% 64 part. e/

code=FAX[color]l[bitcont].bits;
length=FAX[color][bitcont].length;
cmprscounter=cmprscounter+length;

if ((bit

else

/% Is old bitsleft > length ? /

sleft=bitsleft-length)>0)
/% Put the new code at the *f
/% current compressed word, */

/% using the new bitsleft to put*/

/% it in the correct position . */
(*cmprsdwordptr) |=code<<(bitsleft);

/* The old bitsleft <= length. */
{ /* Negate bitsleft and put part */

/% of the code that fills the */
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/ ¥

word in the compressed word.

(*cmprsdwordptr) |=(code) >> (-bitsleft);

/* Move to a new word and put *

/¥
/ %
/ 3%

the rest of the code in a
new compressed word, filling
from the left to the right.

*(++cmprsdwordptr)=(code) <<

}
/ ¥
/¥
/ ¥*

if(multiple<10) /%

{
/ ¥
/ ¥
/ %

(bitsleft = (16 + bitsleft));

Now compress the part that
is less than 64 bits.
If the no. of bits = 640 we

skip putting the =zero part. *

bitcont is the remainder of
dividing uncmprsdbitscont by
64,

bitcont=uncmprsdbitscont & maskl;

/%
/ b

Get the corresponding code
and the code-length.

code=FAX[colorl[bitcont].bits;
length=FAX[colorl[bitcont].length;
/* Update cmprscounter by the
/% code-length.
cmprscounter=cmprscounter+length;

/ ¥
/¥
/%
/ %
/ ¥
/4

else
{ /%
/ 3
/ ¥
/%

If there are still more
unprocessed bits in the
current word then put the
compressed bits in the
corresponding part of the

% /
¥

word in the compressed buffer/
if(( bitsleft=bitsleft-length)>0 )
(¥cmprsdwordptr) |=code<<(bitsleft);

Otherwise split the code
among the current and the
next words of the compressed
buffer.

((cmprsdwordptr))|=(code) >> (-bitsleft);
(#++cmprsdwordptr)=(code) <<

}

/ 3%
/%

/ %
/ ¥
/%

(bitsleft = (16 + bitsleft));

Run-length was less than
64 bits.

Get the corresponding number
of bits and run-length
then update '"cmprscounter".

% /
% /

% /
¥* /
¥ /
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code=FAX[color][uncmprsdbitscont].bits;
length=FAX[color]l{uncmprsdbitscont].length;
cmprscounter=cmprscounter+length;
/* Same case as before. %/
if ((bitsleft=bitsleft-length)>0)
(*cmprsdwordptr) |=code<<(bitsleft);

else
{
((*cmprsdwordptr))|=(code) >> (-bitsleft);
(#++cmprsdwordptr)=(code) <<
(bitsleft = (16 + bitsleft));
t
}
}
[ e e UPDATE_CMPRSDBLK() ~===-=—====—————memm oo */
/% INIT_CMPRSDBLK() o/
/* Initializes the compression buffer pointer to the first word of */
/% space allocated, sets the compression counter to zero and starts:/
/% with the most left bit of the first word in the compressed #/
/% buffer.
/% == %/
void init_cmprsdblk(newblkptr)
unsigned *newblkptr;
{

cmprsdwordptr=newblkptr;
bitsleft=16;
cmprscounter=0;

}

[ mm e END INIT_CMPRSDBLK() —===—==-=====-mmmmmoees/

/%= updt_cmprsblk_code ========s===s=========== */

/% Updates the compression buffer 'cmprsblk' by going to the next /

/% code after the passed 'code' with 'length' of bits. *;

/ ¥ r======== ]

void updt_cmprsblk_code(code, length)

register unsigned code;

register int length;

i

cmprscounter=cmprscounter+length; /* Update "cmprscounter'. %/

if ((bitsleft=bitsleft-length)>0) /% If old bitsleft > length, i/
/% then put the new code at the */
/* current cmprsdword, using a %/
/% new bitsleft. */

(*cmprsdwordptr) |=code<<(bitsleft);
else /* Old bitsleft <= length. */

{ /* Negate bitsleft and put part =/
/* of the code that fills the =/
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/% word in the '"word". </
(*cmprsdwordptr) |=(code) >> (-bitsleft);
/% Move to a new word and put %/
/% the rest of the code, */
/% filling from the left. i/
“(++cmprsdwordptr) (code) << (bitsleft=(16 + bitsleft));
}
}
[ e End updt_cmprsblk_code ==-—=--=-—=—-e——ma———- i/
/% get_cmprs_reslt() = ==== ==%/
/% This function returns the number of compressed bits since the %/
/% last initialization of cmprscounter. %/
/% ===/
unsigned get_cmprs_reslt()
{
return(cmprscounter);
}
[mmm e END get_cmprs_reslt() -—=—----mommmmmmmmm */
/% set_cmprscontr_to_zero() === %/

/% Set_cmprscontr_to_zero() :it sets cmprscounter to zero. Uses it */
/% if you are compressing a block and want to get cmprscounter for */

/% each line alone. i/
/7‘t-— -——===7't/
void set_cmprscontr_to_zero()

{
cmprscounter=0;

}

Fmm e END set_cmprscontr_to_zero() -——-——-==c—=m-——m~x/
R — END cupdt.c -~--——=m===——mmmmmmmmmemen i/

14.4, File Dcmprs2d.c

#include <memory.h>
#include <malloc.h>
fdefine findtime(tl) {if(tend>tstart) tl=tend~tstart;\
else t1=6000-tstart+tend;}
#define update_dcmprs_code(lcolor,llength) \
{{if(lcolor) \
update_dcmprs_whitereg(llength);\
else \
update_dcmprs_blakreg(llength);}}
fidefine switchcolor {tmpcolor=alcolor;\

aOcolor=alcolor; \
alcolor=tmpcolor;}
ffdefine KFACTOR 2
#define BLACKCHAR 0"
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#define WHITECHAR '
ffdefine BLACK 0
ffdefine WHITE 1
/*

% prvslinestart : Points to the head of the previous line,
* currentword ¢ Current word of the cmprsdbufr.

* dcmprstime : Decompression time.
% xsize, ysize : Horizontal and vertical dimensions, in bits,
% of the screen block.
* xmaxplsl : Xxsize + 1,
% ymaxplsl : ysize + 1,
% xsizeinbytes : Horizontal dimension, in bytes,
* of the screen block.
*/
char *prvslinestart;
static unsigned demprstime,ysize,ymaxplsl;
static wunsigned xsize,xmaxplsl,xsizeinbytes;
unsigned currentword;
/% demprs_blk_2d ======= */
/% In this function the first line is One-Dimensionally decoded. */
/% The reference line is set to point to that line, then the i/

/% following k-1 lines are Two-Dimensionally decoded with respect ¥/
/% to the reference line which is updated to point to the previous */

/% line every time a line is decoded. %/
/* 1 3 P 7':/
void demprs_blk_2d()
{
register int i ks
unsigned tstart,tend;
char *refrenceline;
/% The reference line is the %/
/% line just before the coding */
refrenceline=malloc(xmaxplsl+l); /¥ line. %/

tstart=gttime();
/* Pointer to the previous line.*/
/% It is wupdated at the */
/% beginning of the loop L74
/* and thus it will be set to */
/% point to an imaginary line %/
/* before the first line in ¥/

prvslinestart -=xsizeinbytes; /% the screen. o/
/* Loop wuntil all lines are %/
/% processed. The first line */

for(i=1;{i < ymaxplsl; ) /% of k lines is 1-d decoded. */

demprs_line_1d(); /% One-dimensional decoding. %/
1++;
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fin
fre

/%
/*
/ %
/*
/ ¥
/ s
/ ¥
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k = KFACTOR-1;
/% Point to the previous line. */
prvslinestart +=xsizeinbytes;
/% Decode k-1 lines, after the */
/* previously 1d decoded line, */
/* the using Two-Dimensional %/
/* decoding algorithm. %/
while( kE— &% i < ymaxplsl )

swapbits_to_string(prvslinestart,
refrenceline+l, xsize);
/% Two-Dimensional decoding. o/
dcmprs_line_2d(refrenceline);
/* Point to the previous line. %/
prvslinestart +=xsizeinbytes;

1++;
}
}
d=gttime();
dtime(dcmprstime) /% mmmmmmmmmmee MACRO ---------- */
e(refrenceline); /* Free allocated memory. *f
ittt END demprs_blk_2d ---------------------o—- */

= demprs_line_2d %/
With respect to the reference line ( previous line ) the current:/
line is decoded. The relative positions of a0, al, a2, on the %/

coding line, and bl, b2, on the reference line, determine =/
whether the decoding mode is the pass, horizontal or vertical i/
mode. The decoded line is updated as each mode is realized until¥/
the end of line is reached. %/

/* Before updating the decompression buffer with the run of bits we¥/
/% must note the following point: Since a0, at the start of every s/

/% line, was set to an imaginary black changing element, then the ¥/

;* first black run length should not count this imaginary pel. */
% ¥ /

demprs_line_2d(refrenceline)

char *refrenceline;

{

register unsigned a0;

unsigned al,a2,alal,ala2;

unsigned bl,b2;

int alOcolor,alcolor, tmpcolor;

char *tmpptr;

static int blackbits,wtbits;

static int *blackbitsptr=&blackbits, *wtbitsptr=&wtbits;

a0=0; /% First pixel in the decoding */

/% line. ¥/
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refrenceline[a0] = BLACKCHAR ;
a0color=BLACK;

alcolor=WHITE;

while( a0 < xmaxplsl )

{

/% Refer to the comments in file¥/
/% cmprs2d.c for explanation */
/% about the code and how to */
/% detect al, a2, bl, and b2. ¥/

/% Detect bl. /

xmaxplsl-a0))

if(tmpptr=memchr(tmpptr+1,alcolor+BLACKCHAR,xmaxplsl-bl))

xmaxplsl-aQ))

if( refrencelinela0] == (alcolor+BLACKCHAR) )
{
if(tmpptr=memchr{&refrenceline[a0+1], aOcolor+BLACKCHAR,
{
bl=tmpptr-refrenceline;
bl=tmpptr-refrenceline;
else
bl=xmaxplsl;
}
else
bl=xmaxplsl;
}
else
{
if(tmpptr=memchr(&refrencelinela0+1],alcolor+BLACKCHAR,
bl=tmpptr-refrenceline;
else
bl=xmaxplsl;
}

/% Detect b2. %/

if(tmpptr=memchr(&refrenceline[bl+1],a0color+BLACKCHAR,

b2=tmpptr-refrenceline;
else

b2=xmaxplsl;
if( currentword & 0x8000 )

xmaxplsl-bl))

/% Get "bitl" of "currentword". ¥/

{ /% Vertical mode(0). %/
if( a0==0 ) /* Update the decompression 7
/% buffer. %/
update_dcmprs_code(aOcolor,bl-(a0+1))
else
update_dcmprs_code(aOcolor,bl-a0)
al0=bl;
switchcolor
/* Codeword = 1, s/

update_cmprs(1);
}

else
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{
if( currentword & 0x4000 ) /* Bitl =0, get bit2.
{ /% Bitl,2 = 01, get bit3.
if( currentword & 0x2000 )
{ /% Vertical mode(l). al to the
if( a0==0 ) /% right of bl by 1 bit.
update_dcmprs_code(aOcolor,bl+1-(a0+1))
else
update_dcmprs_code(aOcolor,bl+1-a0)
a0=bl+l;
switchcolor
?pdate_cmpr5(3); /%  Codeword = 011.
else
{ /* Vertical mode(-1). al to the *
i£(a0==0) /* left of bl by 1 bit.
update_dcmprs_code(aOcolor,bl~1-(a0+1))
else
update_dcmprs_code(aOcolor,bl-1-a0)
a0=bl-1;
switchcolor
?pdate_cmprs(B); /% Codeword = 010.
}
else
{ /% Bitl,2 = 00, get bit3.
if( currentword & 0x2000 )
{ /% Horizontal mode.
update_cmprs(3); /%  Codeword = 001.
/% Decode the following two
/* codes using One-Dimensional
/* decading scheme according
if( aOcolor ) /* to the a0 color.
{ /% White code followed by a

/* black one.
uncmprs_white(wtbitsptr);
uncmprs_blak(blackbitsptr);

}
else
{ /% Black code followed by a

/% white one.
uncmprs_blak(blackbitsptr);
?ncmprs_white(wtbitsptr);

if( a0==0 ) blackbits++;

/% Bypass the last two hori-

/% zontal codes.
a0 += blackbits + wtbits;

% /
3 /

% /
¥ /

.
P

P
O

I st s
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b2 SR

i/
% /

¥ /
¥* /
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else
{ /% Bitl,2,3 = 000, get bits. */
if( currentword & 0x1000 )
{ /% Pass mode. Codeword=0001. =/
if(a0==0)
update_dcmprs_code(aOcolor,b2-(a0+1))
else
update_dcmprs_code(aOcolor,b2-a0)
a0=b2;
?pdate_cmprs(4); /% Update the buffer with 4 bits,¥/
else
{
/% Bitl1,2,3,4=0000, get bit5. =/
if( currentword & 0x0800 )
{
/% Bitl,2,3,4,5 = 00001, %/
/% get bité. %/
if( currentword & 0x0400 )
{ /% Vertical mode(2). al to the =/
/% right of bl by 2 bits. */
if(a0==0)
update_dcmprs_code(a0color,
bl+2-(a0+1))
else
update_dcmprs_code(aOcolor,bl+2-a0)
a0=bl+2;
switchcolor
/%  Codeword = 000011. */
update_cmprs(6);
}
else
{ /% Vertical mode(-2). al to the =/
/% left of bl by 2 bits. %/
if(a0==0)
update_dcmprs_code(aOcolor,
bl-2-(a0+1))
else
update_dcmprs_code(aOcolor,bl-2-a0)
a0=bl-2;
switchcolor
/%  Codeword = 000010. %/
update_cmprs(6);
}
}
else
{ /* Bitl,2,3,4,5 = 00000, i/
/% get bité. %/

if( currentword & 0x0400 )
{ /* Bitl,2,3,4,5,6 = 000001, =/
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/* get bité. #/
if( currentword & 0x0200 )
{ /* Vertical mode(3). al to the */
/* right of bl by 3 bits. */
if(a0==0)
update_dcmprs_code(alcolor,
bl+3-(a0+1))

else
update_dcmprs_code(alcolor,
bl+3-a0)
a0=bl+3;
switchcolor
/% Codeword = 0000011. i/
update_cmprs(7);
}
else
{ /% Vertical mode(-3). al to the */
/% left of bl by 3 bits. %/
if(a0==0)
update_dcmprs_code(aOcolor,
bl-3-(a0+1))
else
update_dcmprs_code(alOcolor,
bl-3-a0)
a0=bl-3;
switchcolor
/% Codeword = 0000010. */
update_cmprs(7);
}
}
else
{ /* Bit pattern = 000000 should =/
/* never happen unless there are*/
/% some errors. x/
printf("extra code \n");
exit();
}
}
}
}
}
}
}
}
[¥ mmmm e END dcmprs_line_2d -—-—=——=~=——=—cecouun %/
/% init_dcmprs_blk_2d == %/
;* Initialize local variables to this file. *;

void init_dcmprs_blk_2d(xsizein,ysizein,dcmprsbuffere)
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unsigned xsizein,ysizein;
char *dcmprsbuffere;
{

ysize=ysizein;

xmaxplsl=xsizein+l;
xsizeinbytes=(xsizein/8)+(xsizein%8>0);
prvslinestart=dcmprsbuffere;
xXsize=xsizein;

ymaxplsl=ysizein+l;

J¥ mmm e END init_dcmprs_blk_2d

o
——— e = - 3¢

/% Refer to the comments in file %/
/% dupdtc.c in appendix B section */
/% 13.6 for all the coming code. */

static unsigned currentword;

static wunsigned nextword, *nextwordptr;

static unsigned cbitsremain;

static unsigned rightbitsword[]={0,0x0001,0x0003,0x0007,
0x000£,0x001£,0x003f,
0x007£,0x00££,0x01££,
0x03££,0x07£f,0x0£££,
Ox1f££,0x3f£ff,0x7££ ¢,
Oxffff};

unsigned leftbitsword [1={0,0x8000,0xc000,0xe000,
0x£000,0x£800,0x£c00,
0xfe00,0x££00,0x££80,
Oxffc0,0xffe0,0x£££0,
Oxf£f£8,0xfffc,Oxfffe,
Oxffff};

[ dem= UPATE_CMPRS () =i/

/% This function updates '"currentword", which is a window into the 3/

/* compressed buffer. *;

/a'\ === =======1

update_cmprs(codelngth)

int codelngth;

{

register unsigned tempword;

register int difference;

tempword = currentword;
tempword <<= codelngth;
if((difference = cbitsremain-codelngth) > Q)

tempword |= nextword>>(difference);
else

{

difference =- difference;

tempword |= nextword << (difference);
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nextword = *(++nextwordptr);
tempword |= nextword >> (difference=(16- (difference)) );

nextword &=

rightbitsword[differencel;

cbitsremain = difference; /% Update cbitsremain. i/
currentword = tempword; /* Update current word. */
return( tempword );
}
[Hem e e END UPDATE_CMPRS —===——===—— = ——m e mmm e ¥/
/% init_cmprs */
init_cmprs(cmprsbfrptr)
unsigned *cmprsbfrptr;
{
cbitsremain = 16;
currentword = *(cmprsbfrptr);
nextword = *(nextwordptr=cmprsbfrptr+1);
}
[ e End init_cmprs -—=-—-—-—---—==—-mmmm o */
/* MATCH_BLAK ===/
match_blak(clrbitsptr,codebitsptr)
register int %clrbitsptr;
int *codebitsptr;
{
static unsigned BLK_CODES(] =
{

/% BARRAY_4 bits, */
0x7000,0x8000,0xb000,0xc000,0xe000,
0x£000,

/% BARRAY_5 bits. */
0x9800,0xa000,0x3800,0x4000,0xd800,
0x9000,

/% BARRAY_6 bits. */

0x1¢00,0x2000,0x0c00,0xd000,0xd400,
0xa800,0xac00,0x5¢c00,

/* BARRAY_7 bits. *f
0x4e00,0x1800,0x1000,0x2e00,0x0600,
0x0800,0x5000,0x5600,0x2600,0x4800,
0x3000,0x6€00,

/% BARRAY_8 bits. */
0x3500,0x0200,0x0300,0x1a00,0x1b00,
0x1200,0x1300,0x1400,0x1500,0x1600,
0x1700,0x2800,0x2900,0%x2a00,0x2b00,
0x2c00,0x2d00,0x0400,0x0500,0x0a00,
0x0b00,0x5200,0x5300,0x5400,0x5500,
0x2400,0x2500,0x5800,0x5900,0x5a00,
0x5b00,0x4a00,0x4b00,0x3200,0x3300,
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0x3400,0x3600,0x3700,0x6400,0x6500,

0x6800,0x6700
¥
static int BLK_RUNS[] =
{ /% BCODE_4 bits. =/
2,3 ,4 ,5 ,6 ,7 ,
/% BCODE_5 bits. */
8 ,9 ,10 ,11 ,-64 ,-128 ,
/% BCODE_6 bits. %/
1, 12, 13, 14, 15, 16, 17, -192
/% BCODE_7 bits. */
18, 19, 20, 21, 22, 23, 24, 25, 26,
27, 28, -256,
/% BCODE_8 bits. %/

0, 29, 30, 31, 32, 33, 34, 35, 36,
37 , 38, 39, 40, 41, 42, 43, 44, 45,
46, 47, 48, 49, 50, 51, 52, 53, 54,
55, 56, 57, 58, 59, 60, 61, 62, 63,
-320, -384, -448, -512, -576, 640

s
static int BGROUPS[I={5, 4,6, 5,6, 6,8, 7,12, 8,42 };
register word;

word = currentword;

switch (1)
{
case 1:
{

if( match_all_bits(word,BLK_CODES,BLK_RUNS,BGROUPS,
clrbitsptr,codebitsptr) )

break;
}
default : {
printf("Wrong code encountered in 'match_blak'\n");
exit(0) ;
}
}
}
[Hmmmmmm e m e oo END MATCH_BLAK -====—=========-——cmoeeeo </
/% MATCH_WHITE =============i/
match_white(clrbitsptr,codebitsptr)
int *clrbitsptr,*codebitsptr;
{
/% See the comment for BLK_CODES%*/
static unsigned WHITE_CODES[] =

{ .
/% Codebits = 10. i/
0x05¢c0, 0x0600, 0x0200, 0x03cO,



350

0x0dcO,

/* WARRAY_11 bits. */
0x0ce0, 0x0d00, 0x0d80, 0x06e0,
0x0500, 0x02e0, 0x0300,

/% WARRAY_12 bits. %/
0x0ca0, 0x0cb0, 0x0ccO, 0x0cdO,
0x0680, 0x0690, 0x06a0, 0x06b0,
0x0d20, 0x0d30, 0x0d50, 0x0dé0,
0x0d470, 0x06c0, 0x06d0, 0x0da0,
0x0db0, 0x0540, 0x0550, 0x0560,
0x0570, 0x0640, 0x0650, 0x0520,
0x0530, 0x0240, 0x0370, 0x0380,
0x0270, 0x0280, 0x0580, 0x0590,
0x02b0, 0x02c0, 0x05a0, 0x0660,
0x0670, 0x0cB80, 0x0c90, 0x05b0,
0x0330, 0x0340, 0x0350,

/% WARRAY_13 bits. */
0x0360, 0x0368, 0x0250

};

/% See the comment for BLK_RUNS.*/
static int WHITE_RUNS[] =
{
/% WCODE_10 BITS. s/
16, 17, 18, -64, O,
/% WCODE_11 bits. %/
19, 20, 21, 22, 23, 24, 25,
/% WCODE_12 bits. *f
26, 27, 28, 29, 30, 31, 32, 33,
34, 35, 36, 37, 38, 39, 40, 41,
42, 43, 44, 45, 46, 47, 48, 49,
50, 51, 52, 53, 54, 55, 56, 57,
58, 59, 60, 61, 62, 63, -128, -192,
-256, -320, -384, -448,
/% WCODE_13 bits. */
; -512, -576, 640
static unsigned WGROUPS{]={4, 10,5, 11,7, 12,44, 13,3 };
register unsigned tmpword,word;

word = currentword;
switch (1)
{
case 1:
{
if(word & 0x8000) /% Bit 16 =1, s/
{
if(word & 0x4000) /* Bit 15 = 1 then code=2, */
*clrbitsptr = 2;
else /% Bit 15 = 0. */
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*clrbitsptr = 3;
*codebitsptr = 2; /* Code length = 2,
break;
}
if(word & 0x4000) /% Bit 15 =1,
{
if(word & 0x2000) /% Bit 14 = 1.
*clrbitsptr=4; /% Code = 4 .
else /% Bit 14 = 0.
*clrbitsptr=1; /* Code = 4.
*codebitsptr=3; /% Code length = 3.
break;
}
if(word & 0x2000) /% Bit 14 = 1,
{
if(word & 0x1000) /% Bit 13 =1.
*clrbitsptr=5; /= Code = 5.
else /% Bit 13 = 0.
*clrbitsptr=6; /% Code = 6.
*codebitsptr=4; /% Code length = 4.
break;
}
if(word & 0x1000) /% Bit 13 = 1.
{
if(word ? 0x0800) /% Bit 12 = 1.
*clrbitsptr=7; /% Code = 7.
*codebitsptr=5; /% Code length = 5.
break;
}
else /% Bit 12 = 0.
{ /% Bit 11 = 1.
if(word & 0x0400)
/5 Code = 8.
*clrbitsptr=8;
else /% Bit 11 = 0.
/% Code = 9.
*clrbitsptr=9;
*codebitsptr=6; /* Code length = 6.
break;
}
}
if((tmpword=(word&0xfe00)) == 0x0800)
{ *codebitsptr=7; %clrbitsptr=10; break;
if(tmpword==0x0a00)
{ *codebitsptr=7; *clrbitsptr=11; break;
if (tmpword==0x0e00)
{ *codebitsptr=7; *clrbitsptr=12; break;
if ((tmpword=(word&0x££00)) == 0x0400)
{ *codebitsptr=8; %clrbitsptr=13; break;

% /
¥ /
%/
E /



352

if (tmpword==0x0700)

{ *codebitsptr=8; %clrbitsptr=14; break; }
if ((word&0x££80)==0x0c00)
{ *clrbitsptr=15; *codebitsptr=9; break; }

if( match_all_bits(word,WHITE_CODES,WHITE_RUNS,WGROUPS,
clrbitsptr,codebitsptr) )

break;
}
default : {
printf(
" Wrong code encountered in '‘match_white'\n");
exit(0) ;
}
}
}
[ e ee END MATCH_WHITE -—-—-—-m—=m==—m—mmm— e %/
/% get_dcmprstime() s=s=s==================== =/
unsigned get_dcmprstime()
{
return(dcmprstime);
}

[ —mmem e e END get_dcmprstime() ~--=---==--—-—meeo——- s/
[¥ = END demprs2d.c ————-—m==—omommmem e %/
14.5. File Dcmprsln.c

#include <stdio.h>

#include <io.h>

#include "colordef.h"

int update_cmprs{int);

int uncmprs_blak(int ¥*), uncmprs_white(int *);

int match_blak(int *,int *), match_white(int *,int =);
int update_dcmprs_blakmk(int), update_dcmprs_whitemk(int);
int update_dcmprs_blakreg(int), update_dcmprs_whitereg(int);
/ ¥

* Refer to the file "dcmprsln.c" in appendix B section 13.5 for
% comments.

%/

/* === DCMPRSLN() =========== ¥/
demprs_line_1d()

{

int clrbits;

register int %clrbitsptr=&clrbits;
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while( uncmprs_blak(clrbitsptr) && uncmprs_white(clrbitsptr) )

[Hemmm e e END DCMPRSLN() -------==--=----

/== UNCMPRS_BLAK()
uncmprs_blak(nmbrblackbitsptr)
int *nmbrblackbitsptr;

{

int clrbits,codebits;
register int *clrbitsptr=&clrbits;
register int *codebitsptr=&codebits;

*nmbrblackbitsptr = 03
match_blak(clrbitsptr,codebitsptr);

if(*clrbitsptr<0)
{

*clrbitsptr=-*cirbitsptr;
*nmbrblackbitsptr += clrbits;
update_cmprs(*codebitsptr);
update_dcmprs_blakmk(*clrbitsptr);
match_blak(clrbitsptr,codebitsptr);
}

update_cmprs(*codebitsptr);

*nmbrblackbitsptr += clrbits;

return( update_dcmprs_blakreg(*clrbitsptr));

}

[Hmmm e END UNCMPRS_BLK() ----==----=----~

————————— ¥ /

/% UNCMPRS_WHITE()
uncmprs_white(nmbrwhitebitsptr)
int *nmbrwhitebitsptr;

{

int clrbits,codebits;
register int *clrbitsptr=&clrbits;
register int *codebitsptr=&codebits;

*nmbrwhitebitsptr = 0;
match_white(clrbitsptr,codebitsptr);
if(*clrbitsptr<0)
{
*clrbitsptr=-*clrbitsptr;
*nmbrwhitebitsptr += clrbits ;
update_cmprs(*codebitsptr);
update_dcmprs_whitemk(*clrbitsptr);
?atch_white(clrbitsptr,codebitsptr);
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update_cmprs(*codebitsptr);
*nmbrwhitebitsptr += clrbits ;
return( update_dcmprs_whitereg(*clrbitsptr));

}
[ mmmm e e END UNCMPRS_WHITE() ------==-=-======—oomee */
[ e END demprsin.c ———=-—--——-moommmmemme e %/
14.6 File Bitsrng.asm
NAME bitsrng
TITLE SWAP BYTES THEN CONVERT BITS TO STRING
PUBLIC _swapbits_to_string
DGROUP GROUP  _DATA
ASSUME CS: _TEXT, DS: DGROUP, SS: DGROUP, ES: DGROUP
LASTBITS EQU [BP-2]
WORDCONT EQU {BP-4]
EXTRN __chkstk:NEAR
_TEXT SEGMENT BYTE PUBLIC 'CODE'
_swapbits_to_string PROC  NEAR
PUSH BP
MoV BP,SP
MOV AX, 4
CALL __chkstk
PUSH DI
PUSH SI
PUSH ES
PUSH DS
POP ES
MOV SI,[BP+4]
MOV DI, [BP+6]
MOV AX, [BP+8]
MOV DX, AX
MOV CX,4
SHR DX, CL
MOV WORDCONT , DX
AND AX,000FH
MoV LASTBITS, AX
LOOPl: MOV cX,16
LODSW
XCHG  AH,AL
MOV DX, AX
MOV BX, 8000H
LOOP2: TEST DX,BX
JZ ZERO_BIT
ONE_BIT: MOV AX,'1!
STOSB
JMP SHIFT_MASK
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ZERO_BIT:
MOV AX,'0'
STOSB
SHIFT_MASK:
SHR BX,1
LooP LooP2
DEC WORD PTR WORDCONT
JNZ LOOP1
LAST_BITS:
CMP BYTE PTR LASTBITS,O0
JZ BITSTRING_CODE
MOV CX,LASTBITS
LODSW

XCHG  AH,AL

MOV DX, AX

MOV BX, 8000H
LOOP3: TEST DX,BX

JZ ZERO_BIT_L
ONE_BIT_L:

MOV AX, 'l

STOSB

JMP SHIFT_MASK_L
ZERO_BIT_L:

MOV AX,'0'

STOSB
SHIFT_MASK_L:

SHR BX,1

LOOP  LOOP3
BITSTRING_DONE:

POP ES

POP SI

POP DI

MoV SP,BP

POP BP

RET
_swapbits_to_string ENDP
_TEXT ENDS

END
ettt END bitsrng.asm =----==—-====——==------ */



356

15. APPENDIX D. PROGRAM LIST OF METHOD LZW
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The C programs in this appendix and the following appendices use
the function "Indx" from C Power Packs by Software Horizons Inc.
The files in this listing make use of the files in the following
sections:
- Appendix B: 13.9, 13.11, and 13.12.

15.1. File Main.c

/* */
/% This program simulates the Lempel-Ziv-Welch approach to compress*/
/% data and then decompress it according to the same approach. v/

/% This alogrithm is adaptive in the sense that it starts with an %/
/* empty table of symbol strings and builds the table during both 3¢/
/% the compression and decompression processes. These are one-pass */
/* procedures that require no prior information about the input %/
/% data statistics and execute in time proportional to the length =/

/% of the message. /
/A——— = et ——==========*/
#include <stdio.h>
#include <memory.h>
#include <dos.h>
#include <io.h>
#include <fcntl.h>
#include <malloc.h>
#include <sys\types.h>
#include <sys\stat.h>
#include <string.h>
#define LINT_ARGS
fdefine HI_RES 6 /% 640x200 graphics mode. */
ffdefine TEXT_MODE * 3 /% Text mode. %/
fdefine ALPHABET_SIZE 256 /% Sizes of alphabet and ¥/
fidefine MAX_SIZE 4096 /% code tables. */
fidefine SCRN_SIZE 16004
fidefine uchar unsigned char
ffdefine findtime(time) { tend=gttime();\
if(tend>tstart) time=tend-tstart;\
else time=(6000-tstart)+tend;}
/% Declare variables : i/

/% Strings table consists of two parts, the first one is of word 3/
/* type while the other one is of character type. This is due to */
/% the fact that only 20 bits are needed to represent each string */
/% so no more than 3 bytes are needed for this representation. s/

static char far data_bufr(32000] ;
static char work_bufr[SCRN_SIZE] ;



int
char
unsigned

unsigned
void
void
void

main(arg
int
char

{
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/% Window coordinates. %/
x1=0,y1=0,x2=639,y2=199 ;
datafilels4l];
bufr_size ; /% Holds the screen size in bytes. */
gttime();

init_screen( unsigned );
decompress( char *, char far *, unsigned ) ;
compress( char * , char far * , unsigned * ) ;

c, argv)
argc;
*argv(];

unsigned tstart,tend,cmprstime,dcmprstime, temp, i ;
/% Cmprsfactor = original size *
/% divided by compressed size. */
float cmprsfactor;
if( arge < 6 ) /% No data was entered at the */
{ /% command line. %/

printf("enter x1 yl x2 y2 \n");
scanf("%d %d %d %d",&xl,&yl,&x2,&v2);

/% Get rid of extra charcaters. */
while((getchar())!="\n")

}
else
{
xl=atoi(argv(2]); yl=atoi(argv(3]);
, x2=atoi(argv(4]); y2=atoi(argv[5]);

if( arge > 1)
strcpy( datafile, argv[(l] );
init_screen( argc ) ;

/% Store the original size. */
cmprsfactor = ( float )bufr_size ;
init_table() ; /% Initialize buffers and tables. */
/% Get the data in the screen */
/% memory then display it again. ¥/
get( x1, yl, x2, y2, work_bufr ) ;
for(i=0;i<=55000;i++) ; /* A delay loop. %/

setscmode(TEXT_MODE) ;
printf(" Compression is in progress \n'" )
tstart=gttime(); /% Record the start of compression.*/

/% Compress the data in data_bufr using LZW#/
/% algorithm and return the compressed data*/
/% in the data_bufr. The work_bufr is used */

"-»



#include
#include
fdefine
fidefine
#define
fdefine

extern
extern
extern
extern

void
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/% for internal manipulation within %/
/% compress() and other function it calls. */
/% The size of the compressed buffer is */
/% returned in bufr_size. %/
/% We used data_bufr+4 so we will not */
/% compress the x and y sizes. %/
compress{ work_bufr+4, data_bufr, &bufr_size ) ;
findtime( cmprstime ) /% -- MACRO to find cmprstime. */
printf(" Now decompression is in progress \n" ) ;
init_table() ; /* Reinitialize the tables. %/
tstart=gttime(); /% Record start of decompression. */
/% Decompress data stored at address =/
/% data_bufr+4 and with size = bufr_size. ¥/
/* Use the work_bufr in function decompress/
/% for its internal use. */
decompress{ work_bufr+4, data_bufr, bufr_size ) ;
findtime( dcmprstime ) /% -- MACRO to find dcmprstime. */
/% Display data on the screen to */

setscmode(HI_RES); /% make sure the program is working®/
put( x1, yl, work_bufr ) ;
for(i=0;i<=55000;i++) ; /% A delay loop. s/

setscmode(TEXT_MODE);
/% A dummy variable. %/
passparmtrs( datafile, x1, yl, x2, y2, temp=0 ) ;
print( cmprstime, dcmprstime,
cmprsfactor = cmprsfactor/bufr_size ) ;

——————————————————— END main() —--==——-=———mmmmmm oo/
------------------- END main.c ---—===-=-==--=--c---—ooo—eoi/

15.2. File Cmprs.c

<memory.h>

<malloc.h>

uchar unsigned char
MAX_SIZE 4096

SCRN_SIZE 16004

update_string_table() \

{if( next_code < MAX_SIZE )\
{char_table[next_code] = string.k ;\
int_tablelnext_code]l = string.w ;\
next_code++ 31}

unsigned int_table(] ; /% int_tablel[], char_tablel(] */
uchar char_tablel]l 3 /* and next_code are defined */
int next_code; /% in tables.c %/

unsigned extracalls ;

adjust_output( uchar *, uchar far *, unsigned, unsigned * )
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% compress()
/* The LZW algorithm is organized around a translation table
LZW string table contains strings that have been encountered
/% previously in the message being compressed. The input string
/% is examined serially symbol-by-symbol in one pass and the
/* longest recognized input string is parsed off each time.

/%

/

%
/* that maps strings of input symbols into a fixed length code.
/ %

compress{ compress_io,compress_work, ptr_bufr_size )
uchar *compress_io, far *compress_work ;
unsigned *ptr_bufr_size ;
/% Compress_io contains data

/% input, and compressed data
/% as output. Compress_work is

/

/% output of lzw compression

/% before we pack each code words

/% into 12 bit code. Then the

/% function adjust_output takes *

/% it as input and put the
/% correct 12 bit codes into
/% compress-io.

{

uchar *input;
unsigned far “*output;
char *ptr_new_output;
unsigned bufr_size;
unsigned newsize ;
register int data_index=0, code;
int out_index=0, found, *ptr_£found=&found ;
struct {

uchar ks

unsigned W3

} string ;

input=compress_io;
output=(unsigned far *)compress_work;
/% Read the first element in
/% the input.
string.w = input(data_index++] ;
bufr_size=*ptr_bufr_size; /% Find bufr_size,

/% Loop while there is more *

/* input.
while( data_index < bufr_size )
{
/% Read the next element.
string.k = input(data_index++];

/% needs to be compressed as an *

used for work as a temporary *

k3 /
i /
¥ /
W% /
%/
% /
¥ /

.,
b

W%

kS

b b - 3%
NN \‘ ~

3% /
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/% Function Scanw() scans the */
/% string and returns the code.’/
/% 1f the passed string is found*/
/% in that case found = 1, =/
/% otherwise the returned value */

/* of found is = 0. 5/

code = scanw( string.w, string.k, ptr_found );

if( found )

{ /* wk exists in the table : %/
/% wk -=> w i.e. code of new w= ¥/
/% code of a location in the %/

/% int_table that has w and k. /
string.w = code ;
H

continue
}
else
{ /% wk is not in string table : =/
/% string.w --> output i.e. send®*/
/% code of w to the output. f
output[out_index++] = string.w ;
/% If the tables are not full */
/% yet then string --> string */
/* table, i.e put w and k in %/
/% int_table and char_table /
/* respectively at position %/
/% next_code. =/
if(next_code<MAX_SIZE)
update_string_table()
else
extracalls++ 3
/% string.k --> string.w. %/
string.w = ( unsigned ) string.k ;
}

/% Send the last code to the %/
/% output. %/
output{out_index] = string.w ;
/% Back the output codes from a */
/% string of words format to a ¥/
/% string of 12 bits codes */
/% format. The input to i/
/% adjust_output() is compress_ */
/% work. It sends the output s/
/% in the final form in %/
/% compress_io. */
adjust_output(compress_io ,compress_work,
2%(out_index +1), &newsize);
*ptr_bufr_size= newsize; /% Send newsize in bufr_size.

[Ammmmm e e o END COMPRESS() —-—~-----==-----—oommmome i/
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15.3. File Dcmprs.c

#finclude <memory.h>

#include <stdio.h>

#include <malloc.h>

fidefine uchar unsigned char
fidefine MAX_SIZE 4096

fidefine ST_MAX 1000

fdefine SCRN_SIZE 16004

/% Add the new string to the strxng table.

fdefine update_string_table() \

{if( next_code < MAX_SIZE )\
{char_tablelnext_codel=code.k ;\
int_tablelnext_code]l = oldcode;\
next_code++ ;}}

/% Return the value of w and k for the

/* passed code.

fdefine look_up() \

{code.w = int_table[CODE] ;\

code.k = char_tablelCODE];}

/% int_table, char_table and
extern unsigned int_tablel] ; /* next_code are defined
extern uchar char_tablel] ; /% globally in tables.c

/% index of the next code in the
extern int next_code; /* tables not used yet.

/% A stack to be wused in the *

/% abnormal case for storing

/% characters till we reach the *

/% first character of the new
static char *stack ; /% string.

/* First unused element. Stack
static wunsigned stack_index=0; /% grows upward.
char pop(); /% Returns the character at the

/% top of the stack.
void readjust_input( uchar far *, uchar *, unsigned, unsigned *
/% decompress() ==== ======y

/% Input is in the form of 12 bits codes stored serially. We have
/% to readjust them to integer format so we can store them and use
/% them in the int_table,

/% Inputsize is the size of input in bytes.

/* decmp
/* decmp

rs_io =
rs_io =

as input to decmprs() it points to compressed data
as ouput of decmprs() it points to decompressed

P

o,
3t

= ~
~

% /
¥ /
¥t /

¥ /
% /
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/% data %/
é* decmprs_work = pointer to a temporary area. %/
fh==mmmse s arszarssssanrsssaansssans=sanms=ass % /
decompress(decmprs_io, decmprs_work ,inputsize)
char *decmprs_io, far *decmprs_work;
unsigned inputsize;
{

unsigned input_index=0;

unsigned oldcode, incode;

/% The size of the compressed  /

/% data, each is stored in a %/

/* word, is equal to the output ¥*/
unsigned newsize ; /% size of readjust_input(). %/
register unsigned output_index=0;
register unsigned CODE ;

/% Final character in the pre- /
char finchar ; /¥ vious String decompression. */
struct { :

char k;
unsigned w3
} code; vt
char *temp_ptr;
unsigned far input;
char *databufr;
stack = malloc( ST_MAX ); /* Allocate memory for the stacks*/

/% Adjust the input from 12 bits%*/

/* serial codes into an array of’*/

/% integers and put the size of */

/% the array in "newsize'. %/
readjust_input(decmprs_work,decmprs_io, inputsize,&newsize);

/% Find the size of the input */
inputsize=(newsize/2); /* code in words. */
input= (unsigned far *) decmprs_work;
databufr=decmprs_io;

/% Get the first code of the *f

/% input. %/
CODE= oldcode= inputlinput_index++];
look_up() /% MACRO. %/

/% output the first character. =/
databufrloutput_index]=finchar=code.k;

/% Keep looping until all codes */

/% are processed. */
while(input_index< inputsize )

{ /% Get the next input. %/
CODE=incode=input[input_index++];
if(CODE >= next_code)
/% CODE is not defined in the %/
{ /% decompression table yet. */
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push(finchar);
CODE=oldcode;
}
/% Find the components w & */
/% k of CODE. %/
look_up()
/% if w = 0 then we have a code */
/% for one of the alphabets. */
/% While CODE==code(wk) separate/
/% the k & w parts of code till */
/% CODE = code(k). %/
¥hile(code.w!=0xffff)
push(code.k);
CODE=code.w;
: look_up()
/% String now begins with the  /
/% last k, and the rest of it. %/
/% (If string longer than one  */
/% k) is in the stack. %/
/* Send k to the output. */
databufr[++output_index]l=code.k;
finchar=code.k; /% Finchar = first k of the %/
/% last string. */
/% While the stack is not empty */
while(st?ck_index) /% send data to the output. %/
?atabufr[++output_index]=pop();

update_string_table()
oldcode=incode;

}

}

f e S e L e END decompress() ---—-—=-——--emmmemomuno #/

/% ==== push() ====ss====sss==s====== =====i/

/* PLace an element on the stack. */

/4 R

push( item )

char item; /* Data to be pushed on the s/
/* stack. :':/

{

if( stack_index >= ST_MAX )

{
printf( " stack overflow in push \n" ) ;
return ;
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stack[stack_index++] = item ;

}
e e e END push() -==-——-=——momm e %/
/% pop() */
/% Retrieve the top element from the stack. */
/% === f
char pop()
{
if( --stack_index < 0 )
{
printf(" Stack underflow in pop \n" ) ;
return ('\0');
; :
return stacklstack_index];
}

[ e e e e END pop() —=—==——m=mmmmm e L7
[ e END demprs.c ———=====—-——m=—mmmm oo i/
15.4, File Tables.c

#include <stdio.h>
#include <memory.h>
#include <malloc.h>
fidefine MAX_SIZE 4096
fidefine ALPHABET_SIZE 256
fidefine uchar unsigned char

/% Definition of a GLOBAL vars. %/
unsigned int_table(MAX_SIZE] ;
unsigned char char_table[MAX SIZE] ;
int next_code ;
unsigned *ptr_int_table=int_table;
unsigned char *ptr_char_table=char_table;
unsigned extracalls=0 ;

/% === init_table() ======s====i/
/* This function initializes every element in int_table to a com- %/
/% bination that will never occur. Since the code is only 12 bits ¥/
/% long then the 16 bits used to hold these codes are to be <= */
/% Oxfff, For this reason in this program the Oxffff code is used ¥/
/* to solve the above problem. It should be noted that any combin- %/
/% ation > Oxfff should work correctly as well. Then the first 256 */

/% character symbols are loaded into the char_table. */
/‘.‘ =====7':/
init_table()

{

register int index ;



}

Hmm————

INPUT

.
?
.
1
.
’
.
9
.
1
.
)
.
3
.
?
.
1
.
’
.
?
.
1
.
1
.
9
.
b
.
1
.
9
.
1
.

’
NAME
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/% Set every byte in the %/

/* int_table to Oxffff (i.e. */

/% every code word = Oxffff) so */

/* that no code will match with */

/% it, because actual codes are */

/* only 12 bits. *f
memset( (char *) int_table,Oxff,MAX SIZE*2);

/% Set 1st 256 of char_table to */
/* be the extended ASCII codes. */
for( index=0; index < ALPHABET_SIZE; index++ )
char_tablelindex] = ( short ) index ;

next_code = ALPHABET_SIZE;

—————————————————— END init_table() =---=====--=-mmcmommmmui/
e END tables.c ===============———mmeme %/

15.5. File Scanw.asm

: ( PARAMETERS PASSED BY CALLING SUBROUTINE )

1) CHARCODE = CHARACTER PART OF THE CODE,i.e K.

2) INTCODE = UNSIGNED INTEGER PART OF THE CODE, i.e. W.

3) FOUNDADRS = ADDRESS OF CODE, i.e., WHERE WE RETURN THE
CODE WHICH HAS W AND K EQUAL TO INTCODE AND
CHARCODE RESPECTIVELY.

OUTPUT :

1) BOOLEAN VARIABLE "FOUND'": HAS THE FOLLOWING RETURN VALUES
RETURN VALUE = 1 IF A MATCH IS FOUND
0 IF NO MATCH
2) THE DUNCTION RETURN VALUE IS CONTAINS THE INDEX OF THE
FOUND CODE, IF ANY.

IT NEEDS TO SHARE THE FOLLOWING WITH WHOEVER HAS THEM:

1) _ptr_char_table = A POINTER TO 1ST ELEMENT IN CHAR TABLE.
2) _ptr_int_table = A POINTER TO 1ST ELEMENT IN INT TABLE.
3) next_code = NUMBER OF FIRST FREE CODE IN CHAR TABLE.
NUMBER OF FIRST FREE CODE IN INT TABLE.

SCAN
TITLE SCANNING OF THE ALTERNATE TABLE TO FIND A MATCH
PUBLIC _scanw
FOUND_PTR EQU [BP+8] 3 PASSED PARAMETERS.
INTCODE EQU [BP+4]
CHARCODE EQU [BP+6]
DGROUP  GROUP CONST, _BSS, _DATA



_DATA
EXTRN
EXTRN
EXTRN
_DATA

_scanw

LOOP1:
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ASSUME (CS: _TEXT, DS: DGROUP, SS: DGROUP, ES: DGROUP

SEGMENT
_ptr_char_table:WORD
_ptr_int_table:WORD
_next_code:WORD

PTR_next_code DW ?
ENDS

PROC NEAR

PUSH BP

MOV BP,SP

PUSH DI

PUSH SI

PUSH ES

MOV AX,DS

MOV ES,AX

INITIALIZE THE REGISTERS TO THE
CORRESPONDING PARAMETERS PASSED
FROM THE CALLING PROGRAM.

MOV AX,INTCODE
MOV DL, CHARCODE

ws we we

THE FOLLOWING THREE VARIABLES ARE
DEFINED SOMEWHERE ELSE.

POINTER TO THE TABLE HOLDING
ELEMENTS OF CHARACTER TYPE. THIS
TABLE HOLDS THE SECOND PART TO BE
EXAMINED IN THE SEARCH.

MOV SI,_ptr_char_table
s+ TABLE USED IN THE SEARCH. IT HOLDS
s THE INTEGER PART WE SCAN FOR.
MOV DI,_ptr_int_table
MOV CX,_next_code s NEXT NUMBER NOT USED IN TABLES YET.
’ 3 SCAN THE WORD TABLE STARTING FROM
REPNE SCASW 3y DI UP TO CX ELEMENTS BIT ZERO IS
s ZERO. IF ZF= 0 WE FINISHED THE SCAN
JNE NOMATCH ;s BEFORE ANY MATCH. SO GO TO NOMATCH.
MOV BX,DI ; ZF=1 SO WE HAD A MATCH. STORE
s THE LENGTH OF SCANNED WORDS IN BX.
SUB BX,_ptr_int_table
SHR BX,1
DEC BX

; GET THE NUMBER OF SCANNED WORDS.
ADJUST LOOP STEP ( ONE MORE WORD ).

3 SINCE WE HAD A WORD MATCH,

; SEE IF WE HAVE CHAR MATCH.
IF YES THEN WE HAVE A COMPLETE
MATCH. SO GO TO MATCH.

’

H

’
CMP DL, [BX+SI] ;
;
;
; CHAR DID NOT MATCH SO TRY AGAIN
;
;
;
;

JE MATCH

AS LONG AS CcX (= REMAINING CODES TO
BE SEARCHED ) NOT EQUAL TO ZERO.

IF CX REACHED ZERO BEFORE WE HAD
ANY MATCH THEN “"JNE NOMATCH" WILL
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JIMP LOOP1 s DROP US TO NOMATCH:
NOMATCH:
MOV BX, FOUND_PTR s NO MATCH, SO STORE ZERO IN FOUND,
Mov WORD PTR [BX1,0 ; WHICH IS ADDRESSED BY FOUND_PTR.
IMP SCAN_DONE s SCAN IS DONE.
MATCH: MOV BX, FOUND_PTR y THERE WAS A MATCH SO STORE 1 IN
MoV WORD PTR [BXI1,1 ; FOUND.
sy MAKE DI = LENGTH OF SCANNED WORDS.
SUB DI, _ptr_int_table
SHR DI,1 s MAKE DI = NUMBER OF SCANNED WORDS.
DEC DI s ADJUST LOOP STEP (ONE MORE WORD. )
s+ SCAN WILL RETURN AX = CODE = NUMBER
s OF WORDS SCANNED TILL WE FOUND A
3 MATCH (i.e. INDEX OF THE MATCHED
MOV AX,DI s ELEMENT IN EITHER TABLE) .
SCAN_DONE:
POP ES
POP SI
POP DI
MoV SP,BP
POP BP
RET
_scanw ENDP
_TEXT ENDS
END
J L P END scanw.asm —=——————=——————e——— o %/
15.6. File Scrinit.c
#include <stdio.h>
#include <memory.h>
#include <dos.h>
#include <io.h>
#include <fentl.h>
#include <malloc.h>
ffdefine LINT_ARGS
ffdefine FALSE 0
ffdefine TRUE 1
ffdefine HI_RES 6
ffdefine TEXT_MODE 3
ffdefine SCREENSIZE 16384
fidefine STRERR -1 /* Sring error, not found. */
extern int x1l,yl,x2,y2; /% Window coordinates. */
extern char datafilel]; /* Figure input file. %/
extern unsigned bufr_size ;
/% init-screen() === %/
/% This function displays figure on screen. */
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/% ====%/
init_screen( value )

int value;

{

char *screenbufr; /% Temporary buffer. %/
int fhl,bytesread, lLoop=TRUE;

char flag, c;

, /% "src" is a far pointer %/
char far  *src; /* initialized to "screenbufr"., */
unsigned blksize;

if( value <=1 )
while(loop)
{
printf("enter name of data file \n");
gets(datafile);
printf("your data file is %s \n'",datafile);
/% Give the wuser a chance to  */
/* correct his mistakes. */

printf("Is the given data correct (y/n)?\n");

flag=getchar();

while( (flag!='y’)&&(flag!=‘n') &&
(flagl='Y')&&(flag!l='N") )

{
/% Read the end of line. */
while((c=getchar()) !='\n")
H
printf("enter y or n ");
flag=getchar();
}

/% Read the end of line. s/
while((c=getchar()) !="\n')

if( (flag=='y')||(flag=="'Y"') )
loop=FALSE;
3

biksize =( ( x2-x1+1 ) * (long)( y2-yl+1 ) )/8 ;
setscmode(HI_RES);

/* Read data from the input file ¥/
/* into the buffer, then use this ¥/
/% data to display the figure on  */
/% the screen.

/% Both even and odd banks are */
/* read separately. If the file */
/* extension is "cut" then just */
/% read data into array and then ¥/
/% put it to the screen. There is %/
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/% no need to send the data to the */
/* screen memory in the latter cases/

/% fhl = file handler of data file.¥/
fhl = open(datafile,O_RDONLY|O_BINARY);

/% Check if file extension = cut.*/
if( (Indx(".cut",datafile)) != STRERR )
{

/% Allocate 4 bytes to read x and */
/% y sizes. %/
screenbufr=malloc(4);
/% Read x and y sizes from datafile¥/
/% into screenbufr, then put values¥/
/* into x2 and y2 respectively. */
bytesread=read(fhl, screenbufr,4);
x2=*(unsigned *)screenbufr;
y2=*(unsigned *)(screenbufr+2);
/% Reallocate the required size of */
/* memory to hold the data in */
/* the input file. */
screenbufr=realloc(screenbufr,
blksize=4+((x2+7)/8)*(y2));
/* Read the data from the file. i/
bytesread=read(fhl,screenbufr+4,blksize);
put(xl,yl,screenbufr);

else

/% Do the first bank (even) by =/

/% allocating half the total size. */
screenbufr=malloc(SCREENSIZE/2);
fhl = open(datafile,O_RDONLY|O_BINARY);

/% Read the first bank. =/
bytesread=read(fhl, screenbufr,SCREENSIZE/2);
src=(char far *)(screenbufr+7);

/% Format has the first byte of the lst */
/* bank at offset 8000 of the screen *
/* segment. Move the data from the file */
/% to that segment. Note that in the s/
/* screen segment the bytes starting at %/
/% offset 8000 till (8192-7) will be */

/% filled with whatever the file has. */
/* This part is not from the physical %/
/* screen. %

movedata(FP_SEG(src),FP_OFF(src),0xb800,0x0000,
(SCREENSIZE/2)-7);
bytesread=read(fhl,screenbufr,SCR®ENSIZE/2);
src=(char far %)(screenbufr);
/% the lst seven bytes of the 2nd half */
/% of the file are a continuation of the’/
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/% (192-7) bytes that BASIC took from */
/% the screen memory and dumped it to  */
/* the file. So the 2nd half of the %/
/% screen starts after 7 bytes of the */
/% 2nd part of the file. By copying the */
/% second half of the file into offset */
/% (0x2000-7) we will fill the 7 bytes */
/% at (0x2000-7) then the 2nd half of ¥/
/% the screen will be copied to offset */
/% (0x2000). This fills the odd part of%*/
/% the screen. The remaining (192-7) of */

/% the file will fill offset */
/* (0x2000+8000) till offset s/
/% (0x2000+8000+(192-7)). %/
movedata(FP_SEG(src),FP_OFF(src),0xb800, (0x2000-7),
, SCREENSIZE/Z)
close(fhl);
free(screenbufr);
bufr_size=blksize;
}
J Rt et L b et END INIT_SCREEN --——==—-===———m—————we— it/
/% == SETSCMODE s=======k/
/% sets the screen to the desired video mode. *;
/% ——
int setscmode(mode) /* Function to set video mode */
int mode;
{
union REGS inregs;
union REGS outregs;
/% return the code and the */
/% interrupt for function */
/% gdosint(). %/
int ret_code,int_no;
/% "set video mode BIOS ¥/
/% function call, s/

inregs.h.ah=0;
inregs.h.al=mode;
ret_code = int86(0x10,&inregs,&outregs);
/* return the code to check for ¥/
/% any errors. */
return(ret_code);

J et END setscmode() =-—————-—mmmommmmm - %/
[ mmm e END Scrinit.c —------====mm==—=m==ommnmi/
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15.7. File Print.c

#include <stdio.h>
/* Next_code and extracalls are %/
/* defined in tables.c. i/

extern int next_code ;
extern unsigned extracalls ;
static unsigned xl, yl, x2, y2, temp ;
static char *infile;
[ == passparmtrs() */
/% This function is used only for passing parameters from the main */
/* function to this file so that they can be printed out. s/
/ b et e e e o R Y L P e % /
passparmtrs( theinfile, cl,rl, c2,r2, dummy )
char *theinfile;
unsigned cl,rl,c2,r2 ;
{

infile = theinfile ;

xl =cl ; yl =rl ;

x2 =c2 ; y2 =r2 ;

temp = dummy H
3 )
[ e END passparmtrs() —-—-—===-———mem—mmmemmm ot/
/% print() ========i/
/% Print the results to the output. The data to be printed out */
/% are the compression time, the decompression time and the */
/% compression factor. %/
/ 7" =====
print( cmprstime, dcmprstime, cmprsfactor )
unsigned cmprstime, dcmprstime;
float cmprsfactor;
{
FILE outfile;

printf(" Compression factor is %f \n", cmprsfactor) ;
printf(" Compression time is %u in 1/100 of a seconds \n",
cmprstime ) ;
printf(" decompression time is %u in 1/100 of a seconds \n",
demprstime )
printf(" lzw table size is %u \n",next_code);
printf(" Extra calls after tables were filled are %u \n",
extracalls ) ;

/* Send data to outlzw.dat file.*/
if( (outfile = fopen( "outlzw.dat", "r" )) == NULL )
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/% Open a file for writing and ¥/
/* then print the table heading.%*/
outfile = fopen( "outlzw.dat", "w" )

fprintf(outfile,

"File name x1 yl x2 y2 cmprs cmprs ");
fprintf(outfile,dcprs cont table extra \n" );
fprintf(outfile,

" fctor time ");
fprintf(outfile,"time smbl  size calls \n" );
fprintf(outfile,

Y e e e e e e e = o et e e e e n);
fprintf(outfile,"———==—=————mmmm e \n'");

else
{ /* Append the file. 74
outfile = fopen( "outlzw.dat', "a" ) ;
}
/% Formats of the output. s/
fprintf(outfile,
"%-12s  %3u %3u %3u %3u %6.2f %4u  %5u %4u %4u
%4u\n", infile, x1, yl, x2, y2, cmprsfactor, cmprstime,
demprstime, temp, next_code, extracalls );
}

[ e e ee END print() ———-==--m—m—mmmm e e/
B ST END print.c —===—mm==—=m=cmmmmmmmeemomi/
15.8. File Fadjst.c

#define uchar unsigned char

/3 adjust_output() =======i/
/% This procedure takes the compressed output which is in the */
/% form of words each containing 12 bits wide code from the =/

/% procedure compress () and packs these codes sequentially in the¥/
/% output. Thus, the last &4 bits ( bits 9 thru 12 ) of the next */
/% code should fit in the 4 bits at the beginning of the current */
/% word ( bits 1 thru 4 ). This is done for every couple of words.*/

/,2 —————=======7'c/
void ad just_output( temp, input, oldsize, ptr_newsize )
uchar “temp;
uchar far *input ;
unsigned oldsize,
*ptr_newsize ; /% Size of the adjusted output. */
{
register char *ptr2 ;

register char far *ptrl ;
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char far “*lastitem ;
unsigned quadsize ;

/* Get the even number of */
/% elements in output buffer. ¥/
( oldsize/4 ) * &4 ;
input + quadsize ;
/* Start adjusting the bits. */
for( ptrl=input, ptr2=temp; ptrl<lastitem; ptrl+=4 )
{

quadsize
lastitem

-
2o

ptrl is pointing to b3 b4 bl *
b2 b7 b8 b5 b6 as seen in
memory, which in word form
is bl b2 b3 b4 b5 b6 b7 b8.
* we want ptr2 to point to b2
b3 b4 b6 b7 b8 = cl c2 c3
where each b represents 4
bits and each c represents
one byte.

*( unsigned far *) ptrl <<= 4 ;

/% *ptrl= b2 b3 b4 0 b7 b8 b5 b6/
/% *ptri= tl1 t2 t3 t4 (t=byte). */

>
k3

SR O R =
N

P S

R R

\\\\\\$\

PYS.
* 5

oy

*ptr2++ = *(ptrl +1) ; /% cl = t2. /
/% c2 = tl bitor t3. %/

*ptr2++ = *( ptrl ) | *( ptrl + 3 ) ;

*ptr2++ = *( ptrl + 2 ) 3 /% ¢3 = b7 b8, */

/% If oldsize wasn't evenly ¥/
/% divisible by 4 then process */

if( oldsize - quadsize ) /* the last element in the %/
/% output. i/
{
*( unsigned *) ptr2 =
( *( unsigned far * ) lastitem ) << &4 ;
ptr2 +=2; /% Adjust ptr2. %/
}
/* Return the new size of output/
/% in bytes. Ptr2 will always */
/% be pointing one byte after  */
/* the last byte. ¥/
*ptr_newsize = ptr2 - temp ;
}

e END adjust_output() -——-=—-—-=--wmmmmm oo */
[ e END fadjst.c ===-—m==———=———eom——m—e %/
15.9. File Fradjst.c
/% read just_input() =ss======s======s======= %/

/* This function adjusts the form of the input data from strings of*/
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/% 12 bits codes to an array of words where each word corresponds */

/% to a 12 bit code. The left most 4 bits are set to zero. i.e. */

;* each word = integer value of the 12 bit code. %/

Y= %/

void read just_input(temporary, input,inputsize,ptr_newsize)

char far *temporary,*input;

unsigned inputsize,*ptr_newsize;
/* Input contains the input data*/
/* before this function starts. */
/* It contains the adjusted data¥/
/* when the function is done.  */
/* Inputsize= size (in bytes) 3/
/% of data to be adjusted. %/
/% Ptr_newsize = pointer to the */
/% size (in bytes) of the L4
/% adjusted data. */

{

char char_temp;
/% Number of the input bytes %/

unsigned trisize; /* divisible by 3. “/
/* Points to the byte after the %/

char *lastitem; /% trisize, */

register unsigned char ‘optrl; /% Points to the input data. */

register unsigned char far #ptr2; /* Points to the adjusted data®*/

trisize=(inputsize/3)%*3;
lastitem=input+trisize;

/% Initialize ptrl and ptr2 to =%/
/* point to the input start and %/

/% the adjusted area start. Loop*/
/% while we are inside the %/
/% trisize region. */

for(ptrl= input, ptr2= temporary; ptri< lastitem ;

{
*(ptr2 +2)= #(ptrl
*(ptr2 +3)= *(ptrl
char_temp=¥*ptrl;

*(ptrl)

ptrl +=3, ptr2 +=4 )

+2);
+1) & Ox0f;

=%(ptrl +1);

*(ptrl+l)=char_temp;
*( (unsigned far *) ptr2 )= *((unsigned *) ptrl) >>4;
}

/ ¥
/%
/ v
/%

if(inputsize-trisize)

{

If inputsize was not divisible */

by 3 then adjust the last 12 s/
bits (2 bytes) and store it in */
*ptr2. */

*( unsigned far * )(ptr2)= (* (unsigned *) ptrl) >>4;

ptr2 += 2 3
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/% Newsize = size (in bytes) of
/* the readjusted code.
*ptr_newsize=(ptr2-temporary) ;

[Hmm e END readjust_input() -=—-===---moemmeea— '
[ e e END fradjst.c --=--—=—-m--—-meo—mmeee '



377

16. APPENDIX E. PROGRAM LIST OF METHOD LZWB
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The files in this listing make use of the files in the following
sections:
- Appendix B: 13.9, 13.11, and 13.12.
- Appendix D: 15.2 - 15.9.

16.1. File Main.c

#include <stdio.h>
finclude <memory.h>
#include <dos.h>
#include <io.h>
#include <fentl.h>
#include <malloc.h>
#include <sys\types.h>
#include <sys\stat.h>
fdefine LINT_ARGS
fidefine FALSE 0
fidefine TRUE 1
fidefine HI_RES 6 /% 640x200 graphics mode. */
fidefine TEXT_MODE 3 /% Text mode. */
fdefine ALPHABET_SIZE 256 /* Size of alphabet. */
fidefine MAX_SIZE 4096 /* Table size. %/
fidefine SCRN_SIZE 16004 /* 4 bytes for x & y sizes.*/
fdefine uchar unsigned char
fidefine findtime(time) { tend=gttime();\

if(tend>tstart) time=tend-tstart;\

else time=(6000-tstart)+tend;}
static char far data_bufr[32000] ;
static char work_bufr(270001;

/% Window coordinates. s/

int x1=0, x2=639, yl=0, y2=199 ;
char datafilel4l];
unsigned bufr_size; /* Screen size in bytes. */
unsigned gttime();
unsigned count_symbols( char *, char far *, unsigned) ;
void decompress( unsigned *, char far *, unsigned ) ;
void compress( char * , char far * , unsigned * ) ;
void demprs_lzw( char far * , char * , unsigned ) ;
void swapbyts(unsigned, unsigned, unsigned ,

unsigned , unsigned );

main(argec, argv)

int argce;
char *argvl];
{

unsigned blksize;
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unsigned temp;

unsigned tstart, tend, cmprstime, dcmprstime, i;

float cmprsfactor;

char far *datafarptr=data_bufr ;

char far *workfarptr=work_bufr+4 ;

if( argec < 6 ) /% No data was entered at %/
{ /%*the command line. */

printf("enter x1 yl x2 y2 \n");
scanf("%d %d %d %d",8x1,&y1,6x2,6y2);
while((getchar())!='\n")

}
else
{
xl=atoi(argv(2]); yl=atoi(argv[3]1);
, x2=atoi(argvi4]); y2=atoi(argvi5]);

if( arge > 1)
strepy( datafile, argv(l] );

/* Read the data the from input */
init_screen( argc ) ; /% file and dump'it to thescreen®/
for(i=0;i<=55000;i++ ); /% A delay loop. */

/% Store the original block size¥/
cmprsfactor = ( float )bufr_size ;
init_table() ; /% Initialize the tables. i/

/% Get the block from the screen*/
get( x1, yl, x2, y2, work_bufr ) ; /* memory then display %/
put( x1, yl, work_bufr ) ; /% it again. We have to move and*/

/% swap the bytes of the screen =/

/% data from work_bufr to */

/% data_bufr since the latter is¥/

/% the input to both the comp- */

/% ression and the decompression*/

/* functions. */
swapbyts(FP_OFF(datafarptr), FP_SEG(datafarptr),

FP_OFF(workfarptr), FP_SEG(workfarptr), bufr_size );

blksize=bufr_size;

setscmode(TEXT_MODE);

printf(" Compression is in progress \n" ) ;

tstart=gttime(); /* Record start of compression., ¥/
/% Count the run-lengths of black and whitex/
/* colors, where run-lengths are limited 3/
/* between 1 and 128, in the screen block */
/* addressed by data_bufr+4. Put the code */
/* for each run-length in work_bufr. The */
/% size (in bytes) of the block is passed ¥*/
/% in bufr_size. The count of the symbols ¥/
/% is returned by count_symbols() and s/
/% stored in "temp'". %/
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temp=bufr_size =
count_symbols( work_bufr+4, data_bufr, bufr_size);

/% Compress the data in work_bufr+4 using */
/% Lempel-Zev-Welch algorithm and return %/
/% the compressed data in the work_buffer. */
/% The data_bufr is wused for internal */
/* manipulation within compress() and others/
/% functions it «calls. The size of the ¥/
/% compressed buffer is returned in */
/% bufr_size. %/

compress( work_bufr+4, data_bufr, &bufr_size ) ;

findtime( cmprstime )

printf(" Now decompression is in progress \n" ) ;

init_table() ;

tstart=gttime(); /% Record start of decompression¥
/% Decompress the block compressed by LZW
/% algorithm.
/% work_bufr = compressed buffer, as input,*

/* and decompressed buffer, as output.

/% data_buffer = work area used inside
/% decompress() and the function it calls. *
/% bufr_size = size of block compressed by *
/% LZW algorithm. B

decompress((unsigned *)(work_bufr+4), data_bufr, bufr_size);
/% Find the run-lengths corresponding to
/% the codes in the input work_bufr+4. Fill¥/
/% data_bufr with the runs. temp = size of */
/% the symbols supplied by decompress() = x/

o 3 R b

/% size of the result of count_symb(). %/
demprs_lzw( data_bufr, work_bufr+4, temp ) ;
findtime( demprstime )
movedata( FP_SEG(datafarptr), FP_OFF(datafarptr),
FP_SEG(workfarptr), FP_OFF(workfarptr), blksize);
setscmode(HI_RES); /% Display data on the screen to¥*/
put( xl, yl, work_bufr ); /¥ make sure the program is =/
/% working. %/
for( i=0; i<=55000; i++ ) ;
setscmode( TEXT_MODE);
passparmtrs( datafile, x1, yl, x2, y2, temp) ;
print( cmprstime, dcmprstime,
cmprsfactor = cmprsfactor/bufr_size ) ;
---------------------- END main() ---===---m-=--mmmommmmmmem i/
—————————————————————— END main.c -——=-==~=-—=======m—=o—mooik/
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16.2. File Contsym.c

* update_cmprsdblk(unsigned no of pels,int color)

* screenbufr = pointer to uncompressed block.

* output = pointer to output containing the symbols (byte each)
¥ for the encountered run-lengths of black and white

% pels.

% currentword = pointer to current position, in words, in the

v uncompressed buffer.

* nmbrwords = word length of of the uncompressed buffer. We assume
% xsize is evenly divisible by 16, i.e.

% xsize (in pels) is an exact number of words.

% color = color of the pel.

* pelcolor = color of current pel (temporary storage).

* word = cuurent word in uncompressed line.

* pelpos = { 16 for leftmost pel} {1 for rightmost pel }.
% blocksize size of uncounted (uncompressed) block, in bytes.

1}

H/
#include <stdio.h>
#include <dos.h>
fidefine LINT_ARGS
fdefine BLACKBIT 0
#define WHITEBIT 1
fidefine ENDBITS 2
fidefine update_cmprsdblk(pelcontr, color) \
{ if(color==WHITEBIT) \
output(symbolcount++]= 127+pelcontr; \
else outputlsymbolcount++]=pelcontr-1; \
} .
void swapbyts( unsigned *, unsigned *, unsigned ) ;
/% count_symbols() == %/
unsigned count_symbols (output, screenbufr, bloksize)
char *output, far *screenbufr;
unsigned bloksize ;
{
unsigned far “*currentword;
int wordcount;
int color,lastcolor;
unsigned pelcontr=0, symbolcount;

register unsigned word,pelpos;
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symbolcount = 0 ;
/u‘c

wordcount=bloksize/2 ;

Assume blocksize= 16 * constant.*/

currentword=(unsigned far *)screenbufr;

word=’tcurrentword;

If the first pel is 1 then the */
first color is white, i/
else */
first pel is zero so the */
first color is black. s/
Negate the word so our way */
of counting will work. w/
We count from left to right. i/
Do while not end of block. %/
Do while color is the same and */
current word hasn't changed. /

If max run-length =128 of color */

if ((word)&0x8000) /%
{ color=WHITEBIT; } /%
else /%
{ /%
color=BLACKBIT; /%
word="word; /%
} / ¥
/ b3
pelpos=16;
while(color<ENDBITS) /%
{ / b3
/ %
while( (word&0x8000)&&(pelpos>0) )
{
pelcontr++;
/ %
/ %

/ e

then send its symbol to the e/
output. =/

if( pelcontr == 128 )

{
update_cmprsdblk(pelcontr,color)
. * Start counting again. =/
pelcontr = 03
}
pelpos--; /* Decrease the count of unscanned */
/% pels in word. Move the next pel */
word=word<<l; /¥ to pel 16. =/
}
if(pelpos>0) /% If still inside the current word*/
{
/% Make sure the last run-length */
/% was not 128. Then output the ¥/
/% symbol of the current i/
/* run-length. 5/
if( pelcontr > 0 )
update_cmprsdblk(pelcontr,color)
word="word; /% Negate the word so we can check */
/* for the new color. e/
/% Flip the color to the new color.:/
color=(color) 20 : 1;
/* Start counting the new pels. */
pelcontr=0;
}
else /% Else, all pels in current word */
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{ /% were processed. i/
pelpos=16; /% Start from the left most pel of */
currentword++; /% the next word. */

/% 1f color is black we need to%*/

/* negate word so our way of %/

/% counting can work. *f
word= (color) ? *currentword : ~(*currentword);
if(--wordcount==0)

/% 1f end of block then output */
{ /* the symbol of the run-length. %/
/% Make sure the last run-length  */
/% was not 128. Then output the =/
/% symbol of the current *f
/% run-length. %/
if( pelcontr > 0 )
{
update_cmprsdblk(pelcontr,color)
/% Signal end of block to the %/
/% outer loop. i/
color=ENDBITS;
}
}
}
}
/% Signal the user if there was  */
/% an error. */
if(color>ENDBITS)
printf("#%%uk error in color, color=%d /n",color);
/% Return the number of symbols */
/* sent to the output = size of %/
/% "newblock". %/
return( symbolcount ) ;
[¥ mm—m e END count_symbols() -—==-=—-——-=mmoeeeaa— x/
J e e e e END contsym.¢ ——=——==—-=——cooeememeo o i/

16.3. File Dcmpsym.c

/% /
/% Find the run-length for each symbol and send it to the output. »/
/% size = size (in bytes ) of input = number of symbols in input.’*/
/% input = pointer to buffer containing symbols of run-lengths. %/
/
/

/% output = pointer to buffer having data ready to be put on the ¥

/% screen. *
/% dpelsremain = number of unfilled pels in current output byte. i/
/% currentbyteptr= pointer to current output byte. */
/7'( = = = === Emm=mm== 7'!/

#include <memory.h>
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#include <dos.h>

static int dpelsremain;

static wunsigned char far ‘currentbyteptr;

static unsigned char rightpelsbytell={0,0x01,0x03,0x07,0x0f,
Ox1f,0x3f,0x7f,0xff};

static wunsigned char leftpelsbytel]={0,0x80,0xc0,0xe0,0xf0,
0x£8,0xfc,0xfe,0xff};

mmset( unsigned, unsigned, char, unsigned );

/% == dcmprs_Llzw i/
demprs_lzw( output, input, size )
unsigned char far output, *input ;
unsigned size;
{
register unsigned input_index=0;
register unsigned code;
/% Set all output to black. %/

mmset( FP_OFF(output), FP_SEG(output), '\0', 16000 );
currentbyteptr=output; i

dpelsremain=8; /% Fill bytes from left to right. =/
while( input_index < size ) /% Do while there is more code. */
/% Get the next code. */

code = inputlinput_index++] ;
/% 1f it is a code for a white run-*/
/% length, output the run-length. */
if( code >= 128 )
update_dcmprs_white( code-127 ) ;

/% Else, it is for a black run. %/
/% Output that run. v/
else
update_dcmprs_blak( code+l ) ;
} .
}
J A et ~ END lzw_demprs ——--===-——=mmmmme e %/
/¥ = update_dcmprs_white === %/
/% It takes runs of white pels and output them to output, i.e. %/
/% fills the output with them. */
/% === i/

update_dcmprs_white(clrpels)
/% Number of white pels to store ¥/
/* in the output. it/
register int clrpels;

{



register

unsigned

differen

if(clrpe

else
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int difference;
/% Number of bytes we can fill
nmbrbytes; /% with white completely.

ce=clrpels-dpelsremain;
/% If we can fill one or more byte
/% completely then, fill the pels
/% remaining in the current byte.
ls >= (dpelsremain+8) )

*currentbyteptr |= rightpelsbyteldpelsremain];

¥ /
7 /

% /
3% /
¥* /

/% Find the number of bytes. We can%*/

nmbrbytes=(difference)>>3; /* fill them completely.
++currentbyteptr;
mmset( FP_OFF(currentbyteptr),FP_SEG(currentbyteptr),
Oxff,nmbrbytes);
currentbyteptr +=nmbrbytes. /% Adjust the pointer.
/% If difference MOD 7 1is not

/* equal to zero then there are *

/% still more pels that we did not
/+% outputed yet. So output them.
if((difference=difference &0x7) !=0)
*currentbyteptr=leftpelsbyte[(difference)];

/% In the new byte dpelsremain *

/% = 8- pels outputed above.
dpelsremain=8-(difference);

}

/% Else, we can't fill any byte *

/% completely.

{ /% If dpelsremain > clrpels, it
/* means we can put the run inside
if(difference<0) /* currentbyte.
{
*(currentbyteptr) |= ( rightpelsbytelclrpels] <<
(dpelsremain-clrpels) );
/% Adjust dpelsremain accordingly.
dpelsremain -= clrpels;

/* Else, ~clrpels have to be
/% outputted to more than one byte.
/* Fill the rest of the current
/* byte.

else

{
*currentbyteptr |=rightpelsbyteldpelsremain];

¥ /

¥
k4 /
* /

%

%/

3 /
% /
W% /
3 /

/% Move to the next output byte and*/

/* and send to it the remaining of

% /
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/% clrpels. %/
*(++currentbyteptr) =leftpelsbyteldifferencel;
/% Account for last step. */
dpelsremain=8-~ (difference);
}
}
}
[ e END update_dcmprs_white -—==--—=-—-—-—c——mu-- s/
/% update_dcmprs_blak %/
/% It take runs of black pels and output them to the output,i.e. */
/% £ill output with them. %/
/% It works exactly like update_dcmprs_white() except no filling */
/% or outputing is done because output was initialized to zero at %/
/% start of decmprs_lzw(). */
/* "‘""'——‘—'.'==:':/
update_dcmprs_blak(clrpels)
register int clrpels;
{
register int difference;
unsigned nmbrbytes;
/* Refer to comments above. ¥/

difference=clrpels-dpelsremain;
if(clrpels >= (dpelsremain+8) )
{

nmbrbytes=(difference)>>3;
currentbyteptr +=nmbrbytes+1;
dpelsremain=8-(difference &0x7 );

} .
else
{
if(difference<0) /% Dpelsremain > clrpels. %/
dpelsremain -=clrpels;
else
{
++currentbyteptr;
dpelsremain=8- (difference);
}
}
}
[dmm e e e END update_dcmprs_black() --=-—==---cmmmu——o i/

J e e C L END DCmpsSym.C ———===———===———=——————eee s/



; A program to set the specified portion of memory to the given

; initial value. This is a replacement for the "memset'" function
3 provide by the run-time library of the MS C compiler. The main
y difference is that this function can be used to initialize a

; portion of memory out of the current segment i.e. pointed to by
; a far pointer.

’

H

’

Inputs :

dest

chr ¢ character to set memory to.
H bytecnt : number of bytes .
NAME MMSET
TITLE MEMORY SET OF FAR DATA ITEMS
PUBLIC _mmset
DEST_OFF EQU [BP+4]
DEST_SEG EQU [BP+6]
CHR EQU [Bp+8]
BYTECONT EQU  [BP+10]
DGROUP GROUP CONST, _BSS, _DATA
ASSUME CS: _TEXT, DS: DGROUP, SS: DGROUP, ES: DGROUP
_TEXT SEGMENT BYTE PUBLIC 'CODE'
ASSUME CS:_TEXT
_mmset PROC  NEAR
PUSH BP ; SAVE THE REGISTERS
MoV BP,SP
PUSH DI
PUSH ES
MOV AX,DEST_SEG
MOV ES,AX
MOV DI,DEST_OFF
MOV BX,DI
MOV CX,BYTECONT
JCXZ  DONE
MOV AL,CHR
MOV AH,AL
MOV DX,DI
SHR DX, 1
JNB EVEN_OFFSET
STOSB
DEC cX
EVEN_OFFS
MOV DX, CX
SHR cx,1
REP STOSW
SHR DX, 1
JNB DONE

387

16.4. File Mmset.asm

¢ far pointer to destination.



MoV BYTE PTR ES:[DI],AL
DONE: MOV AX,BX s RETURN THE POINTER TO THE
s DESTINATION.
POP ES ; RETRIEVE THE REGISTERS.
POP DI
MoV SP,BP
POP BP
RET
mmset ENDP
_TEXT ENDS
END
J e e L L P END Mmset.asm -—-=—-———=-———ec—-mv
16.5. File Swapfar.asm
NAME SWAP
TITLE SWAP BYTES IN EACH WORD IN SOURCE AND
; PUT THE RESULT IN DESTINATION
PUBLIC _swapbyts
DGROUP GROUP  CONST, _BSS, _DATA
ASSUME (CS: _TEXT, DS: DGROUP, SS: DGROUP, ES: DGROUP
TO_OFFSET EQU [(BP+4]
TO_SEGMENT EQU (BP+6]
FROM_OFFSET EQU [BP+8]
FROM_SEGMENT EQU [BP+10]
WORDCONT EQU (Bp+12]
_TEXT SEGMENT
_swapbyts PROC NEAR
PUSH BP
MOV BP,SP
PUSH DI
PUSH SI
PUSH ES
PUSH DS
MoV AX, FROM_SEGMENT
MoV DS, AX
Mov AX, TO_SEGMENT
Mov ES,AX
MoV CX,WORDCONT
MoV SI,FROM_OFFSET
MoV DI,TO_OFFSET
LOOP1: LODSW
XCHG AH,AL
STOSW
LOOP LOOP1
POP DS

388

POP ES



POP
POP
MOV
POP
RET
_swapbyts ENDP
_TEXT ENDS
END
[ e

389

SI
DI
SP,BP
BP
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17. APPENDIX F. PROGRAM LIST OF METHOD LZWB1
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The files in this listing make use of the files in the following
sections:

- Appendix B:

- Appendix D:

- Appendix E:

13.9, 13.11, and 13.12.
15.2 - 15.9.
16.1, 16.4, and 16.5.

17.1, File Dcmpsym.c
/%

* Refer to the comments in file dcmpsym.c
* in appendix E section 16.3.

% /

#include <memory.h>

#include <dos.h>

ffdefine uchar unsigned char

static int dpelsremain;

static uchar far ‘*currentbyteptr;

static uchar  two_strings[]={
0x5, 0x9, Oxd, Ox11,
0x6, Oxa, Oxe, Ox12,
0x7, 0xb, Oxf, 0x13};

static uchar  three_strings []= {
0x29, 0x2a, 0x2b, Ox2c,
0x49, 0x4a, 0x4b, Ox4c,
0x31, 0x51, 0x32, 0x52,
0x39, 0x59, Ox3a, O0x5a b

uchar *ptr_two_strings= two_strings;

uchar *ptr_three_strings= three_strings;

mmset( unsigned, unsigned, char, unsigned );

/% demprs_lzw() == ========= %/
demprs_lzw( output, input, size )

unsigned char far output, *input ;

unsigned size;

{

register unsigned input_index=0;

register unsigned code;

unsigned char temp;

mmset( FP_OFF(output), FP_SEG(output),'\0', 16000 );
currentbyteptr=output;
dpelsremain=8;
while( input_index < size )
code = inputlinput_index++] ;
if(code<200)
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{

if( code >= 100 )
update_dcmprs_white( code-99 ) ;

else

, update_dcmprs_blak( code+l ) ;

else
{
if(code < 224)
{
temp= two_strings[(code-200)%12];
if (code <212)
{
update_dcmprs_blak(temp>>2);
update_dcmprs_white(temp&0x3);
}

else
{
update_demprs_white(temp>>2);
update_dcmprs_blak(temp&0x3);
}

}
else
{
temp= three_strings[(code-224)%161;
if(code<240)
{ /% bwb */
update_demprs_blak(temp>>5);
update_dcmprs_white((temp>>3)&0x3);
update_demprs_blak(temp&0x7);
}
else
{
if(code<256)
{ /% wbw */
update_dcmprs_white(temp>>5);
update_dcmprs_blak((temp>>3)&0x3);
update_dcmprs_white(temp&0x7);
}
else
{ printf(" eror in dcmpsym code > 256");}
}
}
}
}
}
[ e e END lzw_demprs() ===--—===—-—cmmm e oo */

static unsigned char rightpelsbytel1={0,0x01,0x03,0x07,0x0f,
Ox1£,0x3£,0x7£,0xf£};
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static wunsigned char leftpelsbytel1={0,0x80,0xc0,0xe0,0x£f0,
0xf8,0xfc,0xfe,0xff};

/% = update_dcmprs_white() === .74

update_dcmprs_white(clrpels)

register int clrpels;

register int difference;

unsigned nmbrbytes;

difference=clirpels-dpelsremain;
if(clrpels >= (dpelsremain+8) )
{

*currentbyteptr |= rightpelsbyteldpelsremainl;
nmbrbytes=(difference)>>3;

++currentbyteptr;

mmset( FP_OFF(currentbyteptr),FP_SEG(currentbyteptr),

Oxff,nmbrbytes);

currentbyteptr +=nmbrbytes.
if((difference=difference &0x7) !=0)

*currentbyteptr=leftpelsbyte((difference)];

dpelsremain=8-(difference);

}
else
{
if(difference<0)
{
*(currentbyteptr) |= ( rightpelsbytelclrpels] <<
(dpelsremain-clrpels) );
dpelsremain -= clrpels;
else
{
*currentbyteptr |=rightpelsbyteldpelsremainl;
#(++currentbyteptr) =leftpelsbyteldifferencel;
dpelsremain=8- (difference);
}
}
}
[frmm e END update_dcmprs_white() —--—==-=-=--c-meeomu- ¥/
/% update_dcmprs_blak() s===s======= */
/% It takes runs of black pels and output them to the output,i.e. ¥/
/% it fills the output with them. %/
/* It works exactly like update_dcmprs_white() except that no */
/* filling or outputting is done because the output was initialized+/
;* to zero at the start of dcmprs_lzw(). *;
* == = ====%
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update_dcmprs_blak(clrpels)

register int clrpels;

{

register int difference;
unsigned nmbrbytes;

difference=clrpels-dpelsremain;
if(clrpels >= (dpelsremain+8) )

nmbrbytes=(difference)>>3;
currentbyteptr +=nmbrbytes+l1;
dpelsremain=8-(difference &0x7 );

}
else
{
if(difference<0) /% dpelsremain > clrpels.
dpelsremain -=clrpels;
else
{
++currentbyteptr;
dpelsremain=8- (difference);
}
}
}
[ e END update_dcmprs_black() -----=--—-meceomuuun %
[dm e END Dcmpsym.c ==--====—==-------——o———o- i/
17.2. File Contsym.c
/ %

% Refer to the comments in file contsym.c
* in appendix E section 16.2.

1'(/
#include <stdio.h>
#include <dos.h>
#define LINT_ARGS
fdefine BLACKPEL 0
#define WHITEPEL 1
ffdefine ENDPELS 2
#define uchar unsigned char
void init_cont_out(char *);
void update_cmprsdblk(unsigned, int);
unsigned int find_code_2(uchar);
unsigned int find_code_3(uchar);

static unsigned symbolcount = 0 ;
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/% = === count_symbols() ==s===s===a== i/
unsigned count_symbols (output, screenbufr, bloksize)

char *output, far *screenbufr;

unsigned bloksize ;

{

unsigned far “currentword;

int wordcount;

int color,lastcolor;

unsigned pelcontr=0;

register unsigned word,pelpos;

init_cont_out(output); .
wordcount=bloksize/2 ;
currentword=(unsigned far *)screenbufr;
word=*currentword;
if ((word)&0x8000)

{ color=WHITEPEL; }

else
{
color=BLACKPEL;
word="word;
}
pelpos=16;
while(color<ENDPELS)
{
while( (word&0x8000)&&(pelpos>0) )
{
pelcontr++;
if( pelcontr == 100 )
{ .
update_cmprsdblk(pelcontr,color)
pelcontr = 03
}
pelpos—-;
word=word<<l;
}
if(pelpos>0)
{
if( pelcontr > 0 )
update_cmprsdblk(pelcontr,color)
word="word;
color=(color) 720 : 1;
pelcontr=0;
else

{
pelpos=16;
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currentword++;
word= (color) ? *currentword : ~(*currentword):
if(--wordcount==0)

{
if( pelcontr > 0 )
{

update_cmprsdblk(pelcontr,color)
color=ENDPELS;
}

}
}
if(color>ENDPELS)
printf (s error in color, color=%d /n",color);
return( symbolcount ) ;

/¥ mmm e mmm e END count_symbols() -----=--—mmemmmmmmmmnn e/
#define two_strings_bw (Cunsigned ) (200-1))
fldefine two_strings_wb (Cunsigned ) (212-1))
#define three_strings_bwb (Cunsigned ) (224-1))
fidefine three_strings_wbw ((unsigned ) (240-1))
#define start_two_strings(color) \

(Ccolor== 1) 7?7 two_strings_bw : two_strings_wb)
fidefine start_three_strings(color) \

(color==0 ? three_strings_bwb : three_strings_wbw)
static char *cont_output;
static int string_num=1;
static unsigned sl,s2,s3;
static uchar temp;
static unsigned two_strings(]={

0x5, 0x9, Oxd, Ox11,

0x6, Oxa, Oxe, 0x12,

0x7, Oxb, Oxf, 0x13};
static unsigned three_strings []= {

0x29, 0x2a, 0x2b, Ox2c,

0x49, Oxd4a, 0x4b, Ox4c,

0x31, 0x51, 0x32, 0x52,

0x39, 0x59, O0x3a, Ox5a b

/% update_cmprsdblk() ===s=s=== i
void update_cmprsdblk(pelcontr, color)

unsigned pelcontr;

int color;

{

unsigned code;

switch(string_num)
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{
case 1 : {
if(color)
cont_output[symbolcount++]= 99 + pelcontr;
else
cont_output{symbolcount++]= pelcontr -1;
if(pelcontr<=4)
string_num ++;
sl=pelcontr;
break;
}
case 2 : {
if (pe%contr<=3)
temp=pelcontr | (sl<<2);
cont_output(symbolcount -1]=
start_two_strings(color)+find_code_2(temp);
if(sl<=2)
{
s2=pelcontr;
string_num++;
}
else
string_num=1;
}
else
{
if(color)
cont_output[symbolcount++]= 99 + pelcontr;
else
cont_output(symbolcount++]= pelcontr -1;
if(pelcontr<=4)
{
sl=pelcontr;
}
else
string_num=1;
}
break;
}
case 3 : {

string_num=1;
if( (sl+s2+pelcontr) <= 7 )
{
temp= pelcontr | (temp <<3);
if (code=find_code_3(temp))
cont_output[symbolcount -1]=
code + start_three_strings(color);
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else
{
if(color)
cont_output{symbolcount++]=
99 + pelcontr;
else

cont_output[symbolcount++]=
pelcontr -1;
if(pelcontr<=4)
{

string_num =2;
sl=pelcontr;

}
¥

else
{
if(color)
cont_output{symbolcount++]= 99 + pelcontr;
else
cont_output[symbolcount++]= pelcontr -1;
if(pelcontr<=4)

{

string_num =2;

sl=pelcontr;

1
break;
}
}
[ mmmm e END update_cmprsdblk()-—==—-—=--cmmmmeeoe s/
/% init_cont_out() ======= %/
void init_cont_out{output)
char *output;
{
cont_output=output;
}
[mmm e END init_cont_out() ———=-=-—m-scmmemm - ¥/
e e END Contsym.C -——=—==—-—=====—==—=——————— */
17.3. File Scan2.asm

NAME SCAN2
TITLE SCANNING OF THE ALTERNATE TABLE TO FIND A MATCH
PUBLIC _find_code_2
CHARCODE EQU (BP+4] i PASSED PARAMETER.



DGROUP

_DATA

EXTRN

_DATA

_TEXT

_find_code_2
PUSH
MOV
PUSH
PUSH
MOV
MOV
MOV
MOV
7 (0)'
REPNE
JNE
MOV
SUB
JMP

NOMATCH:
XOR

SCAN_DONE:
POP
POP
MOV
POP
RET

_find_code_2

_TEXT

END

/* —————————————
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GROUP CONST, _BSS, _DATA

ASSUME (CS: _TEXT, DS: DGROUP, SS: DGROUP, ES: DGROUP
SEGMENT

_ptr_two_strings:WORD

ENDS

SEGMENT BYTE PUBLIC 'CODE'

PROC NEAR

BP

BP,SP

DI

ES

AX,DS A s INITIALIZE THE REGISTERS.

ES,AX

AX,CHARCODE

"CHARCODE" IS DEFINED IN

FILE DCMPSYM.C. DI = POINTER TO

THE TABLE HOLDING THE ELEMENTS

OF TYPE CHARACTER TO BE EXAMINED
; IN THE SEARCH.

DI,_ptr_two_strings

“s we we we

cX,12 3y CX = SIZE OF TABLE.

3 SCAN THE CHAR_TABLE STARTING FROM
SCASB 7y DI UP TO CX ELEMENTS. STOP WHEN

3y THE FLAG BIT ZF IS SET TO 1

3+ IF ZF= 0 WE FINISHED THE SCAN
NOMATCH ; BEFORE ANY MATCH. SO GO TO NOMATCH.
AX,DI ; ZF=1 SO WE HAD A MATCH. STORE

’

LENGTH OF SCANNED CHARACTERS IN AX.
AX,_ptr_two_strings
SCAN_DONE 3+ SCAN IS DONE.

AX,AX ; NO MATCH SO RETURN VALUE=ZERO.
ES

DI

SP,BP

BP

ENDP
ENDS

17.4, File Scan3.asm

; REFER TO COMMENTS IN FILE SCAN2.C OF THIS APPENDIX.

NAME

SCAN3
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TITLE SCANNING OF THE THREE STRING TABLES TO FIND A MATCH.
PUBLIC _find_code_3

CHARCODE EQU [BP+4] s PASSED PARAMETER.

DGROUP GROUP  CONST, _BSS, _DATA

ASSUME CS: _TEXT, DS: DGROUP, SS: DGROUP, ES: DGROUP
_DATA SEGMENT

EXTRN _ptr_three_strings:WORD
_DATA ENDS
_TEXT SEGMENT BYTE PUBLIC 'CODE'
_find_code_3 PROC NEAR

PUSH BP

MOV BP,SP

PUSH DI

PUSH ES

MOV AX,DS
MOV ES,AX
Mov AX,CHARCODE

MOV DI,_ptr_three_strings
MOV cX,16
REPNE SCASB
JINE NOMATCH
MOV AX,DI
SUB AX,_ptr_three_strings
JMP SCAN_DONE
NOMATCH: XOR AX, AX

SCAN_DONE:
POP ES
POP DI
MOV SP,BP
POP BP
RET
_find_code_3 ENDP
_TEXT ENDS
END
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18. APPENDIX G. PROGRAM LIST OF METHOD LZWB2
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The files in this listing make use of the files in the following
sections:
~ Appendix B: 13.9, 13.11, and 13.12,
- Appendix D: 15.2 - 15.9.
- Appendix E: 16.1 - 16.5.

18.1. File Dcmprs.c
/%

% Refer to the comments in file dcmprs.c
* in appendix D section 15.3.

¥

#include <memory.h>

#include <stdio.h>

#include <malloc.h>

fidefine uchar unsigned char
fidefine MAX_SIZE 4096

fdefine ST_MAX 1000

fdefine SCRN:SIZE 16004
fidefine ALPHABET_SIZE 256

#define update_string_table() \

{if( next_code < MAX_SIZE )\
{char_table[next_codel=code.k ;\
int_tablelnext_code] = oldcode;\
next_code++ ;}}

fidefine look_up() \

{code.w = int_table[CODE] ;\

code.k = char_table[CODE];}

extern unsigned int_tablel] ;
extern uchar char_tablel] ;
extern int next_code;
static char *stack ;
static wunsigned stack_index=0;

char pop();

void readjust_input(uchar far *, uchar *, unsigned, unsigned *);
/% decompress() ========i/
decompress(decmprs_io, decmprs_work ,inputsize)
char *decmprs_io,far *decmprs_work;
unsigned inputsize;
{

unsigned input_index=0;

unsigned oldcode, incode;

unsigned newsize ;

char temp;

register unsigned output_index=0;
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register unsigned CODE ;
char finchar ;
struct {
char ks
unsigned w3
} code;
char *temp_ptr;
unsigned far ¥input;
char *databufr;

stack = malloc( ST_MAX );
readjust_input(decmprs_work,decmprs_io,inputsize,&newsize);
inputsize=(newsize/2);

input= (unsigned far *) decmprs_work;

databufr=decmprs_io;

CODE= oldcode= input{input_index++1];

look_up() /% -- MACRO -- find "code" components.:
if(CODE >= ALPHABET_SIZE) /* First code = "w,k".
{

if(code.w < ALPHABET_SIZE)
databufrioutput_index++]=code.w;
else
£
temp=code.k;
CODE=code.w;
look_up()
databufr{output_index++]=code.w;
databufrioutput_index++]=code.k;
code.k=temp;

}

}
databufrloutput_index]=finchar=code.k;
¥hile(input_index< inputsize )

CODE=incode=input{input_index++];

i£(CODE >= next_code)

{
push(finchar);
CODE=oldcode;
}
look_up()
while(code.w!=0xffff)
{
push(code.k);
CODE=code.w;
look_up()
}

databufrl++output_index]=code.k;
finchar=code.k;
while(stack_index)

S
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{
databufr[++output_index]=pop();
}

update_string_table()

oldcode=incode;

}
}
[ e e END decompress() -~-———==-—mmcmommmee %/
/% push() L7
push( item )
char item;
{
if( stack_index >= ST_MAX )
{
printf( " stack overflow in push \n" ) ;
return ;
}
stack[stack_index++] = item ;
[ e END push() ===——---o-mmmmm oo - %/
/% pop() === o/
char pop()
{
if( --stack_index < 0 )
{
printf(" Stack underflow in pop \n" ) ;
return ('\0');
}
return stack{stack_index];
}
[ e END pop() ——==———mm—mmmmmme e i/
e e L e e e et END DCMpPrs.c ———=—===——=—m==———— e ¥*/
18.2. File Tables.c
/:':

* Refer to the comments in file tables.c
* in appendix D section 15.4,

i/
#include <stdio.h>
#include <memory.h>
#include <malloc.h>
fdefine MAX_SIZE 4096
fdefine ALPHABET_SIZE 256

fidefine uchar unsigned char
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/% Define global varriables.

unsigned int_table[MAX_SIZE] ;
unsigned char char_table[MAX_SIZE] ;
int next_code ;
unsigned *ptr_int_table=int_table;
unsigned char *ptr_char_table=char_table;
unsigned extracalls=0 ;
/% == jnit_table()
init_table()
{

register int index ;

char *datafile= "etables.dat';

char (o3

FILE *ing

unsigned temp, *ptr_temp=&temp;

memset( (char *) int_table,Oxff,MAX SIZE*2);
for( index=0; index < ALPHABET_SIZE; index++ )
char_tablelindex] = ( short ) index ;

/% Open file to read data from.

if( (in=fopen(datafile,"r")) != NULL )
{

for( index=256; index<312; index++)

{

¥ /

fscanf(in,"%u%u",&int_tablelindex],ptr_temp);

char_tablel[index]=temp;

}

if( ferror(in) )

{ /% If any error was encountered ¥/

/% while reading the
/% inform us and exit.

printf(" Error in reading tables \n");

exit(0);
}
fclose(in);
}
else /* File couldn't be
/* some reasons.
{
printf(" ERROR ----- Can't open input file");
exit(0);
}
next_code = index;
3
[ e e END init_table() -—-=----=ccccmoem

data then

3% /
% /

b /
¥ /

[itmm e m e END Tables.c —====---==--=-=--=-—ooomooo- i/
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19. APPENDIX H. PROGRAM LIST OF METHOD LZW1l
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The files in this listing make use of the files in the following

sections

- Appendix B: 13.9,
- Appendix D: 15.1 - 15.9,.

13.11, and 13.12.

19.1. File Tables.c
#include <stdio.h>
#include <memory .h>
#include <malloc.h>
fidefine MAX_SIZE 4096
ffdefine ALPHABET_SIZE 256
fdefine uchar unsigned char
/* Definition of GLOBAL */
/% variables. %/
unsigned wl_table[MAX_SIZE] ;
unsigned w2_table[MAX_SIZE] ;
uchar w3_table[MAX_SIZE] ;
unsigned “ptr_wl_table=wl_table;
unsigned *ptr_w2_table=w2_table;
uchar “ptr_w3_table=w3_table;
int next_code ;
unsigned extracalls=0 ;
/% init_table(). ====s===== */
/% This function initializes every element in int_table to a com- */
/* bination that will never occur. Since the code is only 12 bits */
/% long then the 16 bits used to hold these codes are to be <= */
/% Oxfff., For this reason in this program the Oxffff code is used */
/* to solve the above problem. It should be noted that any combin- */
/* ation > Oxfff should work correctly as well. */
;* Then the first 256 symbols in w2_table are initialized to 0—255.*5
3 =sS====== ¥
init_table()
{
register int index ;
/% Set every byte in the */
/* int_table to Oxffff (i.e. %/
/% every code word = Oxffff) so */
/* that no code will match with */
/* it, because the actual codes ¥/
/* are only 12 bits. ¥/
memset( (char *) wl_table,Oxff,MAX_SIZE*2);
/% Set lst 256 of char_table to */
/* be the extended ASCII codes.

for( index=0; index < ALPHABET_SIZE; index++ )

w2_table([index] =

index

¥ /



408

next_code = ALPHABET_SIZE;

}

F i END init_table() -=---—==---m=-mccmme */
F e END Tables.¢ =—===———sommom o .74
19.2. File Cmprs.c

#include <memory.h>

#include <malloc.h>

fdefine uchar unsigned char

fdefine MAX_SIZE 4096

ffdefine SCRN_SIZE 16004

#define update_tables(a,b,c) { wi_tablelnext_codel = a;\
w2_tablelnext_code] = b;\
w3_tablelnext_codel = ¢;\
next_code++ ;}

fidefine look_table2(w2,codec) { w2=w2_tablelcodec]; }

extern unsigned wl_tablel[] ; /* wl_tablel]l, w2_tablel], =/

extern unsigned w2_tablel] ; /* w3_tablel] and next_code are */

extern uchar w3_tablel] ; /* defined in tables.c. %/

extern int next_code ;

extern unsigned extracalls ;

extern unsigned stack[];

extern int st_index ; /% Stack size. */

void adjust_output( uchar *, uchar far *, unsigned, unsigned * );

void decompose(unsigned );

/% compress() === ====/

compress( compress_io,compress_work, ptr_bufr_size )

uchar *compress_io, far *compress_work ;

unsigned *ptr_bufr_size ;

{

uchar
unsigned
char
unsigned
unsigned
register
unsigned
struct

uchar
unsigned
unsigned

*input;

far *output;
“ptr_new_output;

bufr_size;
code ;
unsigned

data_index=0 ;

out_index=0 ;

{

unsigned
unsigned

} str

wl;
w2;
ing ;

w3, first_ch;

Li, Lj 3
position,

indexl
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register unsigned i

input=compress_io;
output=(unsigned far *)compress_work;

/% Li = first input element. *f
Li= inputldata_index++] ;
/% Lj = second input element. %/

Lj= input(data_index++] ;
first_ch = Lj 3
output[out_index++] = Lij;
string.wl = Lj;
w3 =Lj ;
/% Find bufr_size. */
bufr_size=%ptr_bufr_size;
/% Loop while there is more input. */
while( data_index < bufr_size )

{ /% Search for the largest block in =/
/% wl_table, =/
while( data_index < bufr_size )
{ /% Get 2nd element in the new block*/
string.w2=inputldata_index++] ;
/% See if wl.w2 is in tables. %/

if( scan_w2( string.wl, string.w2, &cpde) 2
/% wl.w2 is in the tables, so let */

/% new wl = wl.w2, /

string.wl=code;
else /% wl.w2 was not in the tables. */
{ /% First element of 2nd block = w2.%/

first_ch=string.w2 ;
/% Go to the second while loop and */
/% search for a table entry that =/
/% has wl and its w2 starts with w3*/

break
}
}
/% We already searched for two */
/% elements or more, so start *f
position = 256 ; /* searching after 256. */
while( data_index < bufr_size )
{
if( scan_w3(string.wl, first_ch, &code, position) )
{ /% Start searching after code. */

position=code+l;

look_table2(string.w2, code )
/* st_index points to the last i/
/% element on the stack. %/

decompose( string.w2 ) ;

indexl = data_index ;

if( (bufr_size - indexl) >= st_index )

{ /% data_index is already pointing */
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/ %
/ %
/ %
/ ¥
/ ¥
for(j=1;(j
{
j++;
}
ifC j ==

{

to the element after w3 in the */
input so there is no need to %/
compare it. The "for" loop will */
start comparing from indexl %/
that should be equal to stack[1]+/
<= st_index) &
(input(indexl++]==stack([jl) ; )

(st_index+1) )

string.wl=code ;

/ k]

data_index === w3+l.

data_index += st_index ;
first_ch=input({data_index++] ;

If the tables are not full yet, */

then string --> string table, %/
i.e put w and k in the wl_table */
and w2_table respectively at the*/

}
else
i
}
}
}
else
break ;
3
Lj = string.wl;
output{out_index++] =/Lj;
%
if(next_code<MAX_SIZE3
%
/ b3
/ %
/%

update_tables( Li,
else

position indexed by next_code. ¥/
Lj, w3 )

extracalls++ ;
Li = Lj ;
string.wl = first_ch ;
w3 = first_ch ;
}
/% Make sure the last symbol was %/
/* sent to the output. i/
if( data_index == bufr_size )
{

output{out_index]
out_index++;

}

input{bufr_size-11] ;

/% Pack the output codes from a */
/% string of words format to a */
/% string of 12 bits codes ¥/
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/% format. The input to */
/% adjust_output() is compress_ */
/% work. It sends the output in */
/% the final form in compress_io%/
adjust_output(compress_io ,compress_work,
2%out_index , ptr_bufr_size ) ;

}
U N END compress() ==---mm=—=m=mmmmmmmoomem o %/
[ e e END Cmprs.c —————=———=——=m————mmo—mee s/
19.3. File Dcmprs.c
#include <memory.h>
#include <stdio.h>
#include <malloc.h>
fdefine uchar unsigned char
fidefine MAX_SIZE 4096
fidefine ST_MAX 1000
fidefine SCRN_SIZE 16004
fdefine update_wl2_table(wl,w2) \
{ wi_tablelnext_codel = wl;\
w2_tablelnext_code]l = w2;\
next_code++ ;}

/% W1l_table, w2_table and next_code/
extern unsigned wl_tablel] ; /* are defined globally in s/
extern unsigned w2_tablel] ; /* tables.c. *f

/% Index of the next code in tables®/
extern int next_code; /% not used yet. =/
extern unsigned stack[];

/% First unused element. Stack */
extern unsigned st_index; /% grows upward. /
void readjust_input(char far *, char *, unsigned, unsigned * ) ;
/% ==== == decompress() s=========ssss=sssssss ¥/
/% Input is in the form of 12 bits codes stored serialy. We have /

/% to readjust them to integer format so we can store them and use */

/% them in the wl_table. */
/% Inputsize is size of input in bytes. i/
/% decmprs_io= as input to decmprs it points to compressed data. */

/* decmprs_io= as ouput of decmprs it points to decompressed data. ¥/

/% decmprs_work= pointer to a temporary area. %/
/1'( == FET Tty /
decompress(decmprs_io, decmprs_work ,inputsize)

char *decmprs_io, far *decmprs_work;

unsigned inputsize;

{
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fidefine
ffdefine
fdefine

unsigned
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input_index=0;

/% Size of the compressed data =/
/% stored in a word form for each */
/% code. It is equal to the size %/

unsigned newsize ; /% of readjust_input() output. %/
register unsigned output_index=0;
register unsigned i

unsigned wl, w2;
unsigned far *input;
char *databufr;

/* Adjust the input from 12 bits  */

/% serial codes into an array of =/
/% integers and then put the size %/
/% of the array in newsize. %/

readjust_input(decmprs_work,decmprs_io, inputsize,&newsize);

inputsize=(newsize/2);

/* Find size of input code in words¥/

input= (unsigned far *) decmprs_work;
databufr=decmprs_io;
wl = inputlinput_index++] ;
databufrloutput_index++] = wl ;
while( input_index < inputsize )

{

w2=input{input_index++] ;

decompose( w2 ) ;

j=0 ;

do

{

databufr(output_index++] = stack[j++] ;

}
while( j <= st_index ) ;
if( next_code < MAX_SIZE )
update_wl2_table(wl,w2);
wl = w2
}
printf("\n");

19.4, File Dcompose.c

TRUE 1
FALSE O
MAX_SIZE 4096

look_up_wl2(xwl,xw2,codec) \
{ xwl=wl_tablelcodec]; \
xw2=w2_tablelcodecl; }
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extern unsigned wl_tablel] ;
extern unsigned w2_tablel] ;
unsigned stack[MAX_SIZE];
int st_index ; /% Stack size.
[ Fe== === decompose()
void decompose( code )
unsigned code ;
{
int strngstk = 0 ;
register unsigned wl, w2;
unsigned loopl,loop2 , strngl500];
if(code<256)
{
stacklst_index=0]=code;
return;
}
st_index =0 ;
do
i

loopl=TRUE;
while( loopl)
{

look_up_wl2( wl, w2, code )
strnglstrngstk++] = w2 ;
if( wl < 256 )

{
stack[st_index++] = wl ;
loopl= FALSE;
}
else
code = wl ;

}

loop2=TRUE;

while( (loop2) & (strngstk>0) )
{

w2 = strngl--strngstk] ;
if( w2 < 256 )
stack[st_index++] = w2 ;
else
{
code = w2 ;
loop2=FALSE;
}
}
}
while( strngstk > 0 | (1loop2));
st_index-- ;



INPUT

OUTPUT

.
b
.
b
9
.
?
.
]
.
?
.
’
.
1
.
?
.
?
.
b
.
1
.
1
.
’
.
9
.
’

’

NAME
TITLE
PUBLIC

wl
w2
ptr_code

DGROUP

_DATA
EXTRN
EXTRN
EXTRN
_DATA

_scan_w2
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—————————————————— END decompose() ———-==-—--===---mmo—ommui
—————————————————— END Dcompose.Cc —=———————-—----—-—=—————=f

19.5. File Scanw2.asm

: ( PARAMETERS PASSED BY CALLING SUBROUTINE )

1) W2_CODE CHARACTER PART OF THE CODE,i.e K.

2) W1_CODE = UNSIGNED INTEGER PART OF THE CODE, i.e. W.

3) CODEADRS ADDRESS OF CODE ,i.e. WHERE WE RETURN THE
CODE WHICH HAS W AND K EQUAL TO "INTCODE' AND
"CHARCODE" RESPECTIVELY.

1]

1) THE FUNCTION RETURN VALUE = F A MATCH IS FOUND.

11
0 IF NO MATCH.

THE FUNCTION NEEDS TO SHARE THE FOLLOWING VARIABLES WITH WHOEVER
HAS THEM:

1) _ptr_w2_table = A POINTER TO FIRST ELEMENT IN CHAR_TABLE.
2) _ptr_wl_table = A POINTER TO FIRST ELEMENT IN INT_TABLE.
3) next_code = NUMBER OF FIRST FREE CODE IN CHAR_TABLE.
NUMBER OF FIRST FREE CODE IN INT_TABLE.

I

SCAN
SCANNING OF THE W1 AND W2 TABLES TO FIND A MATCH
_scan_w2

EQU [BP+4] ; PASSED PARAMETERS.
EQU [BP+61

EQU [Bp+8]

GROUP CONST, _BSS, _DATA

ASSUME CS: _TEXT, DS: DGROUP, SS: DGROUP, ES: DGROUP

SEGMENT
_ptr_w2_table:WORD
_ptr_wl_table:WORD
_next_code:WORD

ENDS

PROC  NEAR
PUSH BP
MOV BP,SP
PUSH DI
PUSH SI
PUSH ES

MOV AX,DS
MOV ES,AX .
s INITIALIZE THE REGISTERS TO THE



MOV
MOV

MOV

MOV
MOV

LOOP1:
REPNE

JNE
MOV

SUB

SUB

CMP

JE

_ IMP.
NOMATCH:
MOV
IMP
MATCH:

SUB
SHR
DEC

MOV
MOV
MOV
SCAN_DONE:
pPOP
POP
POP
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AX,wl
DX, w2

we we ws we we we

SI, ptr_w2_table

DI,_ptr_wl_table
CX,_next_code
SCASW

NOMATCH
BX,DI

we we we we we we ws we

BX,_ptr_wl_table

BX, 2

DX, [BX+S1I]

MATCH

LOOP1

We we We We Wwe we We we we we We we wa

AX,0
SCAN_DONE

“s we wa we

DI,_ptr_wl_table
DI,l
DI

-e wo we

BX,ptr_code
[BXx],DI
AX,1

ES
SI
DI

CORRESPONDING PARAMETERS PASSED
FROM THE CALLING PROGRAM.

SI = POINTER TO THE TABLE HOLDING
ELEMENTS OF CHARACTER TYPE. THIS
TABLE HOLDS THE SECOND PART TO BE
EXAMINED IN THE SEARCH.

DI = POINTER TO THE TABLE USED IN
THE SEARCH. IT HOLDS THE INTEGER
PART WE SCAN FOR.

CX = NEXT NUMBER NOT USED IN THE
TABLES YET.

SACN THE WORD TABLE STARTING

FROM DI UP TO CX ELEMENTS.

IF ZF= 0 WE FINISHED THE SCAN
BEFORE ANY MATCH. SO GO TO NOMATCH.
ZF=1 SO WE HAD A MATCH. STORE THE
LENGTH OF THE SCANNED WORDS IN BX.

GET NUMBER OF SCANNED WORDS.
ADJUST FOR LOOP INDEX STEPPING
ONE MORE WORD.

SINCE WE HAD A WORD MATCH,

SEE IF WE HAVE CHAR MATCH.

IF YES THEN WE HAVE A COMPLETE
MATCH. SO GO TO MATCH.

CHAR DID NOT MATCH SO TRY AGAIN

AS LONG AS CX (= REMAINING CODES TO
BE SEARCHED ) NOT EQUAL TO ZERO.
IF CX REACHED ZERO BEFORE WE HAD
ANY MATCH THEN "JNE NOMATCH" WILL
DROP US TO NOMATCH:

NO MATCH SO RETURN ZERO IN AX.
SCAN IS DONE.

THERE WAS A MATCH SO MAKE DI =
LENGTH OF SCANNED WORDS.

MAKE DI = NUMBER OF SCANNED WORDS.
ADJUST FOR LOOP INDEX STEPPING
ONE MORE WORD.
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MOV SP,BP

POP BP
RET
_scan_w2 ENDP
_TEXT ENDS
END
[ e END Scanw2.asm ——==-————==———m—e————— e

19.6. File Scanw3d.asm

3+ REFER TO COMMENTS IN FILE SCANW2.ASM IN THIS APPENDIX.

NAME SCAN_W3

TITLE SCANNING OF THE

PUBLIC _scan_w3

wl EQU [BP+43 s PASSED PARAMETERS.
w3 EQU (BP+6]

ptr_code EQU [BP+8]
position EQU (BP+10]

DGROUP GROUP CONST, _BSS, _DATA
ASSUME CS: _TEXT, DS: DGROUP, SS: DGROUP, ES: DGROUP

_DATA SEGMENT

EXTRN _ptr_w3_table:WORD
EXTRN _ptr_wl_table:WORD
EXTRN _next_code:WORD
_DATA ENDS
_scan_w3 PROC NEAR

PUSH BP

MOV BP,SP

PUSH DI

PUSH SI

PUSH ES

MOV AX,DS
MOV ES,AX
MOV AX,wl
MOV DL,w3
MOV SI,_ptr_w3_table
MOV BX,position
MOV DI,_ptr_wl_table
SHL BX,1
ADD DI,BX
MOV CX,_next_code
SUB CX,position
JZ NOMATCH
LOOP1:
REPNE SCASW



JNE
MOV
SUB
SHR
DEC
CMP
JE
JMP
NOMATCH:
MOV
JMP
MATCH:
SUB
SHR
DEC
Mov
MOV
Mov
SCAN_DONE:
POP
POP
POP
MOV
POP
RET
_scan_w3
_TEXT
END
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NOMATCH

BX,DI
BX,_ptr_wl_table
BX,1

BX

DL, [BX+SI]

MATCH

LOOP1

AX,0
SCAN_DONE

DI,_ptr_wl_table
DI,1

DI

BX,ptr_code
(Bx],DI

AX, 1

ES
SI
DI
SP,BP
BP

ENDP
ENDS
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20. APPENDIX I. PROGRAM LIST OF METHOD LZW2
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The files in this listing make use of the files in the following
sections:
- Appendix B: 13.9, 13.11, and 13.12.
~ Appendix D: 15.1 - 15.9.
~ Appendix H: 19.1 and 19.3 - 15.6.

20.1. File Cmprs.c

#include <memory.h>
#include <malloc.h>
ffdefine uchar unsigned char
ffdefine MAX_SIZE 4096
fidefine SCRN_SIZE 16004
#define TRUE 1
ffidefine FALSE 0
ffdefine update_tables(a,b,c) { wl_tablelnext_codel] = a;\
w2_tablelnext_codel = b;\
w3_table[next_code] = c;\
next_code++ ;}
fidefine look_table2(w2,codec) { w2=w2_tablelcodec]; }
extern unsigned wl_tablel[] ; /% wl_tablel], w2_tablel], =/
extern unsigned w2_tablel] ; /* w3_table[] and next_code are 7/
extern uchar wl_tablel] ; /* defined 1in tables.c. */
extern int next_code ;
extern unsigned extracalls ;
extern unsigned stack[MAX_SIZEI;
extern int st_index ; /% Stack size. =/
void ad just_output( uchar *, uchar far *, unsigned, unsigned * );
void decompose(unsigned );
/% == compress() ========i/
compress( compress_io,compress_work, ptr_bufr_size )
uchar *compress_io, far *compress_work ;
unsigned *ptr_bufr_size ;
{
uchar *input;
unsigned far *output;
char *ptr_new_output;

unsigned bufr_size;
unsigned code ;

register unsigned data_index=0 ;

unsigned out_index=0 ;

struct { A LT
unsigned wl;
unsigned w2;

} string ;
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uchar w3, first_ch;
unsigned Li, Lj ;
unsigned longblk, loop3 ;

int bigstk ;
unsigned position, indexl ;
register unsigned Js

input=compress_io;
output=(unsigned far *)compress_work;

/% Li = first input element */
Li= inputldata_index++] ;
/% Lj = second input element. %/

Lj= inputldata_index++] ;
first_ch = Lj 3
output[out_index++] = Li;
string.wl = Lj;
w3 =1Lj ;.
/% Find bufr_size. %/
bufr_size=*ptr_bufr_size;
/* Loop while there is more input. %/
while( data_index < bufr_size )

{ /% Search for the largest block in */
/% wl_table. %/
while( data_index < bufr_size )
{ /% Get 2nd element in the riew block¥/
string.w2=input[data_index++] ;
/% See if wl.w2 is in tables. x/

if( scan_w2( string.wl, string.w2, &code) )
/% wl.w2 is in the tables, so let =/

/* new wl = wl.w2. %/

string.wl=code;
else /% wl.w2 was not in the tables. %/
{ /* First element of 2nd block = w2.%/

first_ch=string.w2 ;
/% Go to the second while loop and */
/% search for a table entry that =/
/% has wl and its w2 starts with w3%/

break ;
}
}
/% We already searched for two */
/% elements or more, so start %/
position = 256 ; /* searching after 256. %/
whileg data_index < bufr_size )
if( scan_w3(string.wl, first_ch, &code, position) )
{ /* Start searching after code. %/
longblk = string.wl ;
bigstk = -1 ;

loop3 = TRUE ;
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while( loop3 )
{
look_table2(string.w2, code )
/* st_index points to last element */
/* in stack. %
decompose( string.w2 ) ;
indexl = data_index
if( ((bufr_size - indexl) >= st_index ) &
( st_index > bigstk ) )
{ /* Data_index is already pointing 3/
/% to the element after w3 in the */

/% input so no need to compare it. */
/% The for loop will start */
/% comparing from indexl which */
/* should be equal to stack[1]. =/

for(j=1;(j <= st_index) &
(input[indexl++]==stack(jl);)
{

jrs
}
if( j == (st_index+1) )
{
bigstk = st_index 3
longblk = code ;
}
}
position = code + 1;
if( scan_w3(string.wl, first_ch,
&code, position) )

.
?

else
loop3 = FALSE ;
} .
if( string.wl == longblk )
break ;
else
{

string.wl = longblk ;

position = longblk + 1 ;
data_index += bigstk ;

first_ch = inputldata_index++] ;

}
}
else
break ;

}
Lj = string.wl;
outputlout_index++] = Lj;
/% If the tables are not full yet, =/
if(next_code<MAX_SIZE)
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/ %
/ ¥
/ 4

then string --> string table, %/
i.e put w and k in the wl_table */
and w2_table respectively at thes/

/* position indexed by next_code. 3/
update_tables( Li, Lj, w3 )
else
extracalls++ ;
Li = Lj ;
string.wl = first_ch ;
w3 = first_ch ;
}
/% Make sure the last symbol was =/
/% sent to the output. %/
decompose( outputlout_index - 1] );
if( data_index == bufr_size )
{
output{out_index] = input[bufr_size-11] ;
out_index++;
}
/* Pack the output codes from a */
/% string of words format to a */
/% string of 12 bits codes %/
/% format. The input to %/
/% adjust_output() is compress_ */
/* work. It sends the output in %/

/a‘r

the final form in compress_io*/

ad just_output(compress_io ,compress_work,

2%out_index , ptr_bufr_size ) ;

}
[ e END compress() -—-—=--———memommmeem—eit/
[ e e e END Cmprs.c ——==———==————m—=———me o xf
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21. APPENDIX J. PROGRAM LIST OF METHOD LZW3
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The files in this listing make use of the files in the following
sections:
- Appendix B: 13.9, 13.11, and 13.12.
~ Appendix D: 15.1 - 15.9.
~ Appendix H: 19.3 and 15.4.

21.1. File Cmprs.c

#include <memory.h>

#include <malloc.h>

fidefine uchar unsigned char
fidefine MAX_SIZE 4096

#define SCRN_SIZE 16004

ffdefine TRUE 1

#define FALSE 0

#define update_tables(a,b,c)
{ wl_table[next_code] = a;\
w2_tablelnext_code] = b;\
((char *) w4_table)[(2%next_code)+1] = c.second;\

((char *) w4_table)[2*next_codel = c.first;\
next_code++ ;}
extern unsigned wl_tablel[] ; /* wl_tablel]l, w2_tablell, %/
extern unsigned w2_tablel® /* w4_tablel] and next_code are */
extern uchar w4_tablei] . /% defined in tables.c. s/
extern int next_code ;
extern unsigned extracalls ;
extern unsigned stack[];
extern int st_index ; /% Stack size. %/
void decompose(unsigned );
void adjust_output( uchar *, uchar far *, unsigned, unsigned * );
/¥ = compress() ===s==== %/
compress( compress_io,compress_work, ptr_bufr_size )
uchar *compress_io,far *compress_work ;
unsigned *ptr_bufr_size ;
{
uchar *input;
unsigned far *output;
char *ptr_new_output;

unsigned bufr_size;
unsigned code ;

register unsigned data_index=0 ;
unsigned out_index=0 ;
struct word {

uchar first;
uchar second;
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} Liword, Ljword;
unsigned Li, Lj ,old_Lj 3
unsigned loangblk;

int bigstk ;
unsigned position, indexl ;
register unsigned i

input=compress_io;
output=(unsigned far *)compress_work;

/* Li = first input element.
Li= input({data_index++] ;
output[out_index++] = Li;
Liword.first=Li;

/% Lj = second input element.
Lj = inputldata_index++] ; .
Liword.second = Lj;
Ljword.first = Lj;
bufr_size=*ptr_bufr_size; /% Find bufr_size.

/% Loop while there is more input.

while( data_index < bufr_size )
{
Ljword.second= inputl[data_index];
position = 256; /% Start searching after 256.
longblk = Lj;
bigstk = -1 ;
while( data_index < bufr_size )
{

if( scan_w4(Ljword, &code, position) )

{

/% st_index points to the last ¥/

/* element on stack.
decompose( code ) ;
indexl = data_index ;

% /

if( ((bufr_size - indexl) >= st_index ) &

( st_index > bigstk ) )

{
for(j=1;(j <= st_index) &
(inputlindexl++]==stack[j]);)
{
jr+s
}

if( j == (st_index+l) )
{

bigstk = st_index ;
longblk = code ;
}

}

position = code + 1;

else
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break ;
}
old_Lj=Lj;
if( Lj == longblk )
b
else
{
Lj = longblk ;
?ata_index += bigstk ;
output{out_index++] = Lj;
/% If the tables are not full yet, */
if(next_code<MAX_SIZE)
/* then string --> string table, */
/% i.e put w and k in the wl_table */
/% and w2_table respectively at the/
/* position indexed by next_code. ¥/
update_tables( Li, Lj, w3 )
else
extracalls++
Li = Lj ;
Liword=L jword;
Lj = Ljword.first

.o

input{data_index++];

/% Make sure the last symbol was ¥/
/* sent to the output. %/
if( datafindex == bufr_size )
outputlout_index] = inputlbufr_size-1] ;
out_indext++;
}
/% Back the output codes from a */
/% string of words format to a /
/% string of 12 bits codes */
/% format. The input to %/
/% adjust_output() is compress_ */
/% work. It sends the output in */
/* in the final form in */
/* compress_io. %/
adjust_output(compress_io ,compress_work,
2%out_index+1, ptr_bufr_size ) ;

}

[Hem e END compress() ———--=—=——m—mmeecmmeneaeo %/

F END CMprs.c =———===———m=s=—— e v/
21.2, File Tables.c

#include <stdio.h>

#include <memory. h>
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#include <malloc.h>
fdefine MAX_SIZE 4096
ffdefine ALPHABET_SIZE 256
fdefine uchar unsigned char
/% Definition of GLOBAL W/
/* variables. s/
unsigned wl_table[MAX_SIZE] ;
unsigned w2_table[MAX_SIZE] ;
unsigned w4_table{MAX_SIZE] ;
unsigned *ptr_wl_table=wl_table;
unsigned *ptr_w2_table=w2_table;
unsigned ptr_w4_table=w4_table;
int next_code ;
unsigned extracalls=0 ;
/7 == jnit_table() =====x%/
/% This function initializes every element in int_table to a com- ¥/
/% bination that will never occur. Since the code is only 12 bits %/
/* long then the 16 bits used to hold these codes are to be <= */
/% Oxfff. For this reason in this program the Oxffff code is used */
/% to solve the above problem. It should be noted that any combin- %/
/% ation > Oxfff should work correctly as well. Then the first 256 */
;* symbols in w2_table are initialized to 0-255. o/
¥ = -—““*———~——=====*/
init_table()
{
register int index ;
/% Set every byte in the */
/% int_table to Oxffff (i.e. ¥/
/% every code word = Oxffff) so */
/% that no code will match with ¥*/
/% it, because the actual codes %/
/% are only 12 bits. ¥/
memset( (char *) w4_table,Oxff,MAX_SIZE*2);
memset( (char *) wl_table,Oxff,MAX_SIZE*2);
/% Set lst 256 of char_table to ¥/
/% be the extended ASCII codes. */
for( index=0; index < ALPHABET_SIZE; index++ )
w2_table[index] = index ;
: next_code = ALPHABET_SIZE;
f e Ut END init_table() =--==-=-=—ommmeeme %/
[ END Tables.c ———==—-—=mo———moommemo */



NAME
TITLE
PUBLIC
LI_WORD
ptr_code
position

DGROUP

_DATA
EXTRN
EXTRN
_DATA

_scan_wa

LOOPL:

NOMATCH:

MATCH:
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21.3. File Scanw4.asm

SCAN_W4
SCANNING OF THE W4-TABLE
_scan_w4

EQU [BP+4]; PASSED PARAMETERS.
EQU [BP+6]
EQU [BP+8]

GROUP CONST, _BSS, _DATA

ASSUME (CS: _TEXT, DS: DGROUP, SS: DGROUP, ES:

SEGMENT
_ptr_w4_table:WORD
_next_code:WORD

ENDS
PROC NEAR
PUSH BP
MOV BP,SP
PUSH DI
PUSH SI
PUSH ES

MOV AX,DS
MoV ES,AX

MOV AX,LI_WORD

we we we we ws we we

DGROUP

INITIALIZE REGISTERS TO THE
CORRESPONDING PARAMETERS PASSED
FROM THE CALLING PROGRAM.

DI = POINTER TO THE TABLE USED IN
THE SEARCH. IT HOLDS THE FIRST
AND SECOND CHARACTERS FOR

EACH CODE.
MOV DI,_ptr_w4_table
MOV BX,position
SHL BX,1
ADD DI,BX
MOV CX,_next_code 3+ CX = NEXT NUMBER NOT USED IN THE
s TABLES YET.

SUB CX,position
JZ NOMATCH

; SCAN THE WORD TABLE STARTING FROM

REPNE SCASW
JNE NOMATCH

MOV AX,0

JMP SCAN_DONE 3 SCAN IS DONE.

FOUND.

]

s DI UP TO CX ELEMENTS.

3 ZERO. IF ZF= 0 WE FINISHED THE SCAN
; BEFORE ANY MATCH. SO GO TO NOMATCH.

BIT ZERO IS

NO MATCH SO RETURN ZERO IN AX

THERE WAS A MATCH SO STORE 1 IN



SUB
SHR
DEC

MoV
MOV
MOV

SCAN_DONE:

S
_T

POP
POP
POP
MOV
POP
RET

can_wé

EXT

END
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y
DI,_ptr_w4_table
DI, 1
DI

we we ws we we we we

BX,ptr_code
(Bx],DI
AX,1

ES
SI
DI
SP,BP
BP

ENDP
ENDS

MAKE DI = LENGTH OF SCANNED WORDS.
MAKE DI = NUMBER OF SCANNED WORDS.
ADJUST FOR THE EFFECT OF THE ONE
MORE WORD LOOP STEPPING.

SCAN WILL RETURN AX = CODE = NUMBER
OF WORDS SCANNED TILL WE FOUND A
MATCH (i.e. INDEX OF THE MATCHED
ELEMENT IN EITHER TABLE) .



430

22. APPENDIX K. TABLE USED IN METHOD LZWB-2



Table 22.1.

431

BExtended LZW tables to be used with
method LZWB2-B

Symbol String w k
256 0l 0 128
257 011 0 129
258 0111 0 130
259 01111 0 131
260 011111 0 132
261 0111111 0 133
262 10 128 0
263 110 129 0
264 1110 130 0
265 11110 131 0
266 111110 132 0
267 1111110 133 0
268 001l 1 128
269 0011 1 129
270 00111 1 130
271 001111 1 131
272 0011111 1 132
273 00111111 1l 133
274 100 128 1
275 1100 129 1
276 11100 130 1
2717 111100 131 1
278 1111100 132 1
279 11111100 133 1
280 0001 2 128
281 00011 2 129
282 000111 2 130
283 0001111 2 131
284 00011111 2 132
285 000111111 2 133
286 1000 128 2
287 11000 129 2
288 111000 130 2
289 1111000 131 2
290 11111000 132 2
291 111111000 133 2
292 00001 3 128
293 000011 3 129
294 0000111 3 130
295 00001111 3 131
296 000011111 3 132
297 0000111111 3 133
298 10000 128 3



Table 22.1.

432

( Continued )

Symbol string w k
299 110000 129 3
300 1110000 130 3
301 11110000 131 3
302 111110000 132 3
303 1111110000 133 3
304 000001 4 128
305 0000011 4 129
306 00000111 4 130
307 000001111 4 131
308 0000011111 4 132
309 00000111111 4 133
310 100000 128 4
311 1100000 129 4
312 11100000 130 4
313 111100000 131 4
314 1111100000 132 4
315 11111100000 133 4
316 0000001 S 128
317 00000011 5 129
318 000000111 S 130
319 0000001111 S 131
320 00000011111 S 132
321 000000111111 S 133
322 1000000 128 )
323 11000000 129 5
324 111000000 130 5
325 1111000000 131 5
326 11111000000 132 5
327 111111000000 133 5
328 00000001 6 128
329 000000011 6 129
330 0000000111 6 130
331 00000001111 6 131
332 000000011111 6 132
333 0000000111111 6 133
334 10000000 128 6
335 110000000 129 6
336 1110000000 130 6
337 11110000000 131 6
338 111110000000 132 6
339 1111110000000 133 6
340 010 256 0
341 0100 256 1
342 01000 256 2



Table 22.1.

433

( Continued )

Symbol String w k
343 010000 256 3
344 0100000 256 4
345 01000000 256 5
346 010000000 256 6
3417 0010 268 0
348 00100 268 1
349 001000 268 2
350 0010000 268 3
351 00100000 268 4
352 001000000 268 5
353 0010000000 268 6
354 00010 281 0
355 000100 280 1
356 0001000 280 2
357 00010000 280 3
358 000100000 280 4
359 0001000000 280 5
360 00010000000 280 6
361 000010 292 0
362 0000100 292 1
363 00001000 292 2
364 000010000 292 3
365 0000100000 292 4
366 00001000000 292 5
367 000010000000 292 6
368 0000010 304 0
369 00000100 304 1
370 000001000 304 2
371 0000010000 304 3
372 00000100000 304 4
373 000001000000 304 5
374 0000010000000 304 6
375 00000010 316 0
376 000000100 316 1
377 0000001000 316 2
378 00000010000 316 3
379 000000100000 316 4
380 0000001000000 316 5
381 00000010000000 316 6
382 000000010 328 0
383 0000000100 328 1
384 00000001000 328 2
385 000000010000 328 3
386 0000000100000 328 4



Table 22.1.

434

( Continued )

* Symbol string w k
387 00000001000000 328 5
388 000000010000000 328 6
389 0110 257 0
390 01100 257 1
391 011000 257 2
392 0110000 257 3
393 01100000 257 4
394 011000000 257 5
395 0110000000 257 6
396 00110 269 0
397 001100 269 1
398 0011000 269 2
399 00110000 269 3
400 001100000 269 4
401 0011000000 269 5
402 00110000000 269 6
403 000110 281 0
404 0001100 281 1
405 00011000 281 2
406 000110000 281 3
407 0001100000 281 4
408 00011000000 281 5
409 000110000000 281 6
410 0000110 293 0
411 00001100 293 1
412 000011000 293 2
413 0000110000 293 3
414 00001100000 293 4
415 000011000000 293 5
416 0000110000000 293 6
417 00000110 305 0
418 000001100 305 1
419 0000011000 305 2
420 00000110000 305 3
421 000001100000 305 4
422 0000011000000 305 5
423 00000110000000 305 6
424 000000110 317 0
425 0000001100 317 1
426 00000011000 317 2
427 000000110000 317 3
428 0000001100000 317 4
429 00000011000000 317 5
430 000000110000000 317 6



Table 22.1.

435

{ Continued )

Symbol Strxing w k
431 0000000110 329 0
432 00000001100 329 1
433 000000011000 329 2
434 0000000110000 329 3
435 00000001100000 329 4
436 000000011000000 329 5
437 0000000110000000 329 6
438 01110 258 0
439 011100 258 1
440 0111000 258 2
441 01110000 258 3
442 011100000 258 4
443 0111000000 258 5
444 01110000000 258 6
445 001110 270 0
446 0011100 270 1
447 00111000 270 2
448 001110000 270 3
449 0011100000 270 4
450 00111000000 270 S
451 001110000000 270 6
452 0001110 282 0
453 00011100 282 1
454 000111000 282 2
455 0001110000 282 3
456 00011100000 282 4
457 000111000000 282 5
458 0001110000000 282 6
459 00001110 294 0
460 000011100 294 1
461 0000111000 294 2
462 00001110000 294 3
463 000011100000 294 4
464 0000111000000 294 5
465 00001110000000 294 6
466 000001110 306 0
467 0000011100 306 1
468 00000111000 306 2
469 000001110000 306 3
470 0000011100000 306 4
471 00000111000000 306 5
472 000001110000000 306 6
473 0000001110 318 0
474 00000011100 318 1



Table 22.1.

436

( Continued )

Symbeol String w k
475 000000111000 318 2
476 0000001110000 318 3
4717 00000011100000 318 4
478 000000111000000 318 5
479 0000001110000000 318 6
480 00000001110 330 0
481 000000011100 330 1
482 0000000111000 330 2
483 00000001110000 330 3
484 000000011100000 330 4
485 0000000111000000 330 5
486 00000001110000000 330 6
487 011110 259 0
488 0111100 259 1
489 01111000 259 2
490 011110000 259 3
491 0111100000 259 4
492 01111000000 259 5
493 011110000000 259 6
494 0011110 271 0
495 00111100 271 1
496 001111000 271 2
497 0011110000 271 3
498 00111100000 271 4
499 001111000000 271 5
500 0011110000000 271 6
501 00011110 283 0
502 000111100 283 1
503 0001111000 283 2
504 000111100600 283 3
505 000111100000 283 4
506 0001111000000 283 5
507 00011110000000 283 6
508 000011110 295 0
509 0000111100 295 1
510 00001111000 295 2
511 000011110000 295 3
512 0000111100000 295 4
513 00001111000000 295 5
514 000011110000000 295 6
515 0000011110 307 0
516 00000111100 307 1
517 000001111000 307 2
518 0000011110000 307 3



Table 22.1.

437

( Continued )

Symbol String w k
519 00000111100000 307 4
520 000001111000000 307 5
521 0000011110000000 307 6
522 00000011110 319 0
523 000000111100 319 1
524 0000001111000 319 2
525 00000011110000 319 3
526 000000111100000 319 4
527 0000001111000000 319 5
528 00000011110000000 319 6
529 000000011110 331 0
530 0000000111100 331 1
531 00000001111000 331 2
532 000000011110000 331 3
533 06000000111100000 331 4
534 00000001111000000 331 5
535 000000011110000000 331 6
536 000000001 7 128
537 0000000011 7 129
538 00000000111 7 130
539 000000001111 7 131
540 0000000011111 7 132
541 00000000111111 7 133
542 100000000 128 7
543 1100000000 129 7
544 11100000000 130 7
545 111100000000 131 7
546 1111100000000 132 7
547 11111100000000 133 7
548 1000000001 542 128
549 10000000011 542 129
550 100000000111 542 130
551 1000000001111 542 131
552 11000000001 543 128
553 110000000011 543 129
554 1100000000111 543 130
555 11000000001111 543 131
556 111000000001 544 128
557 1110000000011 544 129
558 11100000000111 544 130
559 111000000001111 544 131
560 1111000000001 545 128
561 11110000000011 545 129
562 111100000000111 545 130



Table 22.1.

438

( Continued )

Symbol String w k
563 1111000000001111 545 131
564 00000000901 8 128
565 00000000011 8 129
566 000000000111 8 130
567 0000000001111 8 131
568 00000000011111 8 132
569 000000000111111 8 133
570 1000000000 128 8
571 11000000000 129 8
572 111000000000 130 8
573 1111000000000 131 8
574 11111000000000 132 8
575 111111000000000 133 8
576 10000000001 570 128
577 100000000011 570 129
578 1000000000111 570 130
579 10000000001111 570 131
580 110000C00001 571 128
581 1100000000011 571 129
582 11000000000111 571 130
583 110000000001111 571 131
584 1110000000001 572 128
585 11100000000011 572 129
586 111000000000111 572 130
587 1110000000001111 572 131
588 11110000000001 573 128
589 111100000000011 573 129
590 1111000000000111 573 130
591 11110000000001111 573 131
592 00000000001 9 128
593 000000000011 9 129
594 0000000000111 9 130
595 00000000001111 9 131
596 000000000011111 9 132
597 0000000000111111 9 133
598 10000000000 128 9
599 110000000000 129 9
600 1110000000000 130 9
601 11110000000000 131 9
602 111110000000000 132 9
603 1111110000000000 133 9
604 100000000001 598 128
605 1000000000011 598 129
606 10000000000111 598 130



Table 22.1.

439

( Continued )

Symbol string \ k
607 100000000001111 598 131
608 1100000000001 599 128
609 11000000000011 599 129
610 110000000000111 599 130
611 1100000000001111 599 131
612 11100000000001 600 128
613 111000000000011 600 129
614 1110000000000111 600 130
615 11100000000001111 600 131
616 111100000000001 601 128
617 1111000000000011 601 129
618 11110000000000111 601 130
619 111200000000001111 601 131
620 000000000001 10 128
621 0000000000011 10 129
622 00000000000111 10 130
623 000000000001111 10 131
624 0000000000011111 10 132
625 00000000000111111 10 133
626 100000000000 128 10
627 1100000000000 129 10
628 11100000000000 130 10
629 111100000000000 131 10
630 1111100000000000 132 10
631 11111100000000000 133 10
632 1000000000001 626 128
633 10000000000011 626 129
634 100000000000111 626 130
635 1000000000001111 626 131
636 11000000000001 627 128
637 110000000000011 627 129
638 1100000000000111 627 130
639 11000000000001111 627 131
640 111000000000001 628 128
641 1110000000000011 628 129
642 11100000000000111 628 130
643 111000000000001111 628 131
644 1111000000000001 629 128
645 11110000000000011 629 129
646 111100000000000111 629 130
647 11110000000000011111 629 131
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